1
|
Soni H, Lako I, Placidi M, Cramer SM. Implications of AAV affinity column reuse and vector stability on product quality attributes. Biotechnol Bioeng 2024; 121:2449-2465. [PMID: 37485847 DOI: 10.1002/bit.28500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
In this work, the implications of AAV9 capsid design and column reuse on AAV9 vector product quality were assessed with POROS CaptureSelect (PCS) AAVX and AAV9 resins using sf9 insect cell-derived model AAV9 vectors with varying viral protein (VP) ratios. Chromatographic experiments with purified drug substance AAV9 model feeds indicated consistent vector elution profiles, independent of adeno-associated virus (AAV) VP ratio, or cycle number. In contrast, the presence of process impurities in the clarified lysate feeds resulted in clear changes in the elution patterns. This included increased aggregate content in the vector eluates over multiple cycles as well as clear differences in the performance of these affinity resin systems. The AAV9-serotype specific PCS AAV9 column, with lower vector elution pH, resulted in higher aggregate content over multiple cycles as compared to the serotype-independent PCS AAVX column. Further, the results with vectors of varying VP ratio indicated that while one vector type eluate displayed higher aggregation in both affinity columns over column reuse, the eluate with the other vector type did not exhibit changes in the aggregation profile. Interestingly, vector aggregates in the affinity eluates also contained double-stranded DNA impurities and histone proteins, with similar trends to the aggregate levels. This behavior upon column reuse indicates that these host cell impurities are likely carried over to subsequent runs due to incomplete clean-in-place (CIP). These results indicate that feed impurities, affinity resin characteristics, elution pH, column CIP, and vector stability can impact the reusability of AAV affinity columns and product quality.
Collapse
Affiliation(s)
- Harshal Soni
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ira Lako
- Voyager Therapeutics, Cambridge, Massachusetts, USA
| | | | - Steven M Cramer
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
2
|
Ito T, Lutz H, Tan L, Wang B, Tan J, Patel M, Chen L, Tsunakawa Y, Park B, Banerjee S. Host cell proteins in monoclonal antibody processing: Control, detection, and removal. Biotechnol Prog 2024; 40:e3448. [PMID: 38477405 DOI: 10.1002/btpr.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities in a therapeutic protein expressed using cell culture technology. This review presents biopharmaceutical industry trends in terms of both HCPs in the bioprocessing of monoclonal antibodies (mAbs) and the capabilities for HCP clearance by downstream unit operations. A comprehensive assessment of currently implemented and emerging technologies in the manufacturing processes with extensive references was performed. Meta-analyses of published downstream data were conducted to identify trends. Improved analytical methods and understanding of "high-risk" HCPs lead to more robust manufacturing processes and higher-quality therapeutics. The trend of higher cell density cultures leads to both higher mAb expression and higher HCP levels. However, HCP levels can be significantly reduced with improvements in operations, resulting in similar concentrations of approx. 10 ppm HCPs. There are no differences in the performance of HCP clearance between recent enhanced downstream operations and traditional batch processing. This review includes best practices for developing improved processes.
Collapse
Affiliation(s)
- Takao Ito
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Herb Lutz
- Independent Consultant, Sudbury, Massachusetts, USA
| | - Lihan Tan
- Life Science Services, Sigma-Aldrich Pte Ltd, Singapore, Singapore
| | - Bin Wang
- Life Science, Process Solutions, Merck Chemicals (Shanghai) Co. Ltd. (An Affiliate of Merck KGaA Darmstadt, Germany), Shanghai, China
| | - Janice Tan
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Masum Patel
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| | - Lance Chen
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Yuki Tsunakawa
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Byunghyun Park
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Seoul, South Korea
| | - Subhasis Banerjee
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| |
Collapse
|
3
|
Lavoie RA, Chu W, Lavoie JH, Hetzler Z, Williams TI, Carbonell R, Menegatti S. Removal of host cell proteins from cell culture fluids by weak partitioning chromatography using peptide-based adsorbents. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Lavoie RA, Fazio A, Williams TI, Carbonell R, Menegatti S. Targeted capture of Chinese hamster ovary host cell proteins: Peptide ligand binding by proteomic analysis. Biotechnol Bioeng 2019; 117:438-452. [DOI: 10.1002/bit.27213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Affiliation(s)
- R. Ashton Lavoie
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh North Carolina
| | - Alice Fazio
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh North Carolina
| | - Taufika Islam Williams
- Molecular Education, Technology, and Research Innovation Center (METRIC)North Carolina State UniversityRaleigh North Carolina
| | - Ruben Carbonell
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh North Carolina
- Biomanufacturing Training and Education Center (BTEC)North Carolina State UniversityRaleigh North Carolina
- The National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL)Newark Delaware
| | - Stefano Menegatti
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh North Carolina
- Biomanufacturing Training and Education Center (BTEC)North Carolina State UniversityRaleigh North Carolina
| |
Collapse
|
5
|
Lavoie RA, di Fazio A, Blackburn RK, Goshe MB, Carbonell RG, Menegatti S. Targeted Capture of Chinese Hamster Ovary Host Cell Proteins: Peptide Ligand Discovery. Int J Mol Sci 2019; 20:ijms20071729. [PMID: 30965558 PMCID: PMC6479451 DOI: 10.3390/ijms20071729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
The growing integration of quality-by-design (QbD) concepts in biomanufacturing calls for a detailed and quantitative knowledge of the profile of impurities and their impact on the product safety and efficacy. Particularly valuable is the determination of the residual level of host cell proteins (HCPs) secreted, together with the product of interest, by the recombinant cells utilized for production. Though often referred to as a single impurity, HCPs comprise a variety of species with diverse abundance, size, function, and composition. The clearance of these impurities is a complex issue due to their cell line to cell line, product-to-product, and batch-to-batch variations. Improvements in HCP monitoring through proteomic-based methods have led to identification of a subset of “problematic” HCPs that are particularly challenging to remove, both at the product capture and product polishing steps, and compromise product stability and safety even at trace concentrations. This paper describes the development of synthetic peptide ligands capable of capturing a broad spectrum of Chinese hamster ovary (CHO) HCPs with a combination of peptide species that allow for advanced mixed-mode binding. Solid phase peptide libraries were screened for identification and characterization of peptides that capture CHO HCPs while showing minimal binding of human IgG, utilized here as a model product. Tetrameric and hexameric ligands featuring either multipolar or hydrophobic/positive amino acid compositions were found to be the most effective. Tetrameric multipolar ligands exhibited the highest targeted binding ratio (ratio of HCP clearance over IgG loss), more than double that of commercial mixed-mode and anion exchange resins utilized by industry for IgG polishing. All peptide resins tested showed preferential binding to HCPs compared to IgG, indicating potential uses in flow-through mode or weak-partitioning-mode chromatography.
Collapse
Affiliation(s)
- R Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - Alice di Fazio
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - R Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | - Michael B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE 19711, USA.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
6
|
Oshita M, Yokoyama T, Takei Y, Takeuchi A, Ironside JW, Kitamoto T, Morita M. Efficient propagation of variant Creutzfeldt-Jakob disease prion protein using the cell-protein misfolding cyclic amplification technique with samples containing plasma and heparin. Transfusion 2015; 56:223-30. [PMID: 26347231 DOI: 10.1111/trf.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/02/2015] [Accepted: 07/12/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND To prevent the iatrogenic spread of variant Creutzfeldt-Jakob disease (vCJD) between humans via blood products or transfusion, highly sensitive in vitro screening tests are necessary. Protein misfolding cyclic amplification (PMCA) is one such candidate test. However, plasma has been reported to inhibit the PMCA reaction. Therefore, we investigated the cell-PMCA conditions that permit vCJD prion amplification in the presence of plasma. STUDY DESIGN AND METHODS Cell-PMCA of vCJD samples was performed by adding various final concentrations of pooled plasma, citrate-phosphate-dextrose (CPD), albumin, globulin, or pooled plasma treated with ion exchangers. After heparin and plasma concentrations were optimized, multiround cell-PMCA was performed. RESULTS When 1% to 50% of pooled plasma was added to heparinized cell-PMCA, amplification efficiency showed a double-peaked profile at less than 1% and 40% final plasma concentrations, indicating that plasma contains not only PMCA inhibitors but also promoters. Intravenous globulin did not inhibit cell-PMCA, but the protein G-bound fraction did. CPD, albumin-depleted plasma, and the unbound fraction of anion-exchange chromatography inhibited cell-PMCA, but albumin and the unbound fraction of the cation-exchange chromatography did not. The detection limit of abnormal prion protein in multiround cell-PMCA, when maintaining the final plasma concentration at 40% at each round, was 10(-10) dilutions of a vCJD brain specimen. CONCLUSION We have established a novel cell-PMCA format in the presence of plasma without any pretreatment, where vCJD prion protein was amplified at comparable levels to that found without plasma. Our data suggest the feasibility of cell-PMCA as a practical blood test for vCJD prions.
Collapse
Affiliation(s)
- Masatoshi Oshita
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| | - Takashi Yokoyama
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| | - Yumiko Takei
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| | - Atsuko Takeuchi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, Japan
| | - James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, Japan
| | - Masanori Morita
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| |
Collapse
|
7
|
Gagnon P, Nian R, Yang Y, Yang Q, Lim CL. Non-immunospecific association of immunoglobulin G with chromatin during elution from protein A inflates host contamination, aggregate content, and antibody loss. J Chromatogr A 2015; 1408:151-60. [DOI: 10.1016/j.chroma.2015.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/20/2015] [Accepted: 07/05/2015] [Indexed: 11/24/2022]
|
8
|
Schonbrunn A. Editorial: Antibody can get it right: confronting problems of antibody specificity and irreproducibility. Mol Endocrinol 2015; 28:1403-7. [PMID: 25184858 DOI: 10.1210/me.2014-1230] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Agnes Schonbrunn
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77225
| |
Collapse
|
9
|
Tan L, Yeo V, Yang Y, Gagnon P. Characterization of DNA in cell culture supernatant by fluorescence-detection size-exclusion chromatography. Anal Bioanal Chem 2015; 407:4173-81. [DOI: 10.1007/s00216-015-8639-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 01/30/2023]
|
10
|
Gagnon P, Nian R, Tan L, Cheong J, Yeo V, Yang Y, Gan HT. Chromatin-mediated depression of fractionation performance on electronegative multimodal chromatography media, its prevention, and ramifications for purification of immunoglobulin G. J Chromatogr A 2014; 1374:145-155. [DOI: 10.1016/j.chroma.2014.11.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022]
|
11
|
Zhu-Shimoni J, Yu C, Nishihara J, Wong RM, Gunawan F, Lin M, Krawitz D, Liu P, Sandoval W, Vanderlaan M. Host cell protein testing by ELISAs and the use of orthogonal methods. Biotechnol Bioeng 2014; 111:2367-79. [PMID: 24995961 DOI: 10.1002/bit.25327] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/06/2014] [Accepted: 07/02/2014] [Indexed: 02/05/2023]
Abstract
Host cell proteins (HCPs) are among the process-related impurities monitored during recombinant protein pharmaceutical process development. The challenges of HCP detection include (1) low levels of residual HCPs present in large excess of product protein, (2) the assay must measure a large number of different protein analytes, and (3) the population of HCP species may change during process development. Suitable methods for measuring process-related impurities are needed to support process development, process validation, and control system testing. A multi-analyte enzyme-linked immunosorbent assay (ELISA) is the workhorse method for HCP testing due to its high throughput, sensitivity and selectivity. However, as the anti-HCP antibodies, the critical reagents for HCP ELISA, do not comprehensively recognize all the HCP species, it is especially important to ensure that weak and non-immunoreactive HCPs are not overlooked by the ELISA. In some cases limited amount of antibodies to HCP species or antigen excess causes dilution-dependent non-linearity with multi-product HCP ELISA. In our experience, correct interpretation of assay data can lead to isolation and identification of co-purifying HCP with the product in some cases. Moreover, even if the antibodies for a particular HCP are present in the reagent, the corresponding HCP may not be readily detected in the ELISA due to antibody/antigen binding conditions and availability of HCP epitopes. This report reviews the use of the HCP ELISA, discusses its limitations, and demonstrates the importance of orthogonal methods, including mass spectrometry, to complement the platform HCP ELISA for support of process development. In addition, risk and impact assessment for low-level HCPs is also outlined, with consideration of clinical information.
Collapse
Affiliation(s)
- Judith Zhu-Shimoni
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gagnon P, Nian R, Lee J, Tan L, Latiff SMA, Lim CL, Chuah C, Bi X, Yang Y, Zhang W, Gan HT. Nonspecific interactions of chromatin with immunoglobulin G and protein A, and their impact on purification performance. J Chromatogr A 2014; 1340:68-78. [DOI: 10.1016/j.chroma.2014.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022]
|
13
|
Parseghian MH, Mechetner E, Osidak MS, Domogatskii SP. Application of monoclonal antibodies for the diagnostic and therapeutic targeting of human tumors with a necrotic component. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363214020364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Parseghian MH. Hitchhiker antigens: Inconsistent ChIP results, questionable immunohistology data, and poor antibody performance may have a common factor. Biochem Cell Biol 2013; 91:378-94. [DOI: 10.1139/bcb-2013-0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Questionable data and poor antibody performance may have a common factor: antigens “hitchhiking” on the very antibodies designed to target them. Here I focus on histone hitchhikers and their antibodies, given the impact of chromatin immunoprecipitation on our understanding of DNA regulation. Caused by a lack of stringency during antibody purification, hitchhikers will impede important advances in chromatin research and therapeutics derived from that research, if similar circumstances in the study of lupus decades ago are any guide. Evidence of this phenomenon is reviewed, purification modifications for antibody manufacturing are suggested, and a histone hitchhiker detection procedure is provided.
Collapse
|
15
|
Gan HT, Lee J, Latiff SMA, Chuah C, Toh P, Lee WY, Gagnon P. Characterization and removal of aggregates formed by nonspecific interaction of IgM monoclonal antibodies with chromatin catabolites during cell culture production. J Chromatogr A 2013; 1291:33-40. [DOI: 10.1016/j.chroma.2013.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
|
16
|
Technology trends in antibody purification. J Chromatogr A 2012; 1221:57-70. [DOI: 10.1016/j.chroma.2011.10.034] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 10/09/2011] [Accepted: 10/12/2011] [Indexed: 01/21/2023]
|