1
|
Li H, Zhang P, Lin M, Li K, Zhang C, He X, Gao K. Pyroptosis: candidate key targets for mesenchymal stem cell-derived exosomes for the treatment of bone-related diseases. Stem Cell Res Ther 2025; 16:68. [PMID: 39940049 DOI: 10.1186/s13287-025-04167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Bone-related diseases impact a large portion of the global population and, due to their high disability rates and limited treatment options, pose significant medical and economic challenges. Mesenchymal stem cells (MSCs) can differentiate into multiple cell types and offer strong regenerative potential, making them promising for treating various diseases. However, issues with the immune response and cell survival limit the effectiveness of cell transplantation. This has led to increased interest in cell-free stem cell therapy, particularly the use of exosomes, which is the most studied form of this approach. Exosomes are extracellular vesicles that contain proteins, lipids, and nucleic acids and play a key role in cell communication and material exchange. Pyroptosis, a form of cell death involved in innate immunity, is also associated with many diseases. Studies have shown that MSC-derived exosomes have therapeutic potential for treating a range of conditions by regulating inflammation and pyroptosis. This study explored the role of MSC-derived exosomes in modulating pyroptosis to improve the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Haiming Li
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Peng Zhang
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Minghui Lin
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Kang Li
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Xiao He
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Kai Gao
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China.
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| |
Collapse
|
2
|
Fusco AF, Rana S, Jorgensen M, Bindi VE, Sunshine MD, Shaw G, Fuller DD. Immunohistochemical labeling of ongoing axonal degeneration 10 days following cervical contusion spinal cord injury in the rat. Spinal Cord 2025; 63:86-94. [PMID: 39753895 PMCID: PMC11849397 DOI: 10.1038/s41393-024-01053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 02/12/2025]
Abstract
STUDY DESIGN Experimental Animal Study. OBJECTIVE To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat. SETTING University of Florida laboratory in Gainesville, USA. METHODS Sprague Dawley rats received either a unilateral 150kdyne C4 contusion (n = 4 females, n = 5 males) or a laminectomy control surgery (n = 2 females, n = 3 males). Ten days following SCI or laminectomy, spinal cords and brainstems were processed for immunohistochemistry. Serial spinal cord and brainstem cross-sections were stained with the degeneration-specific NF-L antibody (MCA-6H63) and dual labeled with either an antibody against the C-terminus portion of NF-L (NF-L-Ct), to label healthy axons, or an antibody against amyloid precursor protein (APP), considered the current "gold standard" for identifying axonal injury. The pattern of ongoing axonal degeneration was assessed. RESULTS Spinal cord and brainstem cross-sections from injured rats had punctate MCA-6H63 positive fibers with a pathological appearance, loss of anti-NF-L-Ct colabeling, and frequent colocalization with APP. Immunopositive fibers were abundant rostral and caudal to the lesion in white matter tracts that would be disrupted by the unilateral C4 contusion. This pattern of staining was not observed in control tissue. CONCLUSIONS The MCA-6H63 antibody labels degenerating axons following SCI and offers a tool to quantify axonal degeneration.
Collapse
Affiliation(s)
- Anna F Fusco
- Neuroscience Department, University of Florida, Gainesville, FL, USA
- College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Sabhya Rana
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
- Physical Therapy Department, University of Florida, Gainesville, FL, USA
| | | | - Victoria E Bindi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
- Physical Therapy Department, University of Florida, Gainesville, FL, USA
| | - Michael D Sunshine
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
- Physical Therapy Department, University of Florida, Gainesville, FL, USA
| | - Gerry Shaw
- Neuroscience Department, University of Florida, Gainesville, FL, USA
- EnCor Biotechnology, Gainesville, FL, USA
| | - David D Fuller
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
- Physical Therapy Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Liu Z, Lai J, Kong D, Zhao Y, Zhao J, Dai J, Zhang M. Advances in electroactive bioscaffolds for repairing spinal cord injury. Biomed Mater 2024; 19:032005. [PMID: 38636508 DOI: 10.1088/1748-605x/ad4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.
Collapse
Affiliation(s)
- Zeqi Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dexin Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiakang Zhao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
4
|
Parrilla GE, Gupta V, Wall RV, Salkar A, Basavarajappa D, Mirzaei M, Chitranshi N, Graham SL, You Y. The role of myelin in neurodegeneration: implications for drug targets and neuroprotection strategies. Rev Neurosci 2024; 35:271-292. [PMID: 37983528 DOI: 10.1515/revneuro-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Myelination of axons in the central nervous system offers numerous advantages, including decreased energy expenditure for signal transmission and enhanced signal speed. The myelin sheaths surrounding an axon consist of a multi-layered membrane that is formed by oligodendrocytes, while specific glycoproteins and lipids play various roles in this formation process. As beneficial as myelin can be, its dysregulation and degeneration can prove detrimental. Inflammation, oxidative stress, and changes in cellular metabolism and the extracellular matrix can lead to demyelination of these axons. These factors are hallmark characteristics of certain demyelinating diseases including multiple sclerosis. The effects of demyelination are also implicated in primary degeneration in diseases such as glaucoma and Alzheimer's disease, as well as in processes of secondary degeneration. This reveals a relationship between myelin and secondary processes of neurodegeneration, including resultant degeneration following traumatic injury and transsynaptic degeneration. The role of myelin in primary and secondary degeneration is also of interest in the exploration of strategies and targets for remyelination, including the use of anti-inflammatory molecules or nanoparticles to deliver drugs. Although the use of these methods in animal models of diseases have shown to be effective in promoting remyelination, very few clinical trials in patients have met primary end points. This may be due to shortcomings or considerations that are not met while designing a clinical trial that targets remyelination. Potential solutions include diversifying disease targets and requiring concomitant interventions to promote rehabilitation.
Collapse
Affiliation(s)
- Gabriella E Parrilla
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Vivek Gupta
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Roshana Vander Wall
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Akanksha Salkar
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Nitin Chitranshi
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Stuart L Graham
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
- Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| | - Yuyi You
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
- Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| |
Collapse
|
5
|
Albashari AA, He Y, Luo Y, Duan X, Ali J, Li M, Fu D, Xiang Y, Peng Y, Li S, Luo L, Zan X, Kumeria T, Ye Q. Local Spinal Cord Injury Treatment Using a Dental Pulp Stem Cell Encapsulated H 2S Releasing Multifunctional Injectable Hydrogel. Adv Healthc Mater 2024; 13:e2302286. [PMID: 38056013 PMCID: PMC11469045 DOI: 10.1002/adhm.202302286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Spinal cord injury (SCI) commonly induces nerve damage and nerve cell degeneration. In this work, a novel dental pulp stem cells (DPSCs) encapsulated thermoresponsive injectable hydrogel with sustained hydrogen sulfide (H2S) delivery is demonstrated for SCI repair. For controlled and sustained H2S gas therapy, a clinically tested H2S donor (JK) loaded octysilane functionalized mesoporous silica nanoparticles (OMSNs) are incorporated into the thermosensitive hydrogel made from Pluronic F127 (PF-127). The JK-loaded functionalized MSNs (OMSF@JK) promote preferential M2-like polarization of macrophages and neuronal differentiation of DPSCs in vitro. OMSF@JK incorporated PF-127 injectable hydrogel (PF-OMSF@JK) has a soft consistency similar to that of the human spinal cord and thus, shows a high cytocompatibility with DPSCs. The cross-sectional micromorphology of the hydrogel shows a continuous porous structure. Last, the PF-OMSF@JK composite hydrogel considerably improves the in vivo SCI regeneration in Sprague-Dawley rats through a reduction in inflammation and neuronal differentiation of the incorporated stem cells as confirmed using western blotting and immunohistochemistry. The highly encouraging in vivo results prove that this novel design on hydrogel is a promising therapy for SCI regeneration with the potential for clinical translation.
Collapse
Affiliation(s)
- Abdullkhaleg Ali Albashari
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Yan He
- Laboratory for Regenerative MedicineTianyou HospitalWuhan University of Science and TechnologyWuhanHubei430064China
- Oral Maxillofacial DepartmentMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Yu Luo
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xingxiang Duan
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Jihea Ali
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiang325035China
| | - Mingchang Li
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Dehao Fu
- Department of OrthopaedicsShanghai Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233China
| | - Yangfan Xiang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Youjian Peng
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Song Li
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Lihua Luo
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xingjie Zan
- Wenzhou InstituteUniversity of China Academy of ScienceWenzhouZhejiang325024China
| | - Tushar Kumeria
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNew South Wales2052Australia
- Australian Center for NanoMedicineUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PharmacyUniversity of QueenslandBrisbaneQueensland4102Australia
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
- Oral Maxillofacial DepartmentMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| |
Collapse
|
6
|
Patilas C, Varsamos I, Galanis A, Vavourakis M, Zachariou D, Marougklianis V, Kolovos I, Tsalimas G, Karampinas P, Kaspiris A, Vlamis J, Pneumaticos S. The Role of Interleukin-10 in the Pathogenesis and Treatment of a Spinal Cord Injury. Diagnostics (Basel) 2024; 14:151. [PMID: 38248028 PMCID: PMC10814517 DOI: 10.3390/diagnostics14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that often leads to severe and permanent neurological deficits. The complex pathophysiology of an SCI involves a cascade of events, including inflammation, oxidative stress, and secondary injury processes. Among the myriad of molecular players involved, interleukin-10 (IL-10) emerges as a key regulator with the potential to modulate both the inflammatory response and promote neuroprotection. This comprehensive review delves into the intricate interplay of IL-10 in the pathogenesis of an SCI and explores its therapeutic implications in the quest for effective treatments. IL-10 has been found to regulate inflammation, oxidative stress, neuronal apoptosis, and glial scars after an SCI. Its neuroprotective properties have been evaluated in a plethora of animal studies. IL-10 administration, either isolated or in combination with other molecules or biomaterials, has shown neuroprotective effects through a reduction in inflammation, the promotion of tissue repair and regeneration, the modulation of glial scar formation, and improved functional outcomes. In conclusion, IL-10 emerges as a pivotal player in the pathogenesis and treatment of SCIs. Its multifaceted role in modulating inflammation, oxidative stress, neuronal apoptosis, glial scars, and neuroprotection positions IL-10 as a promising therapeutic target. The ongoing research exploring various strategies for harnessing the potential of IL-10 offers hope for the development of effective treatments that could significantly improve outcomes for individuals suffering from spinal cord injuries. As our understanding of IL-10's intricacies deepens, it opens new avenues for innovative and targeted therapeutic interventions, bringing us closer to the goal of alleviating the profound impact of SCIs on patients' lives.
Collapse
Affiliation(s)
| | | | | | - Michail Vavourakis
- 3rd Department of Orthopaedic Surgery, National & Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yu T, Yang LL, Zhou Y, Wu MF, Jiao JH. Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Res Ther 2024; 15:6. [PMID: 38167108 PMCID: PMC10763489 DOI: 10.1186/s13287-023-03614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Spinal cord injury (SCI) is a catastrophic injury to the central nervous system (CNS) that can lead to sensory and motor dysfunction, which seriously affects patients' quality of life and imposes a major economic burden on society. The pathological process of SCI is divided into primary and secondary injury, and secondary injury is a cascade of amplified responses triggered by the primary injury. Due to the complexity of the pathological mechanisms of SCI, there is no clear and effective treatment strategy in clinical practice. Exosomes, which are extracellular vesicles of endoplasmic origin with a diameter of 30-150 nm, play a critical role in intercellular communication and have become an ideal vehicle for drug delivery. A growing body of evidence suggests that exosomes have great potential for repairing SCI. In this review, we introduce exosome preparation, functions, and administration routes. In addition, we summarize the effect and mechanism by which various exosomes repair SCI and review the efficacy of exosomes in combination with other strategies to repair SCI. Finally, the challenges and prospects of the use of exosomes to repair SCI are described.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Li-Li Yang
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Min-Fei Wu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Jian-Hang Jiao
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
8
|
Ardizzone A, Bova V, Casili G, Filippone A, Lanza M, Repici A, Esposito E, Paterniti I. bFGF-like Activity Supported Tissue Regeneration, Modulated Neuroinflammation, and Rebalanced Ca 2+ Homeostasis following Spinal Cord Injury. Int J Mol Sci 2023; 24:14654. [PMID: 37834102 PMCID: PMC10572408 DOI: 10.3390/ijms241914654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
A spinal cord injury (SCI) is a well-defined debilitating traumatic event to the spinal cord that usually triggers permanent changes in motor, sensory, and autonomic functions. Injured tissue becomes susceptible to secondary mechanisms caused by SCIs, which include pro-inflammatory cytokine release, the activation of astrocytes and microglia, and increased neuronal sensibility. As a consequence, the production of factors such as GFAP, IBA-1, TNF-α, IL-1β, IFN-γ, and S100-β slow down or inhibit central nervous system (CNS) regeneration. In this regard, a thorough understanding of the mechanisms regulating the CNS, and specifically SCI, is essential for the development of new therapeutic strategies. It has been demonstrated that basic fibroblast growth factor (bFGF) was successful in the modulation of neurotrophic activity, also promoting neurite survival and tissue repair, thus resulting in the valuable care of CNS disorders. However, bFGF therapeutic use is limited due to the undesirable effects developed following its administration. Therefore, the synthetic compound mimetic of bFGF, SUN11602 (with chemical name 4-[[4-[[2-[(4-Amino-2,3,5,6-tetramethylphenyl)amino]acetyl]methylamino]-1-piperidinyl]methyl]benzamide), has been reported to show neuroprotective activities similar to those of bFGF, also demonstrating a good pharmacokinetic profile. Here, we aimed to investigate the neuroprotective activity of this bFGF-like compound in modulating tissue regeneration, neuroinflammation, and Ca2+ overload by using a subacute mouse model of SCI. SUN11602 (1, 2.5, and 5 mg/kg) was administered orally to mice for 72 h daily following the in vivo model of SCI, which was generated by the extradural compression of the spinal cord. The data obtained demonstrated that SUN11602 treatment considerably decreased motor alteration and diminished the neuroinflammatory state through the regulation of glial activation, the NF-κB pathway, and kinases. Additionally, by controlling Ca2+-binding proteins and restoring neurotrophin expression, we showed that SUN11602 therapy restored the equilibrium of the neuronal circuit. Because of these findings, bFGF-like compounds may be an effective tool for reducing inflammation in SCI patients while enhancing their quality of life.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (V.B.); (G.C.); (A.F.); (M.L.); (A.R.); (I.P.)
| | | |
Collapse
|
9
|
Neishaboori AM, Tavallaei MJ, Toloui A, Ahmadzadeh K, Alavi SNR, Lauran M, Hosseini M, Yousefifard M. Effects of Epothilone Administration on Locomotion Recovery after Spinal Cord Injury: A Systematic Review of Animal Studies. Asian Spine J 2023; 17:761-769. [PMID: 37062538 PMCID: PMC10460658 DOI: 10.31616/asj.2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 04/18/2023] Open
Abstract
This is a systematic review and meta-analysis of existing evidence regarding the possible effects of epothilones on spinal cord injury (SCI). This study aimed to investigate the possible effects of epothilone administration on locomotion recovery in animal models of SCI. Despite increasing rates of SCI and its burden on populations, no consensus has been reached about the possible treatment modality for SCI. Meanwhile, low-dose epothilones have been reported to have positive effects on SCI outcomes. Electronic databases of Web of Science, Scopus, Embase, and Medline were searched using keywords related to epothilones and SCI until the end of 2020. Two researchers screened the articles, and extracted data were analyzed using STATA ver. 14.0. Final results are reported as a standardized mean difference (SMD) with a 95% confidence interval (CI). After the screening, five studies were included in the analysis. Rats were used in all the studies. Two types of epothilones were used via intraperitoneal injection and were shown to have positive effects on the motor outcomes of samples with SCI (SMD, 0.87; 95% CI, 0.51 to 1.23; p =0.71). Although a slightly better effect was observed when using epothilone B, the difference was not significant (coefficient, -0.50; 95% CI, -1.52 to 0.52; p =0.246). The results of this study suggest that epothilones have positive effects on the improvement of motor function in rats, when administered intraperitoneally until a maximum of 1 day after SCI. However, current evidence regarding the matter is still scarce.
Collapse
Affiliation(s)
| | | | - Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Koohyar Ahmadzadeh
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Martin Lauran
- GKT School of Medical Education, King’s College London, London, UK
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
11
|
Qin C, Liu Y, Xu PP, Zhang X, Talifu Z, Liu JY, Jing YL, Bai F, Zhao LX, Yu Y, Gao F, Li JJ. Inhibition by rno-circRNA-013017 of the apoptosis of motor neurons in anterior horn and descending axonal degeneration in rats after traumatic spinal cord injury. Front Neurosci 2022; 16:1065897. [PMID: 36590290 PMCID: PMC9797719 DOI: 10.3389/fnins.2022.1065897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Spinal cord injury (SCI) often causes continuous neurological damage to clinical patients. Circular RNAs (circRNAs) are related to a lot of diseases, including SCI. We previously found five candidate circRNAs which were likely to regulate the secondary pathophysiological changes in rat model after traumatic SCI. Methods In this study, we first selected and overexpressed target circRNA in rats. We then explored its functional roles using various functional assays in a rat model after SCI. Results We found that rno-circRNA-013017-the selected target circRNA-reduced neuron apoptosis, preserved the survival and activity of motor neurons, and regulated apoptosis-related proteins at 3 days post-SCI using western blot, immunofluorescence and polymerase chain reaction. Additionally, we found that rno-circRNA-013017 inhibited descending axonal degeneration and preserved motor neurons and descending axons at 6 weeks post-SCI using immunofluorescence, biotin dextran amine diffusion tensor imaging. Finally, the overexpression of rno-circRNA-013017 promoted the locomotor function of rats after SCI using open-field test and gait analysis. Conclusion Focusing on the functions of rno-circRNA-013017, this study provides new options for future studies exploring therapeutic targets and molecular mechanisms for SCI.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Urology, Beijing Friendship Hospital, Beijing, China,School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yi Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Pei-Pei Xu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jia-Yi Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Li-Xi Zhao
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Feng Gao,
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,*Correspondence: Jian-Jun Li,
| |
Collapse
|
12
|
Li Z, Li Z, Chen Z, Sun H, Yuan Z, Wang X, Wei J, Cao X, Zheng D. Andrographolide contributes to spinal cord injury repair via inhibition of apoptosis, oxidative stress and inflammation. Front Pharmacol 2022; 13:949502. [PMID: 36278181 PMCID: PMC9585304 DOI: 10.3389/fphar.2022.949502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Spinal cord injury (SCI) is a common disorder of the central nervous system with considerable socio-economic burden. Andrographolide (Andro), the main active component of Andrographis paniculata, has exhibited neuroprotective effects in different models of neurological diseases. The aim of this study was to evaluate the neuroprotective effects of Andro against SCI and explore the related mechanisms. Methods: SCI was induced in rats by the Allen method, and the modeled animals were randomly divided into sham-operated, SCI, SCI + normal saline (NS) and SCI + Andro groups. The rats were injected intraperitoneally with Andro (1 mg/kg) or the same volume of NS starting day one after the establishment of the SCI model for 28 consecutive days. Post-SCI tissue repair and functional recovery were evaluated by measuring the spinal cord water content, footprint tests, Basso-Beattie-Bresnahan (BBB) scores, hematoxylin-eosin (HE) staining and Nissl staining. Apoptosis, oxidative stress and inflammation, as well as axonal regeneration and remyelination were analyzed using suitable markers. The in vitro model of SCI was established by treating cortical neurons with H2O2. The effects of Andro on apoptosis, oxidative stress and inflammation were evaluated as indicated. Results: Andro treatment significantly improved tissue repair and functional recovery after SCI by reducing apoptosis, oxidative stress and inflammation through the nuclear factor E2-related factor 2/heme oxygenase-1 (Nrf-2/HO-1) and nuclear factor-kappa B (NF-κB) signaling pathways. Furthermore, Andro treatment promoted M2 polarization of the microglial cells and contributed to axonal regeneration and remyelination to improve functional recovery after SCI. In addition, Andro also attenuated apoptosis, oxidative stress and inflammation in H2O2-stimulated cortical neurons in vitro. Conclusion: Andro treatment alleviated SCI by reducing apoptosis, oxidative stress and inflammation in the injured tissues and cortical neurons, and promoted axonal regeneration and remyelination for functional recovery.
Collapse
Affiliation(s)
- Zhen Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zehui Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenyue Chen
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - He Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhagen Yuan
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaochao Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinqiang Wei
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuewei Cao
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Decai Zheng, ; Xuewei Cao,
| | - Decai Zheng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Decai Zheng, ; Xuewei Cao,
| |
Collapse
|
13
|
Xu Y, He X, Wang Y, Jian J, Peng X, Zhou L, Kang Y, Wang T. 5-Fluorouracil reduces the fibrotic scar via inhibiting matrix metalloproteinase 9 and stabilizing microtubules after spinal cord injury. CNS Neurosci Ther 2022; 28:2011-2023. [PMID: 35918897 PMCID: PMC9627390 DOI: 10.1111/cns.13930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/13/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Fibrotic scars composed of a dense extracellular matrix are the major obstacles for axonal regeneration. Previous studies have reported that antitumor drugs promote neurofunctional recovery. METHODS We investigated the effects of 5-fluorouracil (5-FU), a classical antitumor drug with a high therapeutic index, on fibrotic scar formation, axonal regeneration, and functional recovery after spinal cord injury (SCI). RESULTS 5-FU administration after hemisection SCI improved hind limb sensorimotor function of the ipsilateral hind paws. 5-FU application also significantly reduced the fibrotic scar formation labeled with aggrecan and fibronectin-positive components, Iba1+ /CD11b+ macrophages/microglia, vimentin, chondroitin sulfate proteoglycan 4 (NG2/CSPG4), and platelet-derived growth factor receptor beta (PDGFRβ)+ pericytes. Moreover, 5-FU treatment promoted stromal cells apoptosis and inhibited fibroblast proliferation and migration by abrogating the polarity of these cells and reducing matrix metalloproteinase 9 expression and promoted axonal growth of spinal neurons via the neuron-specific protein doublecortin-like kinase 1 (DCLK1). Therefore, 5-FU administration impedes the formation of fibrotic scars and promotes axonal regeneration to further restore sensorimotor function after SCI.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West ChinaChinese Academy of Medical SciencesChengduChina,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Xiuying He
- Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West ChinaChinese Academy of Medical SciencesChengduChina,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Yangyang Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West ChinaChinese Academy of Medical SciencesChengduChina
| | - Jiao Jian
- Institute of Neuroscience, Laboratory Zoology DepartmentKunming Medical UniversityKunmingChina
| | - Xia Peng
- Institute of Neuroscience, Laboratory Zoology DepartmentKunming Medical UniversityKunmingChina
| | - Lie Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research CenterKunming Medical UniversityKunmingChina
| | - Yi Kang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina,National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Tinghua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West ChinaChinese Academy of Medical SciencesChengduChina,Institute of Neuroscience, Laboratory Zoology DepartmentKunming Medical UniversityKunmingChina,National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
14
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
15
|
Bao SS, Zhao C, Chen HW, Feng T, Guo XJ, Xu M, Rao JS. NT3 treatment alters spinal cord injury-induced changes in the gray matter volume of rhesus monkey cortex. Sci Rep 2022; 12:5919. [PMID: 35396344 PMCID: PMC8993853 DOI: 10.1038/s41598-022-09981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) may cause structural alterations in brain due to pathophysiological processes, but the effects of SCI treatment on brain have rarely been reported. Here, voxel-based morphometry is employed to investigate the effects of SCI and neurotrophin-3 (NT3) coupled chitosan-induced regeneration on brain and spinal cord structures in rhesus monkeys. Possible association between brain and spinal cord structural alterations is explored. The pain sensitivity and stepping ability of animals are collected to evaluate sensorimotor functional alterations. Compared with SCI, the unique effects of NT3 treatment on brain structure appear in extensive regions which involved in motor control and neuropathic pain, such as right visual cortex, superior parietal lobule, left superior frontal gyrus (SFG), middle frontal gyrus, inferior frontal gyrus, insula, secondary somatosensory cortex, anterior cingulate cortex, and bilateral caudate nucleus. Particularly, the structure of insula is significantly correlated with the pain sensitivity. Regenerative treatment also shows a protective effect on spinal cord structure. The associations between brain and spinal cord structural alterations are observed in right primary somatosensory cortex, SFG, and other regions. These results help further elucidate secondary effects on brain of SCI and provide a basis for evaluating the effects of NT3 treatment on brain structure.
Collapse
Affiliation(s)
- Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, 100068, China. .,School of Rehabilitation, Capital Medical University, Beijing, 100068, China.
| | - Hao-Wei Chen
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ting Feng
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
16
|
Mahmoodi N, Ai J, Hassannejad Z, Ebrahimi-Barough S, Hasanzadeh E, Nekounam H, Vaccaro AR, Rahimi-Movaghar V. Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen hydrogel. Sci Rep 2021; 11:21722. [PMID: 34741076 PMCID: PMC8571364 DOI: 10.1038/s41598-021-01071-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord regeneration is limited due to various obstacles and complex pathophysiological events after injury. Combination therapy is one approach that recently garnered attention for spinal cord injury (SCI) recovery. A composite of three-dimensional (3D) collagen hydrogel containing epothilone B (EpoB)-loaded polycaprolactone (PCL) microspheres (2.5 ng/mg, 10 ng/mg, and 40 ng/mg EpoB/PCL) were fabricated and optimized to improve motor neuron (MN) differentiation efficacy of human endometrial stem cells (hEnSCs). The microspheres were characterized using liquid chromatography-mass/mass spectrometry (LC-mas/mas) to assess the drug release and scanning electron microscope (SEM) for morphological assessment. hEnSCs were isolated, then characterized by flow cytometry, and seeded on the optimized 3D composite. Based on cell morphology and proliferation, cross-linked collagen hydrogels with and without 2.5 ng/mg EpoB loaded PCL microspheres were selected as the optimized formulations to compare the effect of EpoB release on MN differentiation. After differentiation, the expression of MN markers was estimated by real-time PCR and immunofluorescence (IF). The collagen hydrogel containing the EpoB group had the highest HB9 and ISL-1 expression and the longest neurite elongation. Providing a 3D permissive environment with EpoB, significantly improves MN-like cell differentiation and maturation of hEnSCs and is a promising approach to replace lost neurons after SCI.
Collapse
Affiliation(s)
- Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Tissue, Cell and Gene Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021; 15:682259. [PMID: 34220440 PMCID: PMC8249862 DOI: 10.3389/fnins.2021.682259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Currently there are approximately 291,000 people suffering from a spinal cord injury (SCI) in the United States. SCI is associated with traumatic changes in mobility and neuralgia, as well as many other long-term chronic health complications, including metabolic disorders, diabetes mellitus, non-alcoholic steatohepatitis, osteoporosis, and elevated inflammatory markers. Due to medical advances, patients with SCI survive much longer than previously. This increase in life expectancy exposes them to novel neurological complications such as memory loss, cognitive decline, depression, and Alzheimer's disease. In fact, these usually age-associated disorders are more prevalent in people living with SCI. A common factor of these disorders is the reduction in hippocampal neurogenesis. Inflammation, which is elevated after SCI, plays a major role in modulating hippocampal neurogenesis. While there is no clear consensus on the mechanism of the decline in hippocampal neurogenesis and cognition after SCI, we will examine in this review how SCI-induced inflammation could modulate hippocampal neurogenesis and provoke age-associated neurological disorders. Thereafter, we will discuss possible therapeutic options which may mitigate the influence of SCI associated complications on hippocampal neurogenesis.
Collapse
|
18
|
Cellular therapy for treatment of spinal cord injury in Zebrafish model. Mol Biol Rep 2021; 48:1787-1800. [PMID: 33459959 DOI: 10.1007/s11033-020-06126-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury is a serious problem with a high rate of morbidity and mortality for all persons, especially young people (15-25 years old). Due to the large burden and the costs incurred on the government, finding the best therapeutic approach is necessary. In this respect, treatment strategies based on the disease mechanism can be effective. After the first trauma of spinal cord cascades, cellular events happen one after the other known as secondary trauma. The mechanism of secondary events of spinal cord injury could be helpful for target therapy as trying to stop the secondary trauma. Herein, some medical and surgical therapy has been introduced and cell therapy strategy was considered as a recent method. Actually, cell therapy is defined as the application of different cells including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and some others to replace or reconstruct the damaged tissues and restore their functions. However, as a newly emerged therapeutic method, cell therapy should be used through various subclinical studies in animal models to assess the efficacy of the treatment under controlled conditions. In this review, the role of Zebrafish as a recommended model has been discussed and combinatory approach as the probably most useful treatment has been suggested.
Collapse
|
19
|
Clark J, Zhu Z, Chuckowree J, Dickson T, Blizzard C. Efficacy of epothilones in central nervous system trauma treatment: what has age got to do with it? Neural Regen Res 2021; 16:618-620. [PMID: 33063710 PMCID: PMC8067923 DOI: 10.4103/1673-5374.295312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Central nervous system injury, specifically traumatic brain and spinal cord injury, can have significant long lasting effects. There are no comprehensive treatments to combat the injury and sequalae of events that occurring following a central nervous system trauma. Herein we discuss the potential for the epothilone family of microtubule stabilizing agents to improve outcomes following experimentally induced trauma. These drugs, which are able to cross the blood-brain barrier, may hold great promise for the treatment of central nervous system trauma and the current literature presents the extensive range of beneficial effects these drugs may have following trauma in animal models. Importantly, the effect of the epothilones can vary and our most recent contributions to this field indicate that the efficacy of epothilones following traumatic brain injury is dependent upon the age of the animals. Therefore, we present a case for a greater emphasis to be placed upon age when using an intervention aimed at neural regeneration and highlight the importance of tailoring the therapeutic regime in the clinic to the age of the patient to promote improved patient outcomes.
Collapse
Affiliation(s)
- Jayden Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Zhendan Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jyoti Chuckowree
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Catherine Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
20
|
Chiou SY, Strutton PH. Crossed Corticospinal Facilitation Between Arm and Trunk Muscles Correlates With Trunk Control After Spinal Cord Injury. Front Hum Neurosci 2020; 14:583579. [PMID: 33192418 PMCID: PMC7645046 DOI: 10.3389/fnhum.2020.583579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate whether crossed corticospinal facilitation between arm and trunk muscles is preserved following spinal cord injury (SCI) and to elucidate these neural interactions for postural control during functional arm movements. Methods: Using transcranial magnetic stimulation (TMS) in 22 subjects with incomplete SCI motor evoked potentials (MEPs) in the erector spinae (ES) muscle were examined when the contralateral arm was at rest or performed 20% of maximal voluntary contraction (MVC) of biceps brachii (BB) or triceps brachii (TB). Trunk function was assessed with rapid shoulder flexion and forward-reaching tasks. Results: MEP amplitudes in ES were increased during elbow flexion in some subjects and this facilitatory effect was more prominent in subjects with thoracic SCI than in the subjects with cervical SCI. Those who showed the increased MEPs during elbow flexion had faster reaction times and quicker anticipatory postural adjustments of the trunk in the rapid shoulder flexion task. The onset of EMG activity in ES during the rapid shoulder flexion task correlated with the trunk excursion in forward-reaching. Conclusions: Our findings demonstrate that crossed corticospinal facilitation in the trunk muscles can be preserved after SCI and is reflected in trunk control during functional arm movements.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paul H Strutton
- The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Wang S, Deng J, Fu H, Guo Z, Zhang L, Tang P. Astrocytes directly clear myelin debris through endocytosis pathways and followed by excessive gliosis after spinal cord injury. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30337-5. [PMID: 32070495 DOI: 10.1016/j.bbrc.2020.02.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
Persisted myelin debris inhibit axon regeneration and contribute to further tissue damage after spinal cord injury (SCI). The traditional view is that myelin debris is mainly cleared by microglia and macrophages, while astrocytes cannot directly engulf myelin debris because they are absent from lesion core. Here, we definitely showed that astrocytes could directly uptake myelin debris both in vitro and in vivo to effectively complement the clearance function. Therefore, it can be shown that astrocytes can exert myelin clearance effect directly and indirectly after spinal cord injury. The damaged myelin debris was transported to lysosomes for degradation through endocytosis pathways, finally resulting in excessive gliosis. This process may be a potential target for regulating neural tissue repair and excessive glia scar formation after SCI.
Collapse
Affiliation(s)
- Song Wang
- School of Medicine, Nankai University, Tianjin, China; Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China
| | - Junhao Deng
- Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China
| | - Haitao Fu
- Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Zhongkui Guo
- School of Medicine, Nankai University, Tianjin, China; Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China.
| | - Peifu Tang
- School of Medicine, Nankai University, Tianjin, China; Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China.
| |
Collapse
|
22
|
Yildirim MA, Topkara B, Aydin T, Paker N, Soy D, Coskun E, Ones K, Bardak A, Kesiktas N, Ozyurt MG, Celik B, Onder B, Kılıc A, Kucuk HC, Karacan I, Türker KS. Exploring the receptor origin of vibration-induced reflexes. Spinal Cord 2020; 58:716-723. [PMID: 31942042 DOI: 10.1038/s41393-020-0419-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN An experimental design. OBJECTIVES The aim of this study was to determine the latencies of vibration-induced reflexes in individuals with and without spinal cord injury (SCI), and to compare these latencies to identify differences in reflex circuitries. SETTING A tertiary rehabilitation center in Istanbul. METHODS Seventeen individuals with chronic SCI (SCI group) and 23 participants without SCI (Control group) were included in this study. Latency of tonic vibration reflex (TVR) and whole-body vibration-induced muscular reflex (WBV-IMR) of the left soleus muscle was tested for estimating the reflex origins. The local tendon vibration was applied at six different vibration frequencies (50, 85, 140, 185, 235, and 265 Hz), each lasting for 15 s with 3-s rest intervals. The WBV was applied at six different vibration frequencies (35, 37, 39, 41, 43, and 45 Hz), each lasting for 15 s with 3-s rest intervals. RESULTS Mean (SD) TVR latency was 39.7 (5.3) ms in the SCI group and 35.9 (2.7) ms in the Control group with a mean (95% CI) difference of -3.8 (-6.7 to -0.9) ms. Mean (SD) WBV-IMR latency was 45.8 (7.4) ms in the SCI group and 43.3 (3.0) ms in the Control group with a mean (95% CI) difference of -2.5 (-6.5 to 1.4) ms. There were significant differences between TVR latency and WBV-IMR latency in both the groups (mean (95% CI) difference; -6.2 (-9.3 to -3.0) ms, p = 0.0001 for the SCI group and -7.4 (-9.3 to -5.6) ms, p = 0.011 for Control group). CONCLUSIONS The results suggest that the receptor of origin of TVR and WBV-IMR may be different.
Collapse
Affiliation(s)
- Mustafa A Yildirim
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Betilay Topkara
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| | - Tugba Aydin
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Nurdan Paker
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Derya Soy
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Evrim Coskun
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kadriye Ones
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Aysenur Bardak
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Nur Kesiktas
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Mustafa G Ozyurt
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| | - Berna Celik
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Burcu Onder
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Aysegul Kılıc
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Habib C Kucuk
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Ilhan Karacan
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey.
| | - Kemal S Türker
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
23
|
Li G, Fan ZK, Gu GF, Jia ZQ, Zhang QQ, Dai JY, He SS. Epidural Spinal Cord Stimulation Promotes Motor Functional Recovery by Enhancing Oligodendrocyte Survival and Differentiation and by Protecting Myelin after Spinal Cord Injury in Rats. Neurosci Bull 2019; 36:372-384. [PMID: 31732865 DOI: 10.1007/s12264-019-00442-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Epidural spinal cord stimulation (ESCS) markedly improves motor and sensory function after spinal cord injury (SCI), but the underlying mechanisms are unclear. Here, we investigated whether ESCS affects oligodendrocyte differentiation and its cellular and molecular mechanisms in rats with SCI. ESCS improved hindlimb motor function at 7 days, 14 days, 21 days, and 28 days after SCI. ESCS also significantly increased the myelinated area at 28 days, and reduced the number of apoptotic cells in the spinal white matter at 7 days. SCI decreased the expression of 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase, an oligodendrocyte marker) at 7 days and that of myelin basic protein at 28 days. ESCS significantly upregulated these markers and increased the percentage of Sox2/CNPase/DAPI-positive cells (newly differentiated oligodendrocytes) at 7 days. Recombinant human bone morphogenetic protein 4 (rhBMP4) markedly downregulated these factors after ESCS. Furthermore, ESCS significantly decreased BMP4 and p-Smad1/5/9 expression after SCI, and rhBMP4 reduced this effect of ESCS. These findings indicate that ESCS enhances the survival and differentiation of oligodendrocytes, protects myelin, and promotes motor functional recovery by inhibiting the BMP4-Smad1/5/9 signaling pathway after SCI.
Collapse
Affiliation(s)
- Gang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhong-Kai Fan
- Department of Orthopaedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Guang-Fei Gu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhi-Qiang Jia
- Department of Spinal Surgery, The Second Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiang-Qiang Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Jun-Yu Dai
- Department of Orthopaedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Shi-Sheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
24
|
Aryanpur M, Yousefifard M, Oraii A, Heydari G, Kazempour-Dizaji M, Sharifi H, Hosseini M, Jamaati H. Effect of passive exposure to cigarette smoke on blood pressure in children and adolescents: a meta-analysis of epidemiologic studies. BMC Pediatr 2019; 19:161. [PMID: 31113399 PMCID: PMC6528314 DOI: 10.1186/s12887-019-1506-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hypertension is an emerging disease in children and adolescents resulting in future morbidities. Cigarette smoking is one of the most studied contributing factors in this regard; however, there are contradictory results among different studies. Therefore, the present meta-analysis tends to assess the relationship between passive exposure to cigarette smoke and blood pressure in children and adolescents. Method Medline, Embase, Scopus, EBSCO, and Web of Sciences were systematically reviewed for observational studies up to May, 2017, in which the relationship between cigarette smoking and hypertension were assessed in children and adolescents. The meta-analysis was performed with a fixed effect or random effects model according to the heterogeneity. Results Twenty-nine studies were included in present meta-analysis incorporating 192,067 children and adolescents. Active smoking (pooled OR = 0.92; 95% CI: 0.79 to 1.05) or passive exposure to cigarette smoke (pooled OR = 1.01; 95% CI: 0.93 to 1.10) were not associated with developing hypertension in the study population. Despite the fact that active cigarette smoking did not significantly affect absolute level of systolic and diastolic blood pressure, it was shown that passive exposure to cigarette smoke leads to a significant increase in absolute level of systolic blood pressure (pooled coefficient = 0.26; 95% CI: 0.12 to 0.39). Conclusion Both active and passive cigarette smoking were not associated with developing hypertension in children and adolescents. However, passive cigarette smoke was associated with higher level of systolic blood pressure in children and adolescents.
Collapse
Affiliation(s)
- Mahshid Aryanpur
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Oraii
- Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Heydari
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Kazempour-Dizaji
- Mycobacteriology Research Center, Biostatistics Unit, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hooman Sharifi
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Poursina Ave, Tehran, Iran.
| | - Hamidreza Jamaati
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|