1
|
Zhao Q, Kalpio M, Fabritius M, Zhang Y, Yang B. Analysis of triacylglycerol regioisomers in plant oils using direct inlet negative ion chemical ionization tandem mass spectrometry. Food Res Int 2025; 202:115710. [PMID: 39967165 DOI: 10.1016/j.foodres.2025.115710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
Triacylglycerols (TGs) are the primary lipids of plant oils and the positional distribution of fatty acids (FAs) is essential to physicochemical, functional, and nutritional qualities of oils. Most studies have reported TG species in plant oils. In some studies, FA combinations in each TG species have been reported still neglecting the regioisomer composition of TGs. In this study, a fast direct inlet negative ion chemical ionization tandem mass spectrometric (NICI-MS/MS) method and optimization algorithm were applied to study the regioisomerism of TGs in 18 different plant oils. According to FA composition results, oleic, FA 18:1(9); linoleic, FA 18:2(9,12); palmitic, FA 16:0 and stearic acid, FA 18:0 were the most abundant FAs, composing mainly TG species having acyl carbon numbers 50, 52 and 54 and 1-4 double bonds. Based on 35 detected TG species, oils were classified into five groups using clustering analysis. Each group had a different dominant TG species of which the most abundant were triunsaturated ones. In regioisomeric pairs or triplets, FA 16:0, FA 16:1(9), FA 18:0, and FA 18:2(9,12) were more commonly in the sn-1/3 position, while FA 18:1 slightly preferred sn-2. The most abundant TG regioisomers were: TG 16:0_18:1(sn-2)_18:1 (52:2, mainly 18:1 in sn-2) especially in avocado, macadamia nut, olive, and palm oils; TG 18:2_18:2(sn-2)_18:1 and TG 18:2_18:1(sn-2)_18:2 (TG 54:5, mainly 18:2 in sn-2) in corn, pumpkin seed, sesame, and sunflower oils. The use of high-throughput NICI-MS/MS method to study regioisomers in commercial plant oils contributes to further studies on profiling lipid structure and developing products with specific TG compositions to meet dietary needs. The regiospecific information of TGs in edible oils is crucial for understanding their health benefits and functional properties, which are in turn needed in selecting oils for various applications.
Collapse
Affiliation(s)
- Qizhu Zhao
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku FI-20014 Turku, Finland
| | - Marika Kalpio
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku FI-20014 Turku, Finland.
| | - Mikael Fabritius
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku FI-20014 Turku, Finland
| | - Yuqing Zhang
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku FI-20014 Turku, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku FI-20014 Turku, Finland
| |
Collapse
|
2
|
Green CR, Kolar MJ, McGregor GH, Nelson AT, Wallace M, Metallo CM. Quantifying acyl-chain diversity in isobaric compound lipids containing monomethyl branched-chain fatty acids. J Lipid Res 2024; 65:100677. [PMID: 39490922 PMCID: PMC11621494 DOI: 10.1016/j.jlr.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Compound lipids comprise a diverse group of metabolites present in living systems, and metabolic- and environmentally-driven structural distinctions across this family are increasingly linked to biological function. However, methods for deconvoluting these often isobaric lipid species are lacking or require specialized instrumentation. Notably, acyl-chain diversity within cells may be influenced by nutritional states, metabolic dysregulation, or genetic alterations. Therefore, a reliable, validated method of quantifying structurally similar even-, odd-, and branched-chain acyl groups within intact compound lipids will be invaluable for gaining molecular insights into their biological functions. Here we demonstrate the chromatographic resolution of isobaric lipids containing distinct combinations of straight-chain and branched-chain acyl groups via ultra-high-pressure liquid chromatography (UHPLC)-mass spectrometry (MS) using a C30 liquid chromatography column. Using metabolically engineered adipocytes lacking branched-keto acid dehydrogenase A (Bckdha), we validate this approach through a combination of fatty acid supplementation and metabolic tracing using monomethyl branched-chain fatty acids and valine. We observe the resolution of numerous isobaric triacylglycerols and other compound lipids, demonstrating the resolving utility of this method. This approach adds to the toolbox for laboratories to quantify and characterize acyl chain diversity across the lipidome.
Collapse
Affiliation(s)
- Courtney R Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Matthew J Kolar
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA; Department of Dermatology, University of California, San Diego, CA, USA
| | - Grace H McGregor
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Andrew T Nelson
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA.
| |
Collapse
|
3
|
Green CR, Kolar MJ, McGregor GH, Nelson AT, Wallace M, Metallo CM. Quantifying acyl-chain diversity in isobaric compound lipids containing monomethyl branched-chain fatty acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596332. [PMID: 38853874 PMCID: PMC11160641 DOI: 10.1101/2024.05.28.596332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Compound lipids comprise a diverse group of metabolites present in living systems, and metabolic- and environmentally-driven structural distinctions across this family is increasingly linked to biological function. However, methods for deconvoluting these often isobaric lipid species are lacking or require specialized instrumentation. Notably, acyl-chain diversity within cells may be influenced by nutritional states, metabolic dysregulation, or genetic alterations. Therefore, a reliable, validated method of quantifying structurally similar even-, odd-, and branched-chain acyl groups within intact compound lipids will be invaluable for gaining molecular insights into their biological functions. Here we demonstrate the chromatographic resolution of isobaric lipids containing distinct combinations of straight-chain and branched-chain acyl groups via ultra-high-pressure liquid chromatography (UHPLC)-mass spectrometry (MS) using a C30 liquid chromatography column. Using metabolically-engineered adipocytes lacking branched-keto acid dehydrogenase A (Bckdha), we validate this approach through a combination of fatty acid supplementation and metabolic tracing using monomethyl branched-chain fatty acids and valine. We observe resolution of numerous isobaric triacylglycerols and other compound lipids, demonstrating the resolving utility of this method. This approach strengthens our ability to quantify and characterize the inherent diversity of acyl chains across the lipidome.
Collapse
Affiliation(s)
- CR Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010N. Torrey Pines Rd., La Jolla, 92037, CA, USA
| | - MJ Kolar
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010N. Torrey Pines Rd., La Jolla, 92037, CA, USA
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - GH McGregor
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010N. Torrey Pines Rd., La Jolla, 92037, CA, USA
| | - AT Nelson
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
| | - M Wallace
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - CM Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010N. Torrey Pines Rd., La Jolla, 92037, CA, USA
| |
Collapse
|
4
|
Zhang JJ, Gao Y, Zhao ML, Xu X, Xi BN, Lin LK, Zheng JY, Chen B, Shu Y, Li C, Shen Y. Detection of walnut oil adulterated with high-linoleic acid vegetable oils using triacylglycerol pseudotargeted method based on SFC-QTOF-MS. Food Chem 2023; 416:135837. [PMID: 36905710 DOI: 10.1016/j.foodchem.2023.135837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Authentication of walnut oil (WO) is challenging due to the adulteration of high-linoleic acid vegetable oils (HLOs) with similar fatty acid composition. To allow the discrimination of WO adulteration, a rapid, sensitive and stable scanning method based on supercritical fluid chromatography quadrupole time-of-flight mass spectrometry (SFC-QTOF-MS) was established to profile 59 potential triacylglycerol (TAGs) in HLOs samples within 10 min. Limit of quantitation of the proposed method is 0.002 µg mL-1 and the relative standard deviations range from 0.7% to 12.0%. TAGs profiles of WO samples from various varieties, geography origins, ripeness, and processing methods were used to construct orthogonal partial least squares-discriminant analysis (OPLS-DA) and OPLS models that were highly accurate in both qualitative and quantitative prediction at adulteration levels as low as 5% (w/w). This study advances the TAGs analysis to characterize vegetable oils and holds promise as an efficient method for oil authentication.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Mei-Ling Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Xiao Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Bo-Nan Xi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Li-Ke Lin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Jing-Yi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yu Shu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
5
|
Gros Q, Wolniaczyk M, Duval J, West C, Horie S, Toyota Y, Funada Y, Lesellier E. Comparison of the triglyceride composition of vegetable samples with ultra-high efficiency / low-pressure supercritical fluid chromatography – mass spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Zhang X, Wei W, Tao G, Jin Q, Wang X. Triacylglycerol regioisomers containing palmitic acid analyzed by ultra-performance supercritical fluid chromatography and quadrupole time-of-flight mass spectrometry: Comparison of standard curve calibration and calculation equation. Food Chem 2022; 391:133280. [PMID: 35640342 DOI: 10.1016/j.foodchem.2022.133280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Triacylglycerol (TAG) regioisomers containing palmitic acid (16:0) was identified using ultra-performance supercritical fluid chromatography and quadrupole time-of-flight mass spectrometry (UPSFC-Q-TOF-MS) and quantified using calibration curve method and calculation equation method. There were negative linear correlation between [RA-A]+/[RA-A]++[RA-B]+ and content of sn-A-B-A (%) for AAB/ABA type TAGs, [Rsn-1 FA-sn-3 FA]+/[RB-C]++[RA-C]++[RA-B]+ and content of fatty acid (FA) at sn-2 position (%) for BAC/ABC/ACB type TAGs. The difference between calculation equation and standard curve method was acceptable. The TAG regioisomers in human milk, mammalian milk, lard and fish oil were identified and quantified using the developed methods. This study provided a reliable and facile method for analysis of the TAG regioisomers, which was capable of the selection of oil materials for infant formula production.
Collapse
Affiliation(s)
- Xinghe Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Guanjun Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Ovchinnikov DV, Vakhrameev SA, Falev DI, Ul’yanovskii NV, Kosyakov DS. Rapid Simultaneous Quantification of 1-Formyl-2,2-Dimethylhydrazine and Dimethylurea Isomers in Environmental Samples by Supercritical Fluid Chromatography-Tandem Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155025. [PMID: 35956973 PMCID: PMC9370278 DOI: 10.3390/molecules27155025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
When released to the environment, the rocket fuel unsymmetrical dimethylhydrazine (UDMH) undergoes oxidative transformations, resulting in the formation of an extremely large number of nitrogen-containing transformation products, including isomeric compounds which are difficult to discriminate by common chromatography techniques. In the present work, supercritical fluid chromatography–tandem mass spectrometry (SFC-MS/MS) was proposed for resolving the problem of fast separation and simultaneous quantification of 1-formyl-2,2-dimethylhydrazine (FADMH) as one of the major UDMH transformation products, and its isomers—1,1-dimethylurea (UDMU) and 1,2-dimethylurea (SDMU). 2-Ethylpyridine stationary phase provided baseline separation of analytes in 1.5 min without the distortion of the chromatographic peaks. Optimization of SFC separation and MS/MS detection conditions allowed for the development of rapid, sensitive, and “green” method for the simultaneous determination of FADMH, UDMU, and SDMU in environmental samples with LOQs of 1–10 µg L−1 and linear range covering three orders of magnitude. The method was validated and successfully tested on the real extracts of peaty and sandy soils polluted with rocket fuel and UDMH oxidation products. It was shown that both UDMU and SDMU are formed in noticeable amounts during UDMH oxidation. Despite relatively low toxicity, UDMU can be considered one of the major UDMH transformation products and a potential marker of soil pollution with toxic rocket fuel.
Collapse
Affiliation(s)
- Denis V. Ovchinnikov
- Laboratory of Environmental Analytical Chemistry, Core Facility Center “Arktika”, Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Sergey A. Vakhrameev
- Laboratory of Environmental Analytical Chemistry, Core Facility Center “Arktika”, Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Danil I. Falev
- Laboratory of Environmental Analytical Chemistry, Core Facility Center “Arktika”, Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Nikolay V. Ul’yanovskii
- Laboratory of Environmental Analytical Chemistry, Core Facility Center “Arktika”, Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
- Federal Center for Integrated Arctic Research, Arkhangelsk 163000, Russia
- Correspondence: (N.V.U.); (D.S.K.)
| | - Dmitry S. Kosyakov
- Laboratory of Environmental Analytical Chemistry, Core Facility Center “Arktika”, Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
- Correspondence: (N.V.U.); (D.S.K.)
| |
Collapse
|
8
|
Manful CF, Pham TH, Spicer H, Thomas RH. A multimodal analytical method to simultaneously determine monoacetyldiacylglycerols, medium and long chain triglycerides in biological samples during routine lipidomics. Lipids Health Dis 2022; 21:42. [PMID: 35538477 PMCID: PMC9092795 DOI: 10.1186/s12944-022-01650-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Monoacetyldiglycerides (MAcDG), are acetylated triglycerides (TG) and an emerging class of bioactive or functional lipid with promising nutritional, medical, and industrial applications. A major challenge exists when analyzing MAcDG from other subclasses of TG in biological matrices, limiting knowledge on their applications and metabolism. Methods Herein a multimodal analytical method for resolution, identification, and quantitation of MAcDG in biological samples was demonstrated based on thin layer chromatography-flame ionization detection complimentary with C30-reversed phase liquid chromatography-high resolution accurate mass tandem mass spectrometry. This method was then applied to determine the MAcDG molecular species composition and quantity in E. solidaginis larvae. The statistical method for analysis of TG subclass composition and molecular species composition of E. solidaginis larvae was one-way analysis of variance (ANOVA). Results The findings suggest that the proposed analytical method could simultaneously provide a fast, accurate, sensitive, high throughput analysis of MAcDG from other TG subclasses, including the fatty acids, isomers, and molecular species composition. Conclusion This method would allow for MAcDG to be included during routine lipidomics analysis of biological samples and will have broad interests and applications in the scientific community in areas such as nutrition, climate change, medicine and biofuel innovations. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01650-w.
Collapse
Affiliation(s)
- Charles F Manful
- School of Science and the Environment/ Boreal Ecosystem Research Initiative, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada.
| | - Thu H Pham
- School of Science and the Environment/ Boreal Ecosystem Research Initiative, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada
| | - Heather Spicer
- School of Science and the Environment/ Boreal Ecosystem Research Initiative, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada
| | - Raymond H Thomas
- School of Science and the Environment/ Boreal Ecosystem Research Initiative, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada.
| |
Collapse
|
9
|
Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The efforts to reveal, in detail, the molecular and intramolecular structures of one of the main lipid classes, namely, triacyl-sn-glycerols, which are now known to affect their specific and important role in all living organisms, are briefly overviewed. Some milestones of significance in the gradual but continuous development and improvement of the analytical methodology to identify the triacylglycerol regio- and stereoisomers in complex lipid samples are traced throughout the years: the use of chromatography based on different separation principles; the improvements in the chromatographic technique; the development and use of different detection techniques; the attempts to simplify and automatize the analysis without losing the accuracy of identification. The spectacular recent achievements of two- and multidimensional methods used as tools in lipidomics are presented.
Collapse
|
10
|
Toribio L, Bernal J, Martín MT, Ares AM. Supercritical fluid chromatography coupled to mass spectrometry: A valuable tool in food analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Addepalli RV, Mullangi R. A concise review on lipidomics analysis in biological samples. ADMET AND DMPK 2020; 9:1-22. [PMID: 35299875 PMCID: PMC8923307 DOI: 10.5599/admet.913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Lipids are a complex and critical heterogeneous molecular entity, playing an intricate and key role in understanding biological activities and disease processes. Lipidomics aims to quantitatively define the lipid classes, including their molecular species. The analysis of the biological tissues and fluids are challenging due to the extreme sample complexity and occurrence of the molecular species as isomers or isobars. This review documents the overview of lipidomics workflow, beginning from the approaches of sample preparation, various analytical techniques and emphasizing the state-of-the-art mass spectrometry either by shotgun or coupled with liquid chromatography. We have considered the latest ion mobility spectroscopy technologies to deal with the vast number of structural isomers, different imaging techniques. All these techniques have their pitfalls and we have discussed how to circumvent them after reviewing the power of each technique with examples..
Collapse
Affiliation(s)
| | - Ramesh Mullangi
- Laxai Life Sciences Pvt Ltd, MN Park, Genome Valley, Shamirpet, Hyderabad-500 078, India
| |
Collapse
|
12
|
Medina J, van der Velpen V, Teav T, Guitton Y, Gallart-Ayala H, Ivanisevic J. Single-Step Extraction Coupled with Targeted HILIC-MS/MS Approach for Comprehensive Analysis of Human Plasma Lipidome and Polar Metabolome. Metabolites 2020; 10:E495. [PMID: 33276464 PMCID: PMC7760228 DOI: 10.3390/metabo10120495] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022] Open
Abstract
Expanding metabolome coverage to include complex lipids and polar metabolites is essential in the generation of well-founded hypotheses in biological assays. Traditionally, lipid extraction is performed by liquid-liquid extraction using either methyl-tert-butyl ether (MTBE) or chloroform, and polar metabolite extraction using methanol. Here, we evaluated the performance of single-step sample preparation methods for simultaneous extraction of the complex lipidome and polar metabolome from human plasma. The method performance was evaluated using high-coverage Hydrophilic Interaction Liquid Chromatography-ESI coupled to tandem mass spectrometry (HILIC-ESI-MS/MS) methodology targeting a panel of 1159 lipids and 374 polar metabolites. The criteria used for method evaluation comprised protein precipitation efficiency, and relative MS signal abundance and repeatability of detectable lipid and polar metabolites in human plasma. Among the tested methods, the isopropanol (IPA) and 1-butanol:methanol (BUME) mixtures were selected as the best compromises for the simultaneous extraction of complex lipids and polar metabolites, allowing for the detection of 584 lipid species and 116 polar metabolites. The extraction with IPA showed the greatest reproducibility with the highest number of lipid species detected with the coefficient of variation (CV) < 30%. Besides this difference, both IPA and BUME allowed for the high-throughput extraction and reproducible measurement of a large panel of complex lipids and polar metabolites, thus warranting their application in large-scale human population studies.
Collapse
Affiliation(s)
- Jessica Medina
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| | - Vera van der Velpen
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| | - Yann Guitton
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, F-44307 Nantes, France;
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| |
Collapse
|
13
|
Gordillo R. Supercritical fluid chromatography hyphenated to mass spectrometry for metabolomics applications. J Sep Sci 2020; 44:448-463. [DOI: 10.1002/jssc.202000805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ruth Gordillo
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas Texas USA
| |
Collapse
|
14
|
Masuda K, Abe K, Murano Y. A Practical Method for Analysis of Triacylglycerol Isomers Using Supercritical Fluid Chromatography. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Koji Masuda
- Central Research Laboratory The Nisshin OilliO Group, Ltd 1 Shinmori‐cho, Isogo‐ku Yokohama Kanagawa 235‐8558 Japan
| | - Kosuke Abe
- Nisshin Global Research Center SDN. BHD c/o Intercontinental Specialty Fats Sdn Bhd 2nd Floor, Lot.1, Lebuh Sultan Hishamudin 2, Kawasan 20, Bandar Sultan Suleiman, 42009 Port Klang Selangor Darul Ehsan Malaysia
| | - Yoshihiro Murano
- Central Research Laboratory The Nisshin OilliO Group, Ltd 1 Shinmori‐cho, Isogo‐ku Yokohama Kanagawa 235‐8558 Japan
| |
Collapse
|
15
|
Gong M, Wei W, Hu Y, Jin Q, Wang X. Structure determination of conjugated linoleic and linolenic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122292. [PMID: 32755819 DOI: 10.1016/j.jchromb.2020.122292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic and linolenic acids (CLA and CLnA) can be found in dairy, ruminant meat and oilseeds, these types of unsaturated fatty acids consist of various positional and geometrical isomers, and have demonstrated health-promoting potential for human beings. Extensive reviews have reported the physiological effects of CLA, CLnA, while little is known regarding their isomer-specific effects. However, the isomers are difficult to identify, owing to (i) the similar retention time in common chromatographic methods; and (ii) the isomers are highly sensitive to high temperature, pH changes, and oxidation. The uncertainties in molecular structure have hindered investigations on the physiological effects of CLA and CLnA. Therefore, this review presents a summary of the currently available technologies for the structural determination of CLA and CLnA, including the presence confirmation, double bond position determination, and the potential stereo-isomer determination. Special focus has been projected to the novel techniques for structure determination of CLA and CLnA. Some possible future directions are also proposed.
Collapse
Affiliation(s)
- Mengyue Gong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
16
|
Direct inlet negative ion chemical ionization tandem mass spectrometric analysis of triacylglycerol regioisomers in human milk and infant formulas. Food Chem 2020; 328:126991. [PMID: 32512466 DOI: 10.1016/j.foodchem.2020.126991] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
A previously developed direct inlet tandem mass spectrometric method for analysis of triacylglycerol (TAG) regioisomers was updated and validated for operation with current instrumentation with improved sensitivity and throughput. TAG regioisomers in pooled Chinese and Finnish human milk samples, two bovine milk samples and 11 infant formulas were identified and quantified. A total of 241 TAG regioisomers were identified and quantified, consisting of over 60 mol% of all TAGs in the human milk samples. The infant formulas deviated largely from human milk in regioisomeric composition of TAGs. In the Finnish and Chinese human milks, the most abundant ones were 1,3-dioleoyl-2-palmitoylglycerol (OPO; 7.4 and 8.8 mol% of all TAGs) and 1(3)-linoleoyl-2-palmitoyl-3(1)-oleoylglycerol (LPO; 4.7 and 8.3 mol% of all TAGs). In the infant formulas 1,2(2,3)-dioleoyl-3(1)-palmitoylglycerol (OOP) and 1(3)-linoleoyl-2-oleoyl-3(1)-palmitoylglycerol/1(3)-palmitoyl-2-linoleoyl-3(1)-oleoylglycerol (LOP/PLO) were more abundant than OPO and LPO. The differences between human milk and infant formula prompt for further development of current formulas.
Collapse
|
17
|
A novel online two-dimensional supercritical fluid chromatography/reversed phase liquid chromatography–mass spectrometry method for lipid profiling. Anal Bioanal Chem 2020; 412:2225-2235. [DOI: 10.1007/s00216-019-02242-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|
18
|
Lipidomic Profiling of the Olive ( Olea europaea L.) Fruit towards Its Valorisation as a Functional Food: In-Depth Identification of Triacylglycerols and Polar Lipids in Portuguese Olives. Molecules 2019; 24:molecules24142555. [PMID: 31337054 PMCID: PMC6680557 DOI: 10.3390/molecules24142555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
Olives (Olea europaea L.) are classic ingredients in the Mediterranean diet with well-known health benefits, but their lipid composition has not been fully addressed. In this work, we characterised triacylglycerol (TAG) and polar lipid profiles of the olive pulp while using a complementary methodological approach that was based on solid-phase extraction to recover the neutral lipid (NL) and the polar lipid-rich fractions. The TAG profile was analysed in the NL-fraction by C30 reversed-phase liquid chromatography (LC) and the polar lipid profile by normal-phase hydrophilic interaction liquid chromatography (HILIC), with both being coupled to electrospray ionization-mass spectrometry (ESI-MS) and ESI-MS/MS. This approach identified 71 TAG ions that were attributed to more than 350 molecular species, with fatty acyl chain lengths from C11:0 to C26:0, including different polyunsaturated acyl chains. The polar lipids included 107 molecular species that belonged to 11 lipid classes that comprised phospholipids, glyceroglycolipids, glycosphingolipids, and betaine lipids. In addition to polyunsaturated fatty acids, some of the phospholipids, glycolipids, and glycosphingolipids that were identified in the olive pulp have been described as biologically active molecules. Lipidomic phenotyping of the olive pulp has led to the discovery of compounds that will allow for a better assessment of its nutritional value and new applications of bioactive lipid components in this functional food.
Collapse
|
19
|
Takeda H, Takahashi M, Hara T, Izumi Y, Bamba T. Improved quantitation of lipid classes using supercritical fluid chromatography with a charged aerosol detector. J Lipid Res 2019; 60:1465-1474. [PMID: 31201290 DOI: 10.1194/jlr.d094516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/11/2019] [Indexed: 01/01/2023] Open
Abstract
Quantitatively and rapidly analyzing lipids is necessary to elucidate their biological functions. Herein, we developed a quantitative method for various lipid classes using supercritical fluid chromatography (SFC) coupled with a charged aerosol detector (CAD), providing high-throughput data analysis to detect a large number of molecules in each lipid class as one peak. Applying the CAD was useful for analyzing lipid molecules in the same lipid class with a constant response under the same mobile phase composition. First, we optimized the washing method for the diethylamine column, achieving baseline separation of lipid classes while maintaining good peak shapes. In addition, the CAD conditions (organic solvent evaporation and numerical correction of the CAD data) were optimized to improve the signal-to-noise ratio. We used an internal standard (ceramide phosphoethanolamine d17:1-12:0), which did not coelute with the lipid classes and showed high extraction efficiency. Based on a quantitative analysis of HepG2 cells, the concentration of lipid classes detected by CAD was adequate compared with that obtained by triple-quadrupole MS (QqQMS) in a previous study because the deviations of the concentrations were 0.6- to 2.3-fold. These results also supported the quantitative performance of SFC-QqQMS developed in our previous report.
Collapse
Affiliation(s)
- Hiroaki Takeda
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Hara
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
20
|
Targeting Modified Lipids during Routine Lipidomics Analysis using HILIC and C30 Reverse Phase Liquid Chromatography coupled to Mass Spectrometry. Sci Rep 2019; 9:5048. [PMID: 30911033 PMCID: PMC6433904 DOI: 10.1038/s41598-019-41556-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Lipids are important biomolecules in all biological systems and serve numerous essential cellular functions. The global analysis of complex lipids is very challenging due to the extreme diversity in lipid structures. Variation in linkages and positions of fatty acyl chain(s) on the lipid backbone, functional group modification, occurrence of the molecular species as isomers or isobars are among some of the greatest challenges to resolve in lipidomics. In this work, we describe a routine analytical approach combining two liquid chromatography platforms: hydrophilic interaction (HILIC) and C30 reversed-phase chromatography (C30RP) coupled to high resolution mass spectrometry (HRMS) as complementary high throughput platforms to analyze complex lipid mixtures. Vascular plants (kale leaves and corn roots), rat brain and soil microbes were used as proxies to evaluate the efficiency of the enhanced approach to resolve traditional, as well as, modified lipids during routine lipidomics analysis. We report for the first time, the observation of a modified class of acylphosphatidylglycerol (acylPG) in corn roots by HILIC, and further resolution of the isomers using C30RP chromatography. We also used this approach to demonstrate the presence of high levels of N-monomethyl phosphatidylethanolamine (MMPE) in soil microbes, as well as to determine the regioisomers of lysophospholipids in kale leaves. Additionally, neutral lipids were demonstrated using C30RP chromatography in positive ion mode to resolve triacylglycerol isomers in rat brain. The work presented here demonstrates how the enhanced approach can more routinely permit novel biomarker discovery, or lipid metabolism in a wide range of biological samples.
Collapse
|
21
|
Liu LX, Zhang Y, Zhou Y, Li GH, Yang GJ, Feng XS. The Application of Supercritical Fluid Chromatography in Food Quality and Food Safety: An Overview. Crit Rev Anal Chem 2019; 50:136-160. [PMID: 30900462 DOI: 10.1080/10408347.2019.1586520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li-xia Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang-jian Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Development of a Reversed-Phase Liquid Chromatography and Fluorescence Method with Multichannel Selective Wavelength Detection for the Determination of Benzo[a]pyrene and Six of Its Isomers. Chromatographia 2018. [DOI: 10.1007/s10337-018-3621-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Tang G, Huang Y, Zhang T, Wang Q, Crommen J, Fillet M, Jiang Z. Determination of phenolic acids in extra virgin olive oil using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J Pharm Biomed Anal 2018; 157:217-225. [DOI: 10.1016/j.jpba.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023]
|
24
|
Current trends in supercritical fluid chromatography. Anal Bioanal Chem 2018; 410:6441-6457. [DOI: 10.1007/s00216-018-1267-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
|
25
|
Takeda H, Izumi Y, Takahashi M, Paxton T, Tamura S, Koike T, Yu Y, Kato N, Nagase K, Shiomi M, Bamba T. Widely-targeted quantitative lipidomics method by supercritical fluid chromatography triple quadrupole mass spectrometry. J Lipid Res 2018; 59:1283-1293. [PMID: 29724780 DOI: 10.1194/jlr.d083014] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/06/2018] [Indexed: 12/24/2022] Open
Abstract
Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Here, we have proposed a practical methodology for widely targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal-phase diethylamine-bonded silica column with high resolution, high throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages, including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of EPA was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery.-Takeda, H., Y. Izumi, M. Takahashi, T. Paxton, S. Tamura, T. Koike, Y. Yu, N. Kato, K. Nagase, M. Shiomi, and T. Bamba.
Collapse
Affiliation(s)
- Hiroaki Takeda
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Thanai Paxton
- Nihon Waters K.K., Shinagawa-ku, Tokyo 140-0001, Japan
| | - Shohei Tamura
- Institute of Experimental Animals, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | - Tomonari Koike
- Institute of Experimental Animals, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | - Ying Yu
- Institute of Experimental Animals, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | - Noriko Kato
- Nihon Waters K.K., Shinagawa-ku, Tokyo 140-0001, Japan
| | | | - Masashi Shiomi
- Institute of Experimental Animals, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
26
|
Tzompa-Sosa DA, Meurs PP, van Valenberg HJF. Triacylglycerol Profile of Summer and Winter Bovine Milk Fat and the Feasibility of Triacylglycerol Fragmentation. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daylan A. Tzompa-Sosa
- Dairy Science and Technology Group; Food Quality and Design; Wageningen University; Wageningen 6708WG The Netherlands
| | - Pim P. Meurs
- Dairy Science and Technology Group; Food Quality and Design; Wageningen University; Wageningen 6708WG The Netherlands
| | - Hein J. F. van Valenberg
- Dairy Science and Technology Group; Food Quality and Design; Wageningen University; Wageningen 6708WG The Netherlands
| |
Collapse
|
27
|
Huang Y, Tang G, Zhang T, Fillet M, Crommen J, Jiang Z. Supercritical fluid chromatography in traditional Chinese medicine analysis. J Pharm Biomed Anal 2018; 147:65-80. [DOI: 10.1016/j.jpba.2017.08.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 02/08/2023]
|
28
|
Recent advances on HPLC/MS in medicinal plant analysis—An update covering 2011–2016. J Pharm Biomed Anal 2018; 147:211-233. [DOI: 10.1016/j.jpba.2017.07.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
|
29
|
Lísa M, Cífková E, Khalikova M, Ovčačíková M, Holčapek M. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J Chromatogr A 2017; 1525:96-108. [PMID: 29037587 DOI: 10.1016/j.chroma.2017.10.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/25/2017] [Accepted: 10/07/2017] [Indexed: 01/03/2023]
Abstract
Lipidomic analysis of biological samples in a clinical research represents challenging task for analytical methods given by the large number of samples and their extreme complexity. In this work, we compare direct infusion (DI) and chromatography - mass spectrometry (MS) lipidomic approaches represented by three analytical methods in terms of comprehensiveness, sample throughput, and validation results for the lipidomic analysis of biological samples represented by tumor tissue, surrounding normal tissue, plasma, and erythrocytes of kidney cancer patients. Methods are compared in one laboratory using the identical analytical protocol to ensure comparable conditions. Ultrahigh-performance liquid chromatography/MS (UHPLC/MS) method in hydrophilic interaction liquid chromatography mode and DI-MS method are used for this comparison as the most widely used methods for the lipidomic analysis together with ultrahigh-performance supercritical fluid chromatography/MS (UHPSFC/MS) method showing promising results in metabolomics analyses. The nontargeted analysis of pooled samples is performed using all tested methods and 610 lipid species within 23 lipid classes are identified. DI method provides the most comprehensive results due to identification of some polar lipid classes, which are not identified by UHPLC and UHPSFC methods. On the other hand, UHPSFC method provides an excellent sensitivity for less polar lipid classes and the highest sample throughput within 10min method time. The sample consumption of DI method is 125 times higher than for other methods, while only 40μL of organic solvent is used for one sample analysis compared to 3.5mL and 4.9mL in case of UHPLC and UHPSFC methods, respectively. Methods are validated for the quantitative lipidomic analysis of plasma samples with one internal standard for each lipid class. Results show applicability of all tested methods for the lipidomic analysis of biological samples depending on the analysis requirements.
Collapse
Affiliation(s)
- Miroslav Lísa
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
| | - Eva Cífková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Maria Khalikova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Magdaléna Ovčačíková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| |
Collapse
|
30
|
Yang J, Zhu L, Zhao Y, Xu Y, Sun Q, Liu S, Liu C, Ma B. Separation of furostanol saponins by supercritical fluid chromatography. J Pharm Biomed Anal 2017. [DOI: 10.1016/j.jpba.2017.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Song S, Liu H, Bai Y. Supercritical Fluid Chromatography and Its Application in Lipid Isomer Separation. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0031-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Hancock SE, Poad BL, Batarseh A, Abbott SK, Mitchell TW. Advances and unresolved challenges in the structural characterization of isomeric lipids. Anal Biochem 2017; 524:45-55. [DOI: 10.1016/j.ab.2016.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/11/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
|
33
|
Tu A, Ma Q, Bai H, Du Z. A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS. Food Chem 2017; 221:555-567. [DOI: 10.1016/j.foodchem.2016.11.139] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/27/2016] [Accepted: 11/27/2016] [Indexed: 01/25/2023]
|
34
|
|
35
|
Yamada T, Bamba T. Lipid Profiling by Supercritical Fluid Chromatography/Mass Spectrometry. NEUROMETHODS 2017. [DOI: 10.1007/978-1-4939-6946-3_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Regioisomeric and enantiomeric analysis of triacylglycerols. Anal Biochem 2016; 524:3-12. [PMID: 27318242 DOI: 10.1016/j.ab.2016.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 11/20/2022]
Abstract
A survey of useful methods for separation and identification of regioisomers and enantiomers of triacylglycerols. Gas chromatography, gas chromatography-mass spectrometry, 13C NMR determination of regioisomers by enzymatic methods, and supercritical fluid chromatography are briefly surveyed, whereas a detailed description is given of the analysis of triacylglycerols by liquid chromatography, especially with silver ion (Ag+; argentation), and nonaqueous reversed phase liquid chromatography. Special attention is paid to chiral chromatography. Details of mass spectrometry of triacylglycerols are also described, especially the identification of important triacylglycerol ions such as [M + H-RCOOH]+ in atmospheric pressure chemical ionization mass spectra.
Collapse
|
37
|
Sen A, Knappy C, Lewis MR, Plumb RS, Wilson ID, Nicholson JK, Smith NW. Analysis of polar urinary metabolites for metabolic phenotyping using supercritical fluid chromatography and mass spectrometry. J Chromatogr A 2016; 1449:141-55. [PMID: 27143232 PMCID: PMC4927693 DOI: 10.1016/j.chroma.2016.04.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 10/27/2022]
Abstract
Supercritical fluid chromatography (SFC) is frequently used for the analysis and separation of non-polar metabolites, but remains relatively underutilised for the study of polar molecules, even those which pose difficulties with established reversed-phase (RP) or hydrophilic interaction liquid chromatographic (HILIC) methodologies. Here, we present a fast SFC-MS method for the analysis of medium and high-polarity (-7≤cLogP≤2) compounds, designed for implementation in a high-throughput metabonomics setting. Sixty polar analytes were first screened to identify those most suitable for inclusion in chromatographic test mixtures; then, a multi-dimensional method development study was conducted to determine the optimal choice of stationary phase, modifier additive and temperature for the separation of such analytes using SFC. The test mixtures were separated on a total of twelve different column chemistries at three different temperatures, using CO2-methanol-based mobile phases containing a variety of polar additives. Chromatographic performance was evaluated with a particular emphasis on peak capacity, overall resolution, peak distribution and repeatability. The results suggest that a new generation of stationary phases, specifically designed for improved robustness in mixed CO2-methanol mobile phases, can improve peak shape, peak capacity and resolution for all classes of polar analytes. A significant enhancement in chromatographic performance was observed for these urinary metabolites on the majority of the stationary phases when polar additives such as ammonium salts (formate, acetate and hydroxide) were included in the organic modifier, and the use of water or alkylamine additives was found to be beneficial for specific subsets of polar analytes. The utility of these findings was confirmed by the separation of a mixture of polar metabolites in human urine using an optimised 7min gradient SFC method, where the use of the recommended column and co-solvent combination resulted in a significant improvement in chromatographic performance.
Collapse
Affiliation(s)
- Arundhuti Sen
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, London SE1 9NH, United Kingdom; MRC-NIHR National Phenome Centre, Division of Computational and Systems Medicine, Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Christopher Knappy
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, London SE1 9NH, United Kingdom; Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2DD, United Kingdom; MRC-NIHR National Phenome Centre, Division of Computational and Systems Medicine, Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Matthew R Lewis
- MRC-NIHR National Phenome Centre, Division of Computational and Systems Medicine, Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Robert S Plumb
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2DD, United Kingdom; Waters Corporation, Milford, MA, USA
| | - Ian D Wilson
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2DD, United Kingdom
| | - Jeremy K Nicholson
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2DD, United Kingdom; MRC-NIHR National Phenome Centre, Division of Computational and Systems Medicine, Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Norman W Smith
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
38
|
Narváez-Rivas M, Zhang Q. Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field orbitrap mass spectrometer. J Chromatogr A 2016; 1440:123-134. [PMID: 26928874 DOI: 10.1016/j.chroma.2016.02.054] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 11/30/2022]
Abstract
The goal of untargeted lipidomics is to have high throughput, yet comprehensive and unambiguous identification and quantification of lipids. Novel stationary phases in LC separation and new mass spectrometric instruments capable of high mass resolving power and faster scanning rate are essential to achieving this goal. In this work, 4 reversed phase LC columns coupled with a high field quadrupole orbitrap mass spectrometer (Q Exactive HF) were thoroughly compared using complex lipid standard mixture and rat plasma and liver samples. A good separation of all lipids was achieved in 24min of gradient. The columns compared include C30 and C18 functionalization on either core-shell or totally porous silica particles, with size ranging from 1.7 to 2.6μm. Accucore C30 column showed the narrowest peaks and highest theoretical plate number, and excellent peak capacity and retention time reproducibility (<1% standard deviation). As a result, it resulted in 430 lipid species identified from rat plasma and rat liver samples with highest confidence. The high resolution offered by the up-front RPLC allowed discrimination of cis/trans isomeric lipid species, and the high field orbitrap mass spectrometer afforded the clear distinction of isobaric lipid species in full scan MS and the unambiguous assignment of sn-positional isomers for lysophospholipids in MS/MS. Taken together, the high efficiency LC separation and high mass resolving MS analysis are very promising tools for untargeted lipidomics analysis.
Collapse
Affiliation(s)
- Mónica Narváez-Rivas
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA; Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
39
|
Balas L, Bertrand-Michel J, Viars F, Faugere J, Lefort C, Caspar-Bauguil S, Langin D, Durand T. Regiocontrolled syntheses of FAHFAs and LC-MS/MS differentiation of regioisomers. Org Biomol Chem 2016; 14:9012-20. [DOI: 10.1039/c6ob01597b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A regiospecific synthesis of branched fatty acyl hydroxyl-fatty acids (FAHFA) has been achieved for the development of LC-MS/MS detection.
Collapse
Affiliation(s)
- Laurence Balas
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | | | - Fanny Viars
- INSERM
- UMR 1048
- Institute of Metabolic and Cardiovascular Diseases
- Toulouse
- France
| | - Julien Faugere
- INSERM
- UMR 1048
- Institute of Metabolic and Cardiovascular Diseases
- Toulouse
- France
| | - Corinne Lefort
- INSERM
- UMR 1048
- Institute of Metabolic and Cardiovascular Diseases
- Toulouse
- France
| | | | - Dominique Langin
- INSERM
- UMR 1048
- Institute of Metabolic and Cardiovascular Diseases
- Toulouse
- France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
40
|
Rapid and simultaneous analysis of sesquiterpene pyridine alkaloids from Tripterygium wilfordii Hook. f. Using supercritical fluid chromatography-diode array detector-tandem mass spectrometry. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Lísa M, Holčapek M. High-Throughput and Comprehensive Lipidomic Analysis Using Ultrahigh-Performance Supercritical Fluid Chromatography-Mass Spectrometry. Anal Chem 2015; 87:7187-95. [PMID: 26095628 DOI: 10.1021/acs.analchem.5b01054] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
New analytical approach for high-throughput and comprehensive lipidomic analysis of biological samples using ultrahigh-performance supercritical fluid chromatography (UHPSFC) with electrospray ionization-mass spectrometry (ESI-MS) is presented in this work as an alternative approach to established shotgun MS or high-performance liquid chromatography-MS. The lipid class separation is performed by UHPSFC method based on 1.7 μm particle-bridged ethylene hybrid silica column with a gradient of methanol-water-ammonium acetate mixture as a modifier. All parameters of UHPSFC conditions are carefully optimized and their influence on the chromatographic behavior of lipids is discussed. The final UHPSFC/ESI-MS method enables a fast separation of 30 nonpolar and polar lipid classes within 6 min analysis covering 6 main lipid categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. Individual lipid species within lipid classes are identified based on positive and negative-ion full-scan and tandem mass spectra measured with high mass accuracy and high resolving power. Developed UHPSFC/ESI-MS method is applied for the analysis of porcine brain extract as a complex lipidomic sample, where 24 lipid classes containing 436 lipid species are identified. The method is validated for the quantitative analysis of lipid species in biological tissues using internal standards for each lipid class. This high-throughput, comprehensive and accurate UHPSFC/ESI-MS method is suitable for the lipidomic analysis of large sample sets in the clinical research.
Collapse
Affiliation(s)
- Miroslav Lísa
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| |
Collapse
|
42
|
Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem 2015; 407:4995-5007. [PMID: 25893801 DOI: 10.1007/s00216-015-8664-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022]
Abstract
The high chemical complexity of the lipidome is one of the major challenges in lipidomics research. Ion-mobility spectrometry (IMS), a gas-phase electrophoretic technique, makes possible the separation of ions in the gas phase according to their charge, shape, and size. IMS can be combined with mass spectrometry (MS), adding three major benefits to traditional lipidomic approaches. First, IMS-MS allows the determination of the collision cross section (CCS), a physicochemical measure related to the conformational structure of lipid ions. The CCS is used to improve the confidence of lipid identification. Second, IMS-MS provides a new set of hybrid fragmentation experiments. These experiments, which combine collision-induced dissociation with ion-mobility separation, improve the specificity of MS/MS-based approaches. Third, IMS-MS improves the peak capacity and signal-to-noise ratio of traditional analytical approaches. In doing so, it allows the separation of complex lipid extracts from interfering isobaric species. Developing in parallel with advances in instrumentation, informatics solutions enable analysts to process and exploit IMS-MS data for qualitative and quantitative applications. Here we review the current approaches for lipidomics research based on IMS-MS, including liquid chromatography-MS and direct-MS analyses of "shotgun" lipidomics and MS imaging.
Collapse
|
43
|
|