1
|
Aralla R, Pauley C, Köppl C. The Neural Representation of Binaural Sound Localization Cues Across Different Subregions of the Chicken's Inferior Colliculus. J Comp Neurol 2024; 532:e25653. [PMID: 38962885 DOI: 10.1002/cne.25653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
The sound localization behavior of the nocturnally hunting barn owl and its underlying neural computations is a textbook example of neuroethology. Differences in sound timing and level at the two ears are integrated in a series of well-characterized steps, from brainstem to inferior colliculus (IC), resulting in a topographical neural representation of auditory space. It remains an important question of brain evolution: How is this specialized case derived from a more plesiomorphic pattern? The present study is the first to match physiology and anatomical subregions in the non-owl avian IC. Single-unit responses in the chicken IC were tested for selectivity to different frequencies and to the binaural difference cues. Their anatomical origin was reconstructed with the help of electrolytic lesions and immunohistochemical identification of different subregions of the IC, based on previous characterizations in owl and chicken. In contrast to barn owl, there was no distinct differentiation of responses in the different subregions. We found neural topographies for both binaural cues but no evidence for a coherent representation of auditory space. The results are consistent with previous work in pigeon IC and chicken higher-order midbrain and suggest a plesiomorphic condition of multisensory integration in the midbrain that is dominated by lateral panoramic vision.
Collapse
Affiliation(s)
- Roberta Aralla
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Claire Pauley
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität, Oldenburg, Germany
| |
Collapse
|
2
|
Kettler L, Sid H, Schaub C, Lischka K, Klinger R, Moser M, Schusser B, Luksch H. AP-2δ Expression Kinetics in Multimodal Networks in the Developing Chicken Midbrain. Front Neural Circuits 2021; 15:756184. [PMID: 34744640 PMCID: PMC8568317 DOI: 10.3389/fncir.2021.756184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
AP-2 is a family of transcription factors involved in many aspects of development, cell differentiation, and regulation of cell growth and death. AP-2δ is a member of this group and specific gene expression patterns are required in the adult mouse brain for the development of parts of the inferior colliculus (IC), as well as the cortex, dorsal thalamus, and superior colliculus. The midbrain is one of the central areas in the brain where multimodal integration, i.e., integration of information from different senses, occurs. Previous data showed that AP-2δ-deficient mice are viable but due to increased apoptosis at the end of embryogenesis, lack part of the posterior midbrain. Despite the absence of the IC in AP-2δ-deficient mice, these animals retain at least some higher auditory functions. Neuronal responses to tones in the neocortex suggest an alternative auditory pathway that bypasses the IC. While sufficient data are available in mammals, little is known about AP-2δ in chickens, an avian model for the localization of sounds and the development of auditory circuits in the brain. Here, we identified and localized AP-2δ expression in the chicken midbrain during embryogenesis. Our data confirmed the presence of AP-2δ in the inferior colliculus and optic tectum (TeO), specifically in shepherd's crook neurons, which are an essential component of the midbrain isthmic network and involved in multimodal integration. AP-2δ expression in the chicken midbrain may be related to the integration of both auditory and visual afferents in these neurons. In the future, these insights may allow for a more detailed study of circuitry and computational rules of auditory and multimodal networks.
Collapse
Affiliation(s)
- Lutz Kettler
- Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Hicham Sid
- Reproductive Biotechnology, Technical University of Munich, Freising, Germany
| | - Carina Schaub
- Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Katharina Lischka
- Institute for Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Romina Klinger
- Reproductive Biotechnology, Technical University of Munich, Freising, Germany
| | - Markus Moser
- TranslaTUM, Technical University of Munich, Munich, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, Technical University of Munich, Freising, Germany
| | - Harald Luksch
- Chair of Zoology, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Belekhova MG, Kenigfest NB, Chmykhova NM. Evolutionary Formation and Functional
Significance
of the Core–Belt Pattern of Neural Organization of Rostral Auditory
Centers in Vertebrates. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020040018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Sanculi D, Pannoni KE, Bushong EA, Crump M, Sung M, Popat V, Zaher C, Hicks E, Song A, Mofakham N, Li P, Antzoulatos EG, Fioravante D, Ellisman MH, DeBello WM. Toric Spines at a Site of Learning. eNeuro 2020; 7:ENEURO.0197-19.2019. [PMID: 31822521 PMCID: PMC6944481 DOI: 10.1523/eneuro.0197-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 11/21/2022] Open
Abstract
We discovered a new type of dendritic spine. It is found on space-specific neurons in the barn owl inferior colliculus, a site of experience-dependent plasticity. Connectomic analysis revealed dendritic protrusions of unusual morphology including topological holes, hence termed "toric" spines (n = 76). More significantly, presynaptic terminals converging onto individual toric spines displayed numerous active zones (up to 49) derived from multiple axons (up to 11) with incoming trajectories distributed widely throughout 3D space. This arrangement is suited to integrate input sources. Dense reconstruction of two toric spines revealed that they were unconnected with the majority (∼84%) of intertwined axons, implying a high capacity for information storage. We developed an ex vivo slice preparation and provide the first published data on space-specific neuron intrinsic properties, including cellular subtypes with and without toric-like spines. We propose that toric spines are a cellular locus of sensory integration and behavioral learning.
Collapse
Affiliation(s)
- Daniel Sanculi
- Center for Neuroscience, University of California, Davis, CA 95618
| | | | - Eric A Bushong
- National Center for Molecular Imaging Research, University of California, La Jolla, CA 92093
| | - Michael Crump
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Michelle Sung
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Vyoma Popat
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Camilia Zaher
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Emma Hicks
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Ashley Song
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Nikan Mofakham
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Peining Li
- Center for Neuroscience, University of California, Davis, CA 95618
| | | | | | - Mark H Ellisman
- National Center for Molecular Imaging Research, University of California, La Jolla, CA 92093
| | | |
Collapse
|
5
|
The expression of DARPP-32 in adult male zebra finches (Taenopygia guttata). Brain Struct Funct 2019; 224:2939-2972. [PMID: 31473781 DOI: 10.1007/s00429-019-01947-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
Although the catecholaminergic circuitry in the zebra finch brain has been well studied, there is little information regarding the postsynaptic targets of dopamine. To answer this question, we looked at overall patterns of immunoreactivity for DARPP-32 (a dopamine and cAMP-regulated phosphoprotein, present mostly in dopaminoceptive neurons) in adult male zebra finches. Our results demonstrated that as in mammals and other avian species, DARPP-32 expression was highest in both medial and lateral striatum. Interestingly, a specific pattern of immunoreactivity was observed in the song control system, with 'core' song control regions, that is, LMANcore (lateral magnocellular nucleus of the anterior nidopallium), RA (nucleus robustus arcopallialis) and HVC being less immunoreactive for DARPP-32 than 'shell' areas such as LMANshell, RAcup, AId (intermediate arcopallium) and HVCshelf. Our results suggest that whereas dopamine may modulate the shell pathways at various levels of the AFP, dopaminergic modulation of the core pathway occurs mainly through Area X, a basal ganglia nucleus. Further, secondary sensory cortices including the perientopallial belt, Fields L1 and L3 had higher DARPP-32-immunoreactivity than primary sensory cortical areas such as the pallial basolateral nucleus, entopallium proper and Field L2, corresponding to somatosensory, visual and auditory systems, respectively. We also found DARPP-32-rich axon terminals surrounding dopaminergic neurons in the ventral tegmental area-substantia nigra complex which in turn project to the striatum, suggesting that there may be a reciprocal modulation between these regions. Overall, DARPP-32 expression appears to be higher in areas involved in integrating sensory information, which further supports the role of this protein as a molecular integrator of different signal processing pathways.
Collapse
|
6
|
Malinowski ST, Wolf J, Kuenzel T. Intrinsic and Synaptic Dynamics Contribute to Adaptation in the Core of the Avian Central Nucleus of the Inferior Colliculus. Front Neural Circuits 2019; 13:46. [PMID: 31379514 PMCID: PMC6646678 DOI: 10.3389/fncir.2019.00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The reduction of neuronal responses to repeated stimulus presentation occurs in many sensory neurons, also in the inferior colliculus of birds. The cellular mechanisms that cause response adaptation are not well described. Adaptation must be explicable by changes in the activity of input neurons, short-term synaptic plasticity of the incoming connections, excitability changes of the neuron under consideration or influences of inhibitory or modulatory network connections. Using whole-cell recordings in acute brain slices of the embryonic chicken brain we wanted to understand the intrinsic and synaptic contributions to adaptation in the core of the central nucleus of the inferior colliculus (ICCc). We described two neuron types in the chicken ICCc based on their action potential firing patterns: Phasic/onset neurons showed strong intrinsic adaptation but recovered more rapidly. Tonic/sustained firing neurons had weaker adaptation but often had additional slow components of recovery from adaptation. Morphological analysis suggested two neuron classes, but no physiological parameter aligned with this classification. Chicken ICCc neurons received mostly mixed AMPA- and NMDA-type glutamatergic synaptic inputs. In the majority of ICCc neurons the input synapses underwent short-term depression. With a simulation of the putative population output activity of the chicken ICCc we showed that the different adaptation profiles of the neuron classes could shift the emphasize of stimulus encoding from transients at long intervals to ongoing parts at short intervals. Thus, we report here that description of biophysical and synaptic properties can help to explain adaptive phenomena in central auditory neurons.
Collapse
Affiliation(s)
- Sebastian T Malinowski
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Jana Wolf
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Aralla R, Ashida G, Köppl C. Binaural responses in the auditory midbrain of chicken (Gallus gallus). Eur J Neurosci 2018; 51:1290-1304. [PMID: 29582488 DOI: 10.1111/ejn.13891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 11/29/2022]
Abstract
The auditory midbrain is the location in which neurons represent binaural acoustic information necessary for sound localization. The external nucleus of the midbrain inferior colliculus (IC) of the barn owl is a classic example of an auditory space map, but it is unknown to what extent the principles underlying its formation generalize to other, less specialized animals. We characterized the spiking responses of 139 auditory neurons in the IC of the chicken (Gallus gallus) in vivo, focusing on their sensitivities to the binaural localization cues of interaural time (ITD) and level (ILD) differences. Most units were frequency-selective, with best frequencies distributed unevenly into low-frequency and high-frequency (> 2 kHz) clusters. Many units showed sensitivity to either ITD (65%) or ILD (66%) and nearly half to both (47%). ITD selectivity was disproportionately more common among low-frequency units, while ILD-only selective units were predominantly tuned to high frequencies. ILD sensitivities were diverse, and we thus developed a decision tree defining five types. One rare type with a bell-like ILD tuning was also selective for ITD but typically not frequency-selective, and thus matched the characteristics of neurons in the auditory space map of the barn owl. Our results suggest that generalist birds such as the chicken show a prominent representation of ITD and ILD cues in the IC, providing complementary information for sound localization, according to the duplex theory. A broadband response type narrowly selective for both ITD and ILD may form the basis for a representation of auditory space.
Collapse
Affiliation(s)
- Roberta Aralla
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| | - Go Ashida
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
8
|
Lischka K, Ladel S, Luksch H, Weigel S. Expression patterns of ion channels and structural proteins in a multimodal cell type of the avian optic tectum. J Comp Neurol 2017; 526:412-424. [DOI: 10.1002/cne.24340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 11/08/2022]
Affiliation(s)
| | - Simone Ladel
- Chair of Zoology; Technical University of Munich; Freising Germany
| | - Harald Luksch
- Chair of Zoology; Technical University of Munich; Freising Germany
| | - Stefan Weigel
- Chair of Zoology; Technical University of Munich; Freising Germany
| |
Collapse
|
9
|
Wang Y, Zorio DAR, Karten HJ. Heterogeneous organization and connectivity of the chicken auditory thalamus (Gallus gallus). J Comp Neurol 2017; 525:3044-3071. [PMID: 28614906 PMCID: PMC5558206 DOI: 10.1002/cne.24262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 11/07/2022]
Abstract
The auditory ascending system contains parallel pathways in vertebrate brains. In chickens (Gallus gallus), three pathways arise from nucleus laminaris (NL), nucleus angularis (NA), and regio intermedius (RI) in the brainstem, innervating three subdivisions of the nucleus mesencephalicus lateralis pars dorsalis (MLd) in the midbrain. The current study reveals the segregation of these pathways in their subsequent projections to the nucleus ovoidalis (Ov) in the thalamus. Based on cytoarchitecture and myelin distribution, we identified seven Ov subregions, including five neuronal clusters within the Ov proper, the nucleus semilunaris parovoidalis (SPO), and the circum-ovoidalis (cOv). Immunocytochemistry further revealed that a ventromedial cluster of the Ov proper (Ovvm) contains unique cell types expressing α8 subunit nicotinic acetylcholine receptor, while SPO and cOv are characterized with expression of calcitonin-gene-related peptide and cholecystokinin. Tract tracing studies demonstrated that Ovvm is a major target of the NL-recipient zone of MLd, while the RI-recipient zone of MLd predominantly projects to a ventrolateral cluster of the Ov proper. Afferent inputs to the remaining regions of the Ov proper mostly arise from the NA-recipient zone of MLd. SPO and cOv receive a projection from the surrounding areas of MLd, named the nucleus intercollicularis. Importantly, the Ov proper, SPO and cOv all project to the Field L2 in the forebrain, the avian auditory cortex. Taken together, these results demonstrate that the avian auditory thalamus is a structurally and functionally heterogeneous structure, implicating an important role in generating novel representations for specific acoustic features.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Biomedical Sciences, Florida State University,
Tallahassee, FL 32312
- Program in Neuroscience, Florida State University, Tallahassee, FL
32312
| | - Diego A. R. Zorio
- Department of Biomedical Sciences, Florida State University,
Tallahassee, FL 32312
| | - Harvey J. Karten
- Department of Neurosciences, University of California at San Diego,
La Jolla, CA 92093
| |
Collapse
|
10
|
Niederleitner B, Gutierrez-Ibanez C, Krabichler Q, Weigel S, Luksch H. A novel relay nucleus between the inferior colliculus and the optic tectum in the chicken (Gallus gallus). J Comp Neurol 2016; 525:513-534. [PMID: 27434677 DOI: 10.1002/cne.24082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 11/08/2022]
Abstract
Processing multimodal sensory information is vital for behaving animals in many contexts. The barn owl, an auditory specialist, is a classic model for studying multisensory integration. In the barn owl, spatial auditory information is conveyed to the optic tectum (TeO) by a direct projection from the external nucleus of the inferior colliculus (ICX). In contrast, evidence of an integration of visual and auditory information in auditory generalist avian species is completely lacking. In particular, it is not known whether in auditory generalist species the ICX projects to the TeO at all. Here we use various retrograde and anterograde tracing techniques both in vivo and in vitro, intracellular fillings of neurons in vitro, and whole-cell patch recordings to characterize the connectivity between ICX and TeO in the chicken. We found that there is a direct projection from ICX to the TeO in the chicken, although this is small and only to the deeper layers (layers 13-15) of the TeO. However, we found a relay area interposed among the IC, the TeO, and the isthmic complex that receives strong synaptic input from the ICX and projects broadly upon the intermediate and deep layers of the TeO. This area is an external portion of the formatio reticularis lateralis (FRLx). In addition to the projection to the TeO, cells in FRLx send, via collaterals, descending projections through tectopontine-tectoreticular pathways. This newly described connection from the inferior colliculus to the TeO provides a solid basis for visual-auditory integration in an auditory generalist bird. J. Comp. Neurol. 525:513-534, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bertram Niederleitner
- Lehrstuhl für Zoologie, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | | | - Quirin Krabichler
- Lehrstuhl für Zoologie, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | - Stefan Weigel
- Lehrstuhl für Zoologie, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Lehrstuhl für Zoologie, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| |
Collapse
|
11
|
Belekhova MG, Kenigfest NB, Chudinova TV, Vesselkin NP. Distribution of calcium-binding proteins, parvalbumin and calbindin, in the midbrain auditory center (MLd) of a pigeon. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2016; 466:1-4. [PMID: 27021359 DOI: 10.1134/s001249661601004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 11/23/2022]
Abstract
Immunohistochemical distribution of calcium-binding proteins, parvalbumin (PV) and calbindin (CB), has been studied in the mesencephalic auditory center (MLd) of pigeon (Columba livia). In the central region of the MLd (core, ICC), an overlap in distribution of the PVand CB-immunopositive (ip) neurons and neuropil has been observed, with different patterns in the central and peripheral parts. In the peripheral region of the MLd (belt, ICS, and ICX), both neurons and neuropil contained only CB. A selective CB chemospecificity of the belt, ICS, and ICX is an evolutionary conserved feature characteristic of all avian species. Interspecies differences in the distribution of PV and CB immunoreactivity in the ICC are a result of adaptive functional specialization, which provides specific processing of different aspects of the auditory information.
Collapse
Affiliation(s)
- M G Belekhova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - N B Kenigfest
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - T V Chudinova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N P Vesselkin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
12
|
Ito T, Atoji Y. Tectothalamic inhibitory projection neurons in the avian torus semicircularis. J Comp Neurol 2016; 524:2604-22. [DOI: 10.1002/cne.23979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy; Faculty of Medical Sciences, University of Fukui; Eiheiji Fukui 910-1193 Japan
- Research and Education Program for Life Science, University of Fukui; Fukui Fukui 910-8507 Japan
| | - Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University; Yanagido Gifu 501-1193 Japan
| |
Collapse
|
13
|
Hunting increases phosphorylation of calcium/calmodulin-dependent protein kinase type II in adult barn owls. Neural Plast 2015; 2015:819257. [PMID: 25789177 PMCID: PMC4348593 DOI: 10.1155/2015/819257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX), the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is "off" in adults.
Collapse
|