1
|
Li Z, Zhang J, Wu Y, Wang F, Cai T. Integrated strategy for biotransformation of antibody-drug conjugates and multidimensional interpretation via high-resolution mass spectrometry. Drug Metab Dispos 2025; 53:100081. [PMID: 40354712 DOI: 10.1016/j.dmd.2025.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
The characterization of the release mechanism and stability in circulation for novel antibody-drug conjugates (ADCs) has become essential to address the complex variables (linker or payload selection, antibody, conjugating site). Understanding the integrated biotransformation of released catabolites and intact ADCs is necessary to elucidate the mechanism of action and mitigate the premature payload release and formation of inactive ADCs during circulation, which can lead to pharmacokinetic/pharmacodynamic disconnection. Herein, we present a comprehensive strategy for the biotransformation of ADCs from both small- and large-molecule perspectives. Two ADCs with common cleavable linkers were investigated: ADC-1 (maleimidocaproyl glycine-glycine-phenylalanine-glycine deruxtecan) and ADC-2 (maleimidocaproyl valine-citrulline-p-aminobenzyl carbamate monomethyl auristatin E). First, the payload-related catabolites released from lysosome, S9, and tumor cells were identified by sensitive data mining based on high-resolution mass spectrometry to reveal the pharmacologically active components. Second, we demonstrated the biotransformation occurring in intact ADCs using middle-down and bottom-up approaches, which particularly contributed to their instability in incubation. The combined immune capture with subunit or peptide analysis enables a comprehensive evaluation of the structural integrity of ADCs, whereas solely quantitative payload release is insufficient to determine the ADCs' stability. Although subunit analysis can visualize the deconjugation by mass shift directly, the precise and low percentage of biotransformation tended to be imperceptible in intact mass spectra. Therefore, a bottom-up method was developed to analyze three representative peptides conjugated with linker-payload. These multiple dimensional biotransformation approaches provide overall insights into the ADC development. SIGNIFICANCE STATEMENT: A thorough understanding of the release mechanism and stability is pivotal for advancing antibody drug conjugates (ADCs) therapeutics. However, the inherent complexity of ADCs poses significant challenges in biotransformation analysis. We developed an integrated strategy to systematically evaluate ADC biotransformation, encompassing payload release mechanisms and plasma stability assessments with middle-down and bottom-up approaches. This advancement not only clarifies the mechanism of action but also supports the rational design of ADC candidates, such as linker chemistry, payload selection, and antibody engineering.
Collapse
Affiliation(s)
- Ziyi Li
- Department of DMPK-BA, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Jingxian Zhang
- Department of DMPK-BA, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Yue Wu
- Department of DMPK-BA, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Fan Wang
- Department of DMPK-BA, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Tingting Cai
- Department of DMPK-BA, BeiGene (Beijing) Co, Ltd, Beijing, China.
| |
Collapse
|
2
|
Zhang Z, Liu AP, Wang H, Schuessler HA. Post-column denaturation-assisted hydrophobic interaction chromatography-mass spectrometry for rapid and in-depth characterization of positional isomers in cysteine-based antibody-drug conjugates. J Pharm Biomed Anal 2025; 255:116635. [PMID: 39700863 DOI: 10.1016/j.jpba.2024.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a significant advancement in targeted cancer therapy, offering the potential to selectively deliver cytotoxic drugs to tumor cells while minimizing systemic toxicity. However, the structural complexity of ADCs, particularly those conjugated through cysteine residues, poses significant analytical challenges. Due to the hydrophobicity of ADCs, Hydrophobic interaction chromatography (HIC) is often the method of choice to analyze the drug-to-antibody ratio (DAR). However, it requires high-concentration salts, which are often incompatible with mass spectrometry (MS) analysis. By employing ammonium acetate as an MS-compatible salt and integrating a 4-way liquid junction cross configuration for simultaneous introduction of the makeup flow and splitting the flow right before coupling to a mass spectrometer, we achieve high-quality separation and sensitive mass spectrometric analysis. This innovative setup allows for simultaneous DAR measurement and positional isomer characterization by switching the makeup flow solvent from water to a denaturation solution. Our method offers a streamlined and effective approach to ADC characterization, facilitating the identification of positional isomers without the need for fractionation or multiple chromatographic steps. The versatility and robustness of this HIC-MS method are demonstrated through the analysis of two ADCs, highlighting its potential for broad application in ADC development and quality control.
Collapse
Affiliation(s)
- Zhengqi Zhang
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Anita P Liu
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Hongxia Wang
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | |
Collapse
|
3
|
Zhang X, Wu G, Du M, Bo T, Chen T, Huang T. Imaged Capillary Isoelectric Focusing Coupled to High-Resolution Mass Spectrometry (icIEF-MS) for Cysteine-Linked Antibody-Drug Conjugate (ADC) Heterogeneity Characterization Under Native Condition. Electrophoresis 2024; 45:1915-1926. [PMID: 39347563 DOI: 10.1002/elps.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Native mass spectrometry (nMS) is a cutting-edge technique that leverages electrospray ionization MS (ESI-MS) to investigate large biomolecules and their complexes in solution. The goal of nMS is to retain the native structural features and interactions of the analytes during the transition to the gas phase, providing insights into their natural conformations. In biopharmaceutical development, nMS serves as a powerful tool for analyzing complex protein heterogeneity, allowing for the examination of non-covalently bonded assemblies in a state that closely resembles their natural folded form. Herein, we present an imaged capillary isoelectric focusing-MS (icIEF-MS) workflow to characterize cysteine-linked antibody-drug conjugate (ADC) under native conditions. Two ADCs were analyzed: a latest generation cysteine-linked ADC polatuzumab vedotin and the first FDA-approved cysteine-linked ADC brentuximab vedotin. This workflow benefits from a recently developed icIEF system that is MS-friendly and capable of directly coupling to a high-sensitivity MS instrument. Results show that the icIEF separation is influenced by both drug payloads and the post-translational modifications (PTMs), which are then promptly identified by MS. Overall, this native icIEF-MS method demonstrates the potential to understand and control the critical quality attributes (CQAs) that are essential for the safe and effective use of ADCs.
Collapse
Affiliation(s)
| | - Gang Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Min Du
- Thermo Fisher Scientific, Lexington, Massachusetts, USA
| | - Tao Bo
- Advanced Electrophoresis Solutions LTD, Cambridge, Ontario, Canada
| | - Tong Chen
- Advanced Electrophoresis Solutions LTD, Cambridge, Ontario, Canada
| | - Tiemin Huang
- Advanced Electrophoresis Solutions LTD, Cambridge, Ontario, Canada
| |
Collapse
|
4
|
Weggen JT, Bean R, Hui K, Wendeler M, Hubbuch J. Kinetic models towards an enhanced understanding of diverse ADC conjugation reactions. Front Bioeng Biotechnol 2024; 12:1403644. [PMID: 39070164 PMCID: PMC11274341 DOI: 10.3389/fbioe.2024.1403644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024] Open
Abstract
The conjugation reaction is the central step in the manufacturing process of antibody-drug conjugates (ADCs). This reaction generates a heterogeneous and complex mixture of differently conjugated sub-species depending on the chosen conjugation chemistry. The parametrization of the conjugation reaction through mechanistic kinetic models offers a chance to enhance valuable reaction knowledge and ensure process robustness. This study introduces a versatile modeling framework for the conjugation reaction of cysteine-conjugated ADC modalities-site-specific and interchain disulfide conjugation. Various conjugation kinetics involving different maleimide-functionalized payloads were performed, while controlled gradual payload feeding was employed to decelerate the conjugation, facilitating a more detailed investigation of the reaction mechanism. The kinetic data were analyzed with a reducing reversed phase (RP) chromatography method, that can readily be implemented for the accurate characterization of ADCs with diverse drug-to-antibody ratios, providing the conjugation trajectories of the single chains of the monoclonal antibody (mAb). Possible kinetic models for the conjugation mechanism were then developed and selected based on multiple criteria. When calibrating the established model to kinetics involving different payloads, conjugation rates were determined to be payload-specific. Further conclusions regarding the kinetic comparability across the two modalities could also be derived. One calibrated model was used for an exemplary in silico screening of the initial concentrations offering valuable insights for profound understanding of the conjugation process in ADC development.
Collapse
Affiliation(s)
- Jan Tobias Weggen
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ryan Bean
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Kimberly Hui
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Michaela Wendeler
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
5
|
Wei B, Lantz C, Loo RRO, Campuzano IDG, Loo JA. Internal Fragments Enhance Middle-Down Mass Spectrometry Structural Characterization of Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2024; 96:2491-2499. [PMID: 38294207 PMCID: PMC11001303 DOI: 10.1021/acs.analchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are important large biotherapeutics (∼150 kDa) and high structural complexity that require extensive sequence and structure characterization. Middle-down mass spectrometry (MD-MS) is an emerging technique that sequences and maps subunits larger than those released by trypsinolysis. It avoids potentially introducing artifactual modifications that may occur in bottom-up MS while achieving higher sequence coverage compared to top-down MS. However, returning complete sequence information by MD-MS is still challenging. Here, we show that assigning internal fragments in direct infusion MD-MS of a mAb and an ADC substantially improves their structural characterization. For MD-MS of the reduced NIST mAb, including internal fragments recovers nearly 100% of the sequence by accessing the middle sequence region that is inaccessible by terminal fragments. The identification of important glycosylations can also be improved after the inclusion of internal fragments. For the reduced lysine-linked IgG1-DM1 ADC, we show that considering internal fragments increases the DM1 conjugation sites coverage to 80%, comparable to the reported 83% coverage achieved by peptide mapping on the same ADC (Luo et al. Anal. Chem. 2016, 88, 695-702). This study expands our work on the application of internal fragment assignments in top-down MS of mAbs and ADCs and can be extended to other heterogeneous therapeutic molecules such as multispecifics and fusion proteins for more widespread applications.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Iain D. G. Campuzano
- Center for Research Acceleration by Digital Innovation, Molecular Analytics, Amgen Research, Thousand Oaks, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Wei B, Lantz C, Liu W, Viner R, Loo RRO, Campuzano IDG, Loo JA. Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2023; 95:9347-9356. [PMID: 37278738 PMCID: PMC10954349 DOI: 10.1021/acs.analchem.3c01426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are two of the most important therapeutic drug classes that require extensive characterization, whereas their large size and structural complexity make them challenging to characterize and demand the use of advanced analytical methods. Top-down mass spectrometry (TD-MS) is an emerging technique that minimizes sample preparation and preserves endogenous post-translational modifications (PTMs); however, TD-MS of large proteins suffers from low fragmentation efficiency, limiting the sequence and structure information that can be obtained. Here, we show that including the assignment of internal fragments in native TD-MS of an intact mAb and an ADC can improve their molecular characterization. For the NIST mAb, internal fragments can access the sequence region constrained by disulfide bonds to increase the TD-MS sequence coverage to over 75%. Important PTM information, including intrachain disulfide connectivity and N-glycosylation sites, can be revealed after including internal fragments. For a heterogeneous lysine-linked ADC, we show that assigning internal fragments improves the identification of drug conjugation sites to achieve a coverage of 58% of all putative conjugation sites. This proof-of-principle study demonstrates the potential value of including internal fragments in native TD-MS of intact mAbs and ADCs, and this analytical strategy can be extended to bottom-up and middle-down MS approaches to achieve even more comprehensive characterization of important therapeutic molecules.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Weijing Liu
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| | - Iain D. G. Campuzano
- Amgen Research, Center for Research Acceleration and Digital Innovation, Molecular Analytics, Thousand Oaks, CA, 91320 USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
7
|
Conjugation site characterization of antibody-drug conjugates using electron-transfer/higher-energy collision dissociation (EThcD). Anal Chim Acta 2023; 1251:340978. [PMID: 36925279 DOI: 10.1016/j.aca.2023.340978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Antibody-drug conjugates (ADCs) are formed by binding of cytotoxic drugs to monoclonal antibodies (mAbs) through chemical linkers. A comprehensive evaluation of the critical quality attributes (CQAs) of ADCs is vital for drug development but remains challenging owing to ADC structural heterogeneity than mAbs. Drug conjugation sites can considerably affect ADC properties, such as stability and pharmacokinetics, however, few studies have focused on method development in this area owing to technical challenges. Hybrid electron-transfer/higher-energy collision dissociation (EThcD) produces more fragment ions than conventional higher-energy collision dissociation (HCD) fragmentation, which aids in identifying and localizing post-translational modifications. Herein, we systematically employ EThcD to assess the fragmentation mode impact on conjugation site characterization for randomly conjugated and site-specific ADCs. EThcD generates more fragment ions in tandem mass spectrometry (MS/MS) spectra compared with HCD. Additional ions aid in pinpointing the correct conjugation sites that bear complex linker payload structures. Our study may contribute to the quality control of various preclinical and clinical ADCs.
Collapse
|
8
|
Liu T, Tao Y, Xia X, Zhang Y, Deng R, Wang Y. Analytical tools for antibody–drug conjugates: from in vitro to in vivo. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Yamazaki S, Shikida N, Takahashi K, Matsuda Y, Inoue K, Shimbo K, Mihara Y. Lipoate-acid ligase a modification of native antibody: Synthesis and conjugation site analysis. Bioorg Med Chem Lett 2021; 51:128360. [PMID: 34537330 DOI: 10.1016/j.bmcl.2021.128360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
Bioconjugation is an important chemical biology research focus, especially in the development of methods to produce pharmaceutical bioconjugates and antibody-drug conjugates (ADCs). In this report, an enzyme-catalyzed conjugation method combined with a chemical reaction was used to modify a native antibody under mild reaction conditions. Our investigation revealed that lipoic-acid ligase (LplA) modifies native IgG1 with biased site-specificity. An intact mass analysis revealed that 98.3% of IgG1 was modified by LplA and possessed at least one molecule of octanocic acid. The average number of modifications per antibody was calculated to be 4.6. Peptide mapping analysis revealed that the modified residues were K225, K249 and K363 in the Fc region, and K30, K76 and K136 in the heavy chain and K39/K42, K169, K188 and K190 in the light chain of the Fab region. Careful evaluation including solvent exposed amino acid analysis suggested that these conjugate sites were not only solvent exposed but also biased by the site-specificity of LplA. Furthermore, antibody fragment conjugation may be able to take advantage of this enzymatic approach. This feasibility study serves as a demonstration for preparing enzymatically modified antibodies with conjugation site analysis.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan.
| | - Natsuki Shikida
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan
| | | | - Yutaka Matsuda
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan
| | - Kota Inoue
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan
| | - Kazutaka Shimbo
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan.
| | - Yasuhiro Mihara
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan
| |
Collapse
|
10
|
Qiu D, Huang Y, Chennamsetty N, Miller SA, Hay M. Characterizing and understanding the formation of cysteine conjugates and other by-products in a random, lysine-linked antibody drug conjugate. MAbs 2021; 13:1974150. [PMID: 34486490 PMCID: PMC8425761 DOI: 10.1080/19420862.2021.1974150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes the characterization of conjugation sites for a random, lysine conjugated 2-iminothiolane (2-IT) based antibody-drug-conjugate synthesized from an IgG1 antibody and a duocarmycin analog-based payload-linker. Of the 80 putative lysine sites, 78 were found to be conjugated via tryptic peptide mapping and LC-HRMS. Surprisingly, seven cysteine-linked conjugated peptides were also detected resulting from the conjugation of cysteine residues derived from the four inter-chain disulfide bonds during the reaction. This unexpected finding could be attributed to the free thiols of the 2-IT thiolated antibody intermediates and/or the 4-mercaptobutanamide by-product resulting from the hydrolysis of 2-IT. These free thiols could cause the four inter-chain disulfide bonds of the antibody to scramble via intra- or inter-molecular attack. The presence of only pair of non-reactive (unconjugated) lysine residues, along with the four intact intra-chain disulfide bonds, is attributed to their poor accessibility, which is consistent with solvent accessibility modeling analysis. We also discovered a major by-product derived from the hydrolysis of the amidine moiety of the N-terminus conjugate. In contrast, the amidine moiety in lysine-linked conjugates appeared stable. Based on our results, we propose plausible formation mechanisms of cysteine-linked conjugates and the hydrolysis of the N-terminus conjugate, which provide scientific insights that are beneficial to process development and drug quality control.
Collapse
Affiliation(s)
- Difei Qiu
- Chemical Process Development, Global Product Development and Supply, Bristol Myers Squibb Company, New Brunswick, NJ, USA
| | - Yande Huang
- Chemical Process Development, Global Product Development and Supply, Bristol Myers Squibb Company, New Brunswick, NJ, USA
| | - Naresh Chennamsetty
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company, New Brunswick, NJ, USA
| | - Scott A Miller
- Chemical Process Development, Global Product Development and Supply, Bristol Myers Squibb Company, New Brunswick, NJ, USA
| | - Michael Hay
- Chemical Process Development, Global Product Development and Supply, Bristol Myers Squibb Company, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Larson EJ, Roberts DS, Melby JA, Buck KM, Zhu Y, Zhou S, Han L, Zhang Q, Ge Y. High-Throughput Multi-attribute Analysis of Antibody-Drug Conjugates Enabled by Trapped Ion Mobility Spectrometry and Top-Down Mass Spectrometry. Anal Chem 2021; 93:10013-10021. [PMID: 34258999 PMCID: PMC8319120 DOI: 10.1021/acs.analchem.1c00150] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest growing classes of anticancer therapies. Combining the high targeting specificity of monoclonal antibodies (mAbs) with cytotoxic small molecule drugs, ADCs are complex molecular entities that are intrinsically heterogeneous. Primary sequence variants, varied drug-to-antibody ratio (DAR) species, and conformational changes in the starting mAb structure upon drug conjugation must be monitored to ensure the safety and efficacy of ADCs. Herein, we have developed a high-throughput method for the analysis of cysteine-linked ADCs using trapped ion mobility spectrometry (TIMS) combined with top-down mass spectrometry (MS) on a Bruker timsTOF Pro. This method can analyze ADCs (∼150 kDa) by TIMS followed by a three-tiered top-down MS characterization strategy for multi-attribute analysis. First, the charge state distribution and DAR value of the ADC are monitored (MS1). Second, the intact mass of subunits dissociated from the ADC by low-energy collision-induced dissociation (CID) is determined (MS2). Third, the primary sequence for the dissociated subunits is characterized by CID fragmentation using elevated collisional energies (MS3). We further automate this workflow by directly injecting the ADC and using MS segmentation to obtain all three tiers of MS information in a single 3-min run. Overall, this work highlights a multi-attribute top-down MS characterization method that possesses unparalleled speed for high-throughput characterization of ADCs.
Collapse
Affiliation(s)
- Eli J Larson
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jake A Melby
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kevin M Buck
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
| | - Shiyue Zhou
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Linjie Han
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Qunying Zhang
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
| |
Collapse
|
12
|
Abstract
High-resolution native mass spectrometry (MS) provides accurate mass measurements (within 30 ppm) of intact ADCs and can also yield drug load distribution (DLD) and average drug to antibody ratio (DAR) in parallel with hydrophobic interaction chromatography (HIC). Native MS is furthermore unique in its ability to simultaneously detect covalent and noncovalent species in a mixture and for HIC peak identity assessment offline or online.As an orthogonal method described in this chapter, LC-MS following ADC reduction or IdeS (Fabricator) digestion and reduction can also be used to measure the DLD of light chain and Fd fragments for hinge native cysteine residues such as brentuximab vedotin. Both methods allow also the measurement of average DAR for both monomeric and multimeric species. In addition, the Fc fragments can be analyzed in the same run, providing a complete glycoprofile and the demonstration or absence of additional conjugation of this subdomain involved in FcRn and Fc-gammaR binding.
Collapse
|
13
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
14
|
Matsuda Y, Mendelsohn BA. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther 2020; 21:963-975. [PMID: 33141625 DOI: 10.1080/14712598.2021.1846714] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: We discuss chemical conjugation strategies for antibody-drug conjugates (ADCs) from an industrial perspective and compare three promising chemical conjugation technologies to produce site-specific ADCs.Areas covered: Currently, nine ADCs are commercially approved and all are produced by chemical conjugation technology. However, seven of these ADCs contain a relatively broad drug distribution, potentially limiting their therapeutic indices. In 2019, the first site-specific ADC was launched on the market by Daiichi-Sankyo. This achievement, and an analysis of clinical trials over the last decade, indicates that current industrial interest in the ADC field is shifting toward site-specific conjugation technologies. From an industrial point of view, we aim to provide guidance regarding established conjugation methodologies that have already been applied to scale-up stages. With an emphasis on highly productive, scalable, and synthetic process robustness, conjugation methodologies for ADC production is discussed herein.Expert opinion: All three chemical conjugation technologies described in this review have various advantages and disadvantages, therefore drug developers can utilize these depending on their biological and/or protein targets. The future landscape of the ADC field is also discussed.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Brian A Mendelsohn
- Process Development & Tech Transfer, Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA 92121, United States
| |
Collapse
|
15
|
Larson EJ, Zhu Y, Wu Z, Chen B, Zhang Z, Zhou S, Han L, Zhang Q, Ge Y. Rapid Analysis of Reduced Antibody Drug Conjugate by Online LC-MS/MS with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2020; 92:15096-15103. [PMID: 33108180 DOI: 10.1021/acs.analchem.0c03152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antibody drug conjugates (ADCs), which harness the high targeting specificity of monoclonal antibodies (mAb) with the potency of small molecule therapeutics, are one of the fastest growing pharmaceutical classes. Nevertheless, ADC conjugation techniques and processes may introduce intrinsic heterogeneity including primary sequence variants, varied drug-to-antibody ratio (DAR) species, and drug positional isomers, which must be monitored to ensure the safety and efficacy of ADCs. Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for characterization of ADCs. However, the conventional bottom-up MS analysis workflows require an enzymatic digestion step which can be time consuming and may introduce artifactual modifications. Herein, we develop an online LC-MS/MS method for rapid analysis of reduced ADCs without digestion, enabling determination of DAR, characterization of the primary sequence, and localization of the drug conjugation site of the ADC using high-resolution Fourier transform ion cyclotron resonance (FTICR) MS. Specifically, a model cysteine-linked ADC was reduced to generate six unique subunits: light chain (Lc) without drug (Lc0), Lc with 1 drug (Lc1), heavy chain (Hc) without drug (Hc0), and Hc with 1-3 drugs (Hc1-3, respectively). A concurrent reduction strategy is applied to assess ADC subunits in both the partially reduced (intrachain disulfide bonds remain intact) and fully reduced (all disulfide bonds are cleaved) forms. The entire procedure including the sample preparation and LC-MS/MS takes less than 55 min, enabling rapid multiattribute analysis of ADCs.
Collapse
Affiliation(s)
- Eli J Larson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wisconsin 53706, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, United States
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wisconsin 53706, United States
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wisconsin 53706, United States
| | - Zhaorui Zhang
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Shiyue Zhou
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Linjie Han
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Qunying Zhang
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, United States
| |
Collapse
|
16
|
Matsuda Y, Tawfiq Z, Leung M, Mendelsohn BA. Insight into Temperature Dependency and Design of Experiments towards Process Development for Cysteine‐Based Antibody‐Drug Conjugates. ChemistrySelect 2020. [DOI: 10.1002/slct.202001822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yutaka Matsuda
- Ajinomoto Co.Inc. 1-1 Suzuki-cho Kawasaki Kanagawa 210-8681 Japan
| | - Zhala Tawfiq
- Ajinomoto Bio-Pharma Services 11040 Roselle Street San Diego CA 92121 United States
| | - Monica Leung
- Ajinomoto Bio-Pharma Services 11040 Roselle Street San Diego CA 92121 United States
| | - Brian A. Mendelsohn
- Ajinomoto Bio-Pharma Services 11040 Roselle Street San Diego CA 92121 United States
| |
Collapse
|
17
|
Watts E, Williams JD, Miesbauer LJ, Bruncko M, Brodbelt JS. Comprehensive Middle-Down Mass Spectrometry Characterization of an Antibody–Drug Conjugate by Combined Ion Activation Methods. Anal Chem 2020; 92:9790-9798. [DOI: 10.1021/acs.analchem.0c01232] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | | | | | - Milan Bruncko
- AbbVie, North Chicago, Illinois 60064-1802, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
18
|
Zhu X, Huo S, Xue C, An B, Qu J. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J Pharm Anal 2020; 10:209-220. [PMID: 32612867 PMCID: PMC7322744 DOI: 10.1016/j.jpha.2020.05.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/28/2023] Open
Abstract
The past few years have witnessed enormous progresses in the development of antibody-drug conjugates (ADCs). Consequently, comprehensive analysis of ADCs in biological systems is critical in supporting discovery, development and evaluation of these agents. Liquid chromatography-mass spectrometry (LC-MS) has emerged as a promising and versatile tool for ADC analysis across a wide range of scenarios, owing to its multiplexing ability, rapid method development, as well as the capability of analyzing a variety of targets ranging from small-molecule payloads to the intact protein with a high, molecular resolution. However, despite this tremendous potential, challenges persist due to the high complexity in both the ADC molecules and the related biological systems. This review summarizes the up-to-date LC-MS-based strategies in ADC analysis and discusses the challenges and opportunities in this rapidly-evolving field.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Shihan Huo
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Chao Xue
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
- Department of Chemical and Biological Engineering, School of Engineering and Applied Science, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Bo An
- Exploratory Biomarker, In-vitro/In-vivo Translation, R&D Research, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Rd, Collegeville, PA, 19426, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| |
Collapse
|
19
|
Tawfiq Z, Caiazza NC, Kambourakis S, Matsuda Y, Griffin B, Lippmeier JC, Mendelsohn BA. Synthesis and Biological Evaluation of Antibody Drug Conjugates Based on an Antibody Expression System: Conamax. ACS OMEGA 2020; 5:7193-7200. [PMID: 32280859 PMCID: PMC7143411 DOI: 10.1021/acsomega.9b03628] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
Antibody production for ADCs (or in general) is commonly performed by CHO-based platforms and limited by volumetric productivity, expensive downstream purification, and extended optimization timelines. The Conamax platform is a novel microbial-based protein production and secretion system. A suite of synthetic biology tools have enabled high volumetric productivity (>1 g/L/d) and glycoengineering to produce simple and consistent human-like post-translational modifications. Conamax can be engineered to secrete genuine, functional monoclonal antibodies that have been successfully used to make antibody drug conjugates (ADCs) via cysteine-linked conjugation. Specifically, we evaluated ADCs derived from both a Conamax-produced anti-HER2 antibody and comparable commercially sourced Chinese hamster ovary (CHO)-produced material in an NCI-N87 gastric cancer xenograft model. Conjugation efficiency and resulting analytical data indicated comparable ADC quality and attributes. No statistical difference was observed between Conamax- and CHO-derived test articles thereby indicating similar efficacy and function. These results further demonstrate the potential of Conamax as a useful platform for the discovery and production of therapeutic antibodies and ADCs.
Collapse
Affiliation(s)
- Zhala Tawfiq
- Ajinomoto
Bio-Pharma Services, 11040 Roselle St, San Diego, California 92121, United States
| | - Nicky C. Caiazza
- Synthetic
Genomics, 11149 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Spiros Kambourakis
- Synthetic
Genomics, 11149 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yutaka Matsuda
- Ajinomoto
Bio-Pharma Services, 11040 Roselle St, San Diego, California 92121, United States
| | - Benjamin Griffin
- Synthetic
Genomics, 11149 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | - Brian A. Mendelsohn
- Ajinomoto
Bio-Pharma Services, 11040 Roselle St, San Diego, California 92121, United States
| |
Collapse
|
20
|
Proof of site-specificity of antibody-drug conjugates produced by chemical conjugation technology: AJICAP first generation. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1140:121981. [DOI: 10.1016/j.jchromb.2020.121981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
|
21
|
Saadé J, Gahoual R, Beck A, Leize-Wagner E, François YN. Characterization of the Primary Structure of Cysteine-Linked Antibody-Drug Conjugates Using Capillary Electrophoresis with Mass Spectrometry. Methods Mol Biol 2020; 2078:263-272. [PMID: 31643063 DOI: 10.1007/978-1-4939-9929-3_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) enables the characterization of the primary structure of ADCs. An analytical method based on a derived bottom-up proteomic workflow is designed to provide detailed information about the amino acid sequence, the glycosylation profiling, and the location on the peptide backbone of the conjugated drugs. Here we describe the experimental protocol applied on the characterization of cysteine-linked brentuximab vedotin (Adcetris®).
Collapse
Affiliation(s)
- Josiane Saadé
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Rabah Gahoual
- Laboratoire Vecteurs Pour l'Imagerie Moléculaire et le Ciblage Thérapeutique (VICT), Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Alain Beck
- Pierre Fabre Laboratories, IRPF-Centre d'Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
22
|
Han L, Zhao Y, Zhang Q. Conjugation Site Analysis by MS/MS Protein Sequencing. Methods Mol Biol 2020; 2078:221-233. [PMID: 31643060 DOI: 10.1007/978-1-4939-9929-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In-depth knowledge about the site of drug-linker conjugation is important for the understanding of the conjugation efficiency and the exact locations of payloads for antibody-drug conjugates (ADCs). Here we describe a peptide mapping-based protocol, covering sample preparation procedure, LC-MS/MS setup, and data processing (auto and manual), to determine the locations of drug-linker attachment on mAbs. In comparison with classical mAb peptide mapping, some improvements will be highlighted for maintaining hydrophobic drug-loaded peptides in solution, enabling efficient chromatographic separation and mass spectrometric detection, and allowing for their unambiguous identification in LC-MS/MS map by using diagnostic fragmentation ions of the payload.
Collapse
Affiliation(s)
- Linjie Han
- Process Analytical Chemistry, AbbVie Inc., North Chicago, IL, USA.
| | - Yanqun Zhao
- Process Analytical Chemistry, AbbVie Inc., North Chicago, IL, USA
| | - Qunying Zhang
- Process Analytical Chemistry, AbbVie Inc., North Chicago, IL, USA
| |
Collapse
|
23
|
Hernandez-Alba O, Houel S, Hessmann S, Erb S, Rabuka D, Huguet R, Josephs J, Beck A, Drake PM, Cianférani S. A Case Study to Identify the Drug Conjugation Site of a Site-Specific Antibody-Drug-Conjugate Using Middle-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2419-2429. [PMID: 31429052 DOI: 10.1007/s13361-019-02296-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Middle-down mass spectrometry (MD MS) has emerged as a promising alternative to classical bottom-up approaches for protein characterization. Middle-level experiments after enzymatic digestion are routinely used for subunit analysis of monoclonal antibody (mAb)-related compounds, providing information on drug load distribution and average drug-to-antibody ratio (DAR). However, peptide mapping is still the gold standard for primary amino acid sequence assessment, post-translational modifications (PTM), and drug conjugation identification and localization. However, peptide mapping strategies can be challenging when dealing with more complex and heterogeneous mAb formats, like antibody-drug conjugates (ADCs). We report here, for the first time, MD MS analysis of a third-generation site-specific DAR4 ADC using different fragmentation techniques, including higher-energy collisional- (HCD), electron-transfer (ETD) dissociation and 213 nm ultraviolet photodissociation (UVPD). UVPD used as a standalone technique for ADC subunit analysis afforded, within the same liquid chromatography-MS/MS run, enhanced performance in terms of primary sequence coverage compared to HCD- or ETD-based MD approaches, and generated substantially more MS/MS fragments containing either drug conjugation or glycosylation site information, leading to confident drug/glycosylation site identification. In addition, our results highlight the complementarity of ETD and UVPD for both primary sequence validation and drug conjugation/glycosylation site assessment. Altogether, our results highlight the potential of UVPD for ADC MD MS analysis for drug conjugation/glycosylation site assessment, and indicate that MD MS strategies can improve structural characterization of empowered next-generation mAb-based formats, especially for PTMs and drug conjugation sites validation.
Collapse
Affiliation(s)
- Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France
| | - Stéphane Houel
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France
| | - David Rabuka
- Catalent Biologics West, 5703 Hollis Street, Emeryville, CA, 94530, USA
| | - Romain Huguet
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Jonathan Josephs
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Alain Beck
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Penelope M Drake
- Catalent Biologics West, 5703 Hollis Street, Emeryville, CA, 94530, USA
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France.
| |
Collapse
|
24
|
Chen B, Lin Z, Zhu Y, Jin Y, Larson E, Xu Q, Fu C, Zhang Z, Zhang Q, Pritts WA, Ge Y. Middle-Down Multi-Attribute Analysis of Antibody-Drug Conjugates with Electron Transfer Dissociation. Anal Chem 2019; 91:11661-11669. [PMID: 31442030 DOI: 10.1021/acs.analchem.9b02194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antibody-drug conjugates (ADCs) are designed to combine the target specificity of monoclonal antibodies and potent cytotoxin drugs to achieve better therapeutic outcomes. Comprehensive evaluation of the quality attributes of ADCs is critical for drug development but remains challenging due to heterogeneity of the construct. Currently, peptide mapping with reversed-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the predominant approach to characterize ADCs. However, it is suboptimal for sequence characterization and quantification of ADCs because it lacks a comprehensive view of coexisting variants and suffers from varying ionization effects of drug-conjugated peptides compared to unconjugated counterparts. Here, we present the first middle-down RPLC-MS analysis of both cysteine (Adcetris; BV) and lysine (Kadcyla; T-DM1) conjugated ADCs at the subunit level (∼25 kDa) with electron transfer dissociation (ETD). We successfully achieved high-resolution separation of subunit isomers arising from different drug conjugation and subsequently localized the conjugation sites. Moreover, we obtained a comprehensive overview of the microvariants associated with each subunits and characterized them such as oxidized variants with different sites. Furthermore, we observed relatively high levels of conjugation near complementarity-determining regions (CDRs) from the heavy chain but no drug conjugation near CDRs of light chain (Lc) from lysine conjugated T-DM1. Based on the extracted ion chromatograms, we accurately measured average drug to antibody ratio (DAR) values and relative occupancy of drug-conjugated subunits. Overall, the middle-down MS approach enables the evaluation of multiple quality attributes including DAR, positional isomers, conjugation sites, occupancy, and microvariants, which potentially opens up a new avenue to characterize ADCs.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yutong Jin
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Eli Larson
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Qingge Xu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Cexiong Fu
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Zhaorui Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Qunying Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Wayne A Pritts
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
25
|
Zhang Z, Zhou S, Han L, Zhang Q, Pritts WA. Impact of linker-drug on ion exchange chromatography separation of antibody-drug conjugates. MAbs 2019; 11:1113-1121. [PMID: 31238787 PMCID: PMC6748606 DOI: 10.1080/19420862.2019.1628589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Charge variants are important attributes of monoclonal antibodies, including antibody-drug conjugates (ADCs), because charge variants can potentially influence the stability and biological activity of these molecules. Ion exchange chromatography (IEX) is widely used for charge variants analysis of mAbs and offers the feasibility of fractionation for in-depth characterization. However, the conjugated linker-drug on ADCs could potentially affect the separation performance of IEX, considering IEX separation relies on surface charge distribution of analyte and involves the interaction between analyte surface and IEX stationary phase. Here, we investigated weak cation exchange chromatography (WCX) for its application in analyzing three ADCs (two broad distribution ADCs and an ADC with controlled conjugation sites) and the 2-drug/4-drug loaded species isolated from the two broad distribution ADCs using hydrophobic interaction chromatography. The major peaks in WCX profile were characterized via fraction collection followed by capillary electrophoresis-sodium dodecyl sulfate or peptide mapping. Results suggested that both the number of drug loads and conjugation sites could impact WCX separation of an ADC. The hypothesis was that the linker drugs could interfere with the ionic interaction between its surrounding amino acids on the mAb surface and column resin, which reduced the retention of ADCs on WCX column in this study. Our results further revealed that WCX brings good selectivity towards positional isomers, but limited resolution for different drug load, which causes the peak compositions of the two broad-distribution ADCs to be highly complex. We also compared results from WCX and imaged capillary isoelectric focusing (icIEF). Results showed that separation in icIEF was less influenced by conjugated linker drugs for the ADCs studied in this work, and better alignment was found between the two techniques for the ADC with controlled conjugate sites. Overall, this work provides insights into the complexity of WCX analysis of ADCs, which should be considered during method development and sample characterization.
Collapse
Affiliation(s)
- Zhaorui Zhang
- a Process Analytical Chemistry, AbbVie Inc. , North Chicago , IL , USA
| | - Shiyue Zhou
- a Process Analytical Chemistry, AbbVie Inc. , North Chicago , IL , USA
| | - Linjie Han
- a Process Analytical Chemistry, AbbVie Inc. , North Chicago , IL , USA
| | - Qunying Zhang
- a Process Analytical Chemistry, AbbVie Inc. , North Chicago , IL , USA
| | - Wayne A Pritts
- a Process Analytical Chemistry, AbbVie Inc. , North Chicago , IL , USA
| |
Collapse
|
26
|
Li K, Lin ZJ, Shi H, Ma Y. Characterization of Positional Isomers of Interchain Cysteine Linked Antibody−Drug Conjugates by High-Resolution Mass Spectrometry. Anal Chem 2019; 91:8558-8563. [DOI: 10.1021/acs.analchem.9b01808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ke Li
- Department of Chemistry and Center for Biomedical Research, Missouri University of Science and Technonlogy, Rolla, Missouri 65409, United States
| | - Zhongping John Lin
- Department of Bioanalysis, Frontage Laboratories, Inc., Exton, Pennsylvania 19341, United States
| | - Honglan Shi
- Department of Chemistry and Center for Biomedical Research, Missouri University of Science and Technonlogy, Rolla, Missouri 65409, United States
| | - Yinfa Ma
- Department of Chemistry and Center for Biomedical Research, Missouri University of Science and Technonlogy, Rolla, Missouri 65409, United States
- Department of Chemistry, California State University, Sacramento, California 95819, United States
| |
Collapse
|
27
|
Chen TH, Yang Y, Zhang Z, Fu C, Zhang Q, Williams JD, Wirth MJ. Native Reversed-Phase Liquid Chromatography: A Technique for LCMS of Intact Antibody-Drug Conjugates. Anal Chem 2019; 91:2805-2812. [PMID: 30661356 PMCID: PMC6727645 DOI: 10.1021/acs.analchem.8b04699] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of antibody-drug conjugates (ADCs) using the interchain cysteines of the antibody inherently gives a mixture of proteins with varying drug-to-antibody ratio. The drug distribution profiles of ADCs are routinely characterized by hydrophobic interaction chromatography (HIC). Because HIC is not in-line compatible with mass spectrometry (MS) due to the high salt levels, it is laborious to identify the constituents of HIC peaks. An MS-compatible alternative to HIC is reported here: native reversed phase liquid chromatography (nRPLC). This novel technique employs a mobile phase 50 mM ammonium acetate for high sensitivity in MS and elution with a gradient of water/isopropanol. The key to the enhancement is a bonded phase giving weaker drug-surface interactions compared to the noncovalent interactions holding the antibody-drug conjugates together. The hydrophobicity of the bonded phase is varied, and the least hydrophobic bonded phase in the series, poly(methyl methacrylate), is found to resolve the intact constituents of a model ADC (Ab095-PZ) and a commercial ADC (brentuximab vedotin) under the MS-compatible conditions. The nRPLC-MS data show that all species, ranging from drug-to-antibody ratios of 1 to 8, remained intact in the column. Another desired advantage of the nRPLC is the ability of resolving multiple positional isomers of ADC that are not well-resolved in other chromatographic modes. This supports the premise that lower hydrophobicity of the bonded phase is the key to enabling online nRPLC-MS analysis of antibody-drug conjugates.
Collapse
Affiliation(s)
- Tse-Hong Chen
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Yun Yang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Zhaorui Zhang
- Process Analytical Chemistry, AbbVie, Inc. 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Cexiong Fu
- Process Analytical Chemistry, AbbVie, Inc. 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Qunying Zhang
- Process Analytical Chemistry, AbbVie, Inc. 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jon D. Williams
- Discovery Structural Chemistry, AbbVie, Inc. 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Mary J. Wirth
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
28
|
Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 2019; 16:337-362. [DOI: 10.1080/14789450.2019.1578215] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alain Beck
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuel Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yannis François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
29
|
D’Atri V, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D. Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1080:37-41. [DOI: 10.1016/j.jchromb.2018.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/17/2018] [Indexed: 11/16/2022]
|
30
|
Friese OV, Smith JN, Brown PW, Rouse JC. Practical approaches for overcoming challenges in heightened characterization of antibody-drug conjugates with new methodologies and ultrahigh-resolution mass spectrometry. MAbs 2018; 10:335-345. [PMID: 29393747 DOI: 10.1080/19420862.2018.1433973] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Antibody-drug conjugation strategies are continuously evolving as researchers work to improve the safety and efficacy of the molecules. However, as a part of process and product development, confirmation of the resulting innovative structures requires new, specialized mass spectrometry (MS) approaches and methods, as compared to those already established for antibody-drug conjugates (ADCs) and the heightened characterization practices used for monoclonal antibodies (mAbs), in order to accurately elucidate the resulting conjugate forms, which can sometimes have labile chemical bonds and more extreme chemical properties like hydrophobic patches. Here, we discuss practical approaches for characterization of ADCs using new methodologies and ultrahigh-resolution MS, and provide specific examples of these approaches. Denaturing conditions of typical liquid chromatography (LC)/MS analyses impede the successful detection of intact, 4-chain ADCs generated via cysteine site-directed chemistry approaches where hinge region disulfide bonds are partially reduced. However, this class of ADCs is detected intact reliably under non-denaturing size-exclusion chromatography/MS conditions, also referred to as native MS. For ADCs with acid labile linkers such as one used for conjugation of calicheamicin, careful selection of mobile phase composition is critical to the retention of intact linker-payload during LC/MS analysis. Increasing the pH of the mobile phase prevented cleavage of a labile bond in the linker moiety, and resulted in retention of the intact linker-payload. In-source fragmentation also was observed with typical electrospray ionization (ESI) source parameters during intact ADC mass analysis for a particular surface-accessible linker-payload moiety conjugated to the heavy chain C-terminal tag, LLQGA (via transglutaminase chemistry). Optimization of additional ESI source parameters such as cone voltages, gas pressures and ion transfer parameters led to minimal fragmentation and optimal sensitivity. Ultrahigh-resolution (UHR) MS, combined with reversed phase-ultrahigh performance (RP-UHP)LC and use of the FabRICATOR® enzyme, provides a highly resolving, antibody subunit-domain mapping method that allows rapid confirmation of integrity and the extent of conjugation. For some ADCs, the hydrophobic nature of the linker-payload hinders chromatographic separation of the modified subunit/domains or causes very late elution/poor recovery. As an alternative to the traditionally used C4 UHPLC column chemistry, a diphenyl column resulted in the complete recovery of modified subunit/domains. For ADCs based on maleimide chemistry, control of pH during proteolytic digestion is critical to minimize ring-opening. The optimum pH to balance digestion efficiency and one that does not cause ring opening needed to be established for successful peptide mapping.
Collapse
Affiliation(s)
- Olga V Friese
- a Biotherapeutics Pharm. Sci. , Pfizer WRD , St Louis , MO , USA
| | | | - Paul W Brown
- a Biotherapeutics Pharm. Sci. , Pfizer WRD , St Louis , MO , USA
| | - Jason C Rouse
- b Biotherapeutics Pharm. Sci. , Pfizer WRD , Andover , MA , USA
| |
Collapse
|
31
|
Ehkirch A, D’Atri V, Rouviere F, Hernandez-Alba O, Goyon A, Colas O, Sarrut M, Beck A, Guillarme D, Heinisch S, Cianferani S. An Online Four-Dimensional HIC×SEC-IM×MS Methodology for Proof-of-Concept Characterization of Antibody Drug Conjugates. Anal Chem 2018; 90:1578-1586. [DOI: 10.1021/acs.analchem.7b02110] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anthony Ehkirch
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, 67000 Strasbourg, France
| | - Valentina D’Atri
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Florent Rouviere
- Université de Lyon, Institut des Sciences Analytiques, CNRS UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Oscar Hernandez-Alba
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, 67000 Strasbourg, France
| | - Alexandre Goyon
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Olivier Colas
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Morgan Sarrut
- Université de Lyon, Institut des Sciences Analytiques, CNRS UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Alain Beck
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, CNRS UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Sarah Cianferani
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, 67000 Strasbourg, France
| |
Collapse
|
32
|
Wagh A, Song H, Zeng M, Tao L, Das TK. Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs 2018; 10:222-243. [PMID: 29293399 DOI: 10.1080/19420862.2017.1412025] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a growing class of biotherapeutics in which a potent small molecule is linked to an antibody. ADCs are highly complex and structurally heterogeneous, typically containing numerous product-related species. One of the most impactful steps in ADC development is the identification of critical quality attributes to determine product characteristics that may affect safety and efficacy. However, due to the additional complexity of ADCs relative to the parent antibodies, establishing a solid understanding of the major quality attributes and determining their criticality are a major undertaking in ADC development. Here, we review the development challenges, especially for reliable detection of quality attributes, citing literature and new data from our laboratories, highlight recent improvements in major analytical techniques for ADC characterization and control, and discuss newer techniques, such as two-dimensional liquid chromatography, that have potential to be included in analytical control strategies.
Collapse
Affiliation(s)
- Anil Wagh
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Hangtian Song
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Ming Zeng
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Li Tao
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Tapan K Das
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| |
Collapse
|
33
|
Neupane R, Bergquist J. Analytical techniques for the characterization of Antibody Drug Conjugates: Challenges and prospects. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:417-426. [PMID: 29183195 DOI: 10.1177/1469066717733919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibody drug conjugates are increasingly being researched for the treatment of cancer. Accurate and reliable characterization of ADCs is inevitable for their development as potential therapeutic agent. Different analytical techniques have been used in order to decipher heterogeneous nature of antibody drug conjugates, enabling successful characterization. This review will summarize specially three major analytical tools i.e. UV-Vis spectroscopy, liquid chromatography, and mass spectrometry used in characterization of antibody drug conjugates. In this review, major challenges during analysis due to the inherent features of analytical techniques and antibody drug conjugates are summarized along with the modifications intended to address each challenge.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Bobály B, Fleury-Souverain S, Beck A, Veuthey JL, Guillarme D, Fekete S. Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. J Pharm Biomed Anal 2017; 147:493-505. [PMID: 28688616 DOI: 10.1016/j.jpba.2017.06.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022]
Abstract
Antibody Drug Conjugates (ADCs) are innovative biopharmaceuticals gaining increasing attention over the last two decades. The concept of ADCs lead to new therapy approaches in numerous oncological indications as well in infectious diseases. Currently, around 60 CECs are in clinical trials indicating the expanding importance of this class of protein therapeutics. ADCs show unprecedented intrinsic heterogeneity and address new quality attributes which have to be assessed. Liquid chromatography is one of the most frequently used analytical method for the characterization of ADCs. This review summarizes recent results in the chromatographic characterization of ADCs and supposed to provide a general overview on the possibilities and limitations of current approaches for the evaluation of drug load distribution, determination of average drug to antibody ratio (DARav), and for the analysis of process/storage related impurities. Hydrophobic interaction chromatography (HIC), reversed phase liquid chromatography (RPLC), size exclusion chromatography (SEC) and multidimensional separations are discussed focusing on the analysis of marketed ADCs. Fundamentals and aspects of method development are illustrated with applications for each technique. Future perspectives in hydrophilic interaction chromatography (HILIC), HIC, SEC and ion exchange chromatography (IEX) are also discussed.
Collapse
Affiliation(s)
- Balázs Bobály
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | | | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
35
|
Bobaly B, D'Atri V, Goyon A, Colas O, Beck A, Fekete S, Guillarme D. Protocols for the analytical characterization of therapeutic monoclonal antibodies. II - Enzymatic and chemical sample preparation. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:325-335. [PMID: 28666223 DOI: 10.1016/j.jchromb.2017.06.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 01/06/2023]
Abstract
The analytical characterization of therapeutic monoclonal antibodies and related proteins usually incorporates various sample preparation methodologies. Indeed, quantitative and qualitative information can be enhanced by simplifying the sample, thanks to the removal of sources of heterogeneity (e.g. N-glycans) and/or by decreasing the molecular size of the tested protein by enzymatic or chemical fragmentation. These approaches make the sample more suitable for chromatographic and mass spectrometric analysis. Structural elucidation and quality control (QC) analysis of biopharmaceutics are usually performed at intact, subunit and peptide levels. In this paper, general sample preparation approaches used to attain peptide, subunit and glycan level analysis are overviewed. Protocols are described to perform tryptic proteolysis, IdeS and papain digestion, reduction as well as deglycosylation by PNGase F and EndoS2 enzymes. Both historical and modern sample preparation methods were compared and evaluated using rituximab and trastuzumab, two reference therapeutic mAb products approved by Food and Drug Administration (FDA) and European Medicines Agency (EMA). The described protocols may help analysts to develop sample preparation methods in the field of therapeutic protein analysis.
Collapse
Affiliation(s)
- Balazs Bobaly
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Alexandre Goyon
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Olivier Colas
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, 5 Avenue Napoléon III, BP 60497, 74160, Saint-Julien-en-Genevois, France
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, 5 Avenue Napoléon III, BP 60497, 74160, Saint-Julien-en-Genevois, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| |
Collapse
|
36
|
Separation of antibody drug conjugate species by RPLC: A generic method development approach. J Pharm Biomed Anal 2017; 137:60-69. [DOI: 10.1016/j.jpba.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/18/2022]
|
37
|
Prashad AS, Nolting B, Patel V, Xu A, Arve B, Letendre L. From R&D to Clinical Supplies. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amar S. Prashad
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - Birte Nolting
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - Vimalkumar Patel
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - April Xu
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - Bo Arve
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Chesterfield, Missouri 63017, United States
| | - Leo Letendre
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| |
Collapse
|
38
|
Sang H, Lu G, Liu Y, Hu Q, Xing W, Cui D, Zhou F, Zhang J, Hao H, Wang G, Ye H. Conjugation site analysis of antibody-drug-conjugates (ADCs) by signature ion fingerprinting and normalized area quantitation approach using nano-liquid chromatography coupled to high resolution mass spectrometry. Anal Chim Acta 2017; 955:67-78. [DOI: 10.1016/j.aca.2016.11.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/13/2016] [Accepted: 11/21/2016] [Indexed: 11/16/2022]
|
39
|
Lanshoeft C, Wolf T, Walles M, Barteau S, Picard F, Kretz O, Cianférani S, Heudi O. The flexibility of a generic LC–MS/MS method for the quantitative analysis of therapeutic proteins based on human immunoglobulin G and related constructs in animal studies. J Pharm Biomed Anal 2016; 131:214-222. [DOI: 10.1016/j.jpba.2016.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/01/2023]
|
40
|
Sarrut M, Fekete S, Janin-Bussat MC, Colas O, Guillarme D, Beck A, Heinisch S. Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. II- Identification of sub-units for the characterization of even and odd load drug species. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:91-102. [DOI: 10.1016/j.jchromb.2016.06.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
|
41
|
Sarrut M, Corgier A, Fekete S, Guillarme D, Lascoux D, Janin-Bussat MC, Beck A, Heinisch S. Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. I − Optimization of separation conditions. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:103-111. [DOI: 10.1016/j.jchromb.2016.06.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/19/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
|
42
|
Multiple heart-cutting and comprehensive two-dimensional liquid chromatography hyphenated to mass spectrometry for the characterization of the antibody-drug conjugate ado-trastuzumab emtansine. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:119-130. [DOI: 10.1016/j.jchromb.2016.04.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 01/25/2023]
|
43
|
Antibody-drug conjugate characterization by chromatographic and electrophoretic techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:39-50. [PMID: 27451254 DOI: 10.1016/j.jchromb.2016.07.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/21/2022]
Abstract
Due to the inherent structure complexity and component heterogeneity of antibody drug conjugates (ADCs), separation technologies play a critical role in their characterization. In this review, we focus on chromatographic and electrophoretic approaches used to characterize ADCs with respect to drug-to-antibody ratio, drug distribution and conjugation sites, free small molecule drugs, charge variants, aggregates and fragments, etc. Chromatographic techniques including reversed-phase, ion exchange, size exclusion, hydrophobic interaction, two-dimensional liquid chromatography, and gas chromatography as well as capillary electrophoretic techniques including capillary electrophoresis sodium dodecyl sulfate, capillary zone electrophoresis and capillary isoelectric focusing are reviewed for their applications in the characterization of ADCs.
Collapse
|
44
|
Excoffier M, Janin-Bussat MC, Beau-Larvor C, Troncy L, Corvaia N, Beck A, Klinguer-Hamour C. A new anti-human Fc method to capture and analyze ADCs for characterization of drug distribution and the drug-to-antibody ratio in serum from pre-clinical species. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:149-154. [PMID: 27267073 DOI: 10.1016/j.jchromb.2016.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023]
Abstract
Antibody-drug conjugates (ADCs) are becoming a major class of oncology therapeutics. They combine monoclonal antibody specificity for over-expressed tumor antigens and the high cytoxicity of small molecular drugs (SMDs) and can therefore selectively kill tumor cells while minimizing toxicity to normal cells. Nevertheless, the premature deconjugation of ADCs in the circulation may trigger off target toxicity in patients. The released free drug level must be low in circulation for an extended period of time as well as the de-conjugation rate to ensure an acceptable therapeutic window. As a result, the assessment of the stability of the linker between payload and mAb in the systemic circulation is of paramount importance before entering in clinical trial. Here we report a new universal method to immunocapture and analyze by LC-MS the stability and distribution of ADCs in sera from relevant preclinical species (mouse, rat and cynomolgus monkey). Furthermore we demonstrated that this workflow can be applied to both ADCs with cleavable and non cleavable linkers. Last but not least, the results obtained in cynomolgus serum using immunoprecipitation and LC-MS analysis were cross validated using an ELISA orthogonal method. As the ligand used for immunoprecipitation is targeting the Fc part of mAb (CaptureSelect™ Human IgG-Fc PK Biotin), this protocol can be applied to analyze the stability of virtually all ADCs in sera for preclinical studies without the need to prepare specific molecular tools.
Collapse
Affiliation(s)
- Mélissa Excoffier
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Marie-Claire Janin-Bussat
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Charlotte Beau-Larvor
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Lysiane Troncy
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Nathalie Corvaia
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France.
| | - Christine Klinguer-Hamour
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France.
| |
Collapse
|
45
|
Huang RYC, Chen G. Characterization of antibody-drug conjugates by mass spectrometry: advances and future trends. Drug Discov Today 2016; 21:850-5. [PMID: 27080148 DOI: 10.1016/j.drudis.2016.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Antibody-drug conjugates (ADCs) are emerging modalities in the pharmaceutical industry. The unique target-specific binding of antibody allows targeted delivery of cytotoxic small molecules to cancer cells, and thus expands the therapeutic window. However, in-depth characterization of ADCs is complex because it involves the characterization of antibody, conjugated molecules and antibody conjugates as a whole. In this review, we describe the practical use of mass spectrometry for ADC characterization including qualitative and quantitative analysis. Technical advances, limitations and future trends will also be discussed.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, USA.
| |
Collapse
|
46
|
Zhang Z, Perrault R, Zhao Y, Ding J. SpeB proteolysis with imaged capillary isoelectric focusing for the characterization of domain-specific charge heterogeneities of reference and biosimilar Rituximab. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1020:148-57. [PMID: 27038651 DOI: 10.1016/j.jchromb.2016.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/29/2016] [Accepted: 03/19/2016] [Indexed: 11/24/2022]
Abstract
The charge variations of therapeutic monoclonal antibody reveal important information of the post-translational modifications that may potentially impact the potency and safety of pharmaceutical products, especially during the evaluation of biosimilarity of therapeutic proteins. In this work, a novel SpeB-based proteolysis strategy coupling with imaged capillary isoelectric focusing was developed for the determination of domain-specific charge heterogeneities of innovator and generic Rituximab drug products from United States, European and Indian markets. It was observed that innovator Rituximab from the United States and Europe share highly similar peak distributions and charge heterogeneities with 26.2-26.6% Fc/2, 28.9-29.3% LC and 44.4-44.5% Fd peak areas detected, respectively, while multiple basic variations of Fc/2 and less acidic LC and Fd species were found from generic Rituximab from India with 20.9% Fc/2, 32.3% LC and 46.9% Fd peak areas detected. It was also demonstrated that structural changes caused by Carboxypeptidase B treatment and deamidation study at pH extremes could be sensitively captured with the established method, with the results further indicating that the generic product's basic variations of Fc/2 were un-cleaved Lysine residues, while the lack of certain acidic peaks on LC and Fd probably was due to the lower level of deamidation. This new strategy could become a useful tool to reveal domain-specific charge heterogeneities profiles of a variety of therapeutic monoclonal antibodies in regulated environments.
Collapse
Affiliation(s)
- Zichuan Zhang
- PPD Laboratories, Biopharmaceutical Services, 8551 Research Way Suite 90, Middleton, WI 53562, USA.
| | - Ronel Perrault
- PPD Laboratories, Biopharmaceutical Services, 8551 Research Way Suite 90, Middleton, WI 53562, USA
| | - Yun Zhao
- PPD Laboratories, Biopharmaceutical Services, 8551 Research Way Suite 90, Middleton, WI 53562, USA
| | - Julia Ding
- PPD Laboratories, Biopharmaceutical Services, 8551 Research Way Suite 90, Middleton, WI 53562, USA.
| |
Collapse
|
47
|
Said N, Gahoual R, Kuhn L, Beck A, François YN, Leize-Wagner E. Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis - Tandem mass spectrometry as nanoESI infusion platform and separation method. Anal Chim Acta 2016; 918:50-9. [PMID: 27046210 DOI: 10.1016/j.aca.2016.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
Antibody-drug conjugates (ADCs) represent a fast growing class of biotherapeutic products. Their production leads to a distribution of species exhibiting different number of conjugated drugs overlaying the inherent complexity resulting from the monoclonal antibody format, such as glycoforms. ADCs require an additional level of characterization compared to first generation of biotherapeutics obtained through multiple analytical techniques for complete structure assessment. We report the development of complementary approaches implementing sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) to characterize the different aspects defining the structure of brentuximab vedotin. Native MS using sheathless CE-MS instrument as a nanoESI infusion platform enabled accurate mass measurements and estimation of the average drug to antibody ratio alongside to drug load distribution. Middle-up analysis performed after limited IdeS proteolysis allowed to study independently the light chain, Fab and F(ab')2 subunits incorporating 1, 0 to 4 and 0 to 8 payloads respectively. Finally, a CZE-ESI-MS/MS methodology was developed in order to be compatible with hydrophobic drug composing ADCs. From a single injection, complete sequence coverage could be achieved. Using the same dataset, glycosylation and drug-loaded peptides could be simultaneously identified revealing robust information regarding their respective localization and abundance. Drug-loaded peptide fragmentation mass spectra study demonstrated drug specific fragments reinforcing identification confidence, undescribed so far. Results reveal the method ability to characterize ADCs primary structure in a comprehensive manner while reducing tremendously the number of experiments required. Data generated showed that sheathless CZE-ESI-MS/MS characteristics position the methodology developed as a relevant alternative for comprehensive multilevel characterization of these complex biomolecules.
Collapse
Affiliation(s)
- Nassur Said
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| | - Rabah Gahoual
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France; Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, CNRS, Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France.
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
48
|
Cusumano A, Guillarme D, Beck A, Fekete S. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatoraphy, part 2: Optimization of the phase system. J Pharm Biomed Anal 2016; 121:161-173. [DOI: 10.1016/j.jpba.2016.01.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/09/2023]
|
49
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
50
|
Sjögren J, Olsson F, Beck A. Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst 2016; 141:3114-25. [DOI: 10.1039/c6an00071a] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibody subunits LC, Fd and Fc/2, generated by IdeS digestion has been applied in analytical methodologies to characterize antibody quality attributes such as glycosylation, oxidation, deamidation, and identity.
Collapse
Affiliation(s)
| | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre
- St Julien-en-Genevois
- France
| |
Collapse
|