1
|
Zheng X, Rong S, Liao Q, Fang Q, Wang X, Lou Y, Li Q, Qian J, Wang J, Wang Y, Zhao X, Xiong B, Wang L, Li H, Yao Y, Zhu Q, Jiang Y, Yang G, Xiao L, Ma C, Huang J. Renal denervation guided and ablated by noninvasive ultrasound in canines. ULTRASONICS 2025; 153:107666. [PMID: 40262440 DOI: 10.1016/j.ultras.2025.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
This study aimed to explore the application and efficacy of a novel stimulation-guided, targeting ablation, and efficacy verification technique based on dual-frequency extracorporeal focused ultrasound interference for renal denervation (RDN) in treating resistant hypertension. Existing RDN techniques are often invasive or lack clear intervention targets and efficacy endpoints, limiting their effectiveness and safety. To address these limitations, we developed a technique using dual-frequency extracorporeal focused ultrasound interference, which modulates acoustic radiation force to stimulate renal nerves for targeted RDN. Initial validation in C57 mice sciatic nerves demonstrated that differential-frequency stimulation (Δf = 40 kHz) achieved effective neuromuscular activation (leg twitching with recorded action potentials) at 0.25 W acoustic power, whereas same-frequency stimulation required significantly higher power (1.25 W) to elicit responses (P < 0.001 for action potential amplitude comparison).In old beagles, acoustic stimulation (with stimulation parameters set at 50 W acoustic power and a Δf = 10 kHz,) was applied across multiple cross-sectional quadrants of the main renal artery to identify and selectively ablate significant blood pressure response sites (≥5 mmHg). Further RDN was achieved through re-stimulation verification and supplementary ablation. Our findings reveal a predominant distribution of positive reaction sites in the proximal segment of the renal artery and that nearly one-third of the response sites still reacted to stimulation after ablation, necessitating additional ablation. When compared to anatomic landmark RDN method, the stimulate-guided RDN demonstrated notably superior reductions in systolic BP (14.4 ± 3.1 vs 9.6 ± 4.4 mmHg, P = 0.026) on day 28. Notably, the implementation of this method did not result in any serious complications. Our study suggests that nerve acoustic stimulation guidance has the potential to be further explored as a non-invasive RDN strategy for targeted ablation and efficacy validation in clinical settings.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; State Key Laboratory of Ultrasound in Medicine and Engineering, National Engineering Research Center of Ultrasound Medicine, Chongqing, China
| | - Qingyao Liao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Wang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Yake Lou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaoqiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Qian
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; State Key Laboratory of Ultrasound in Medicine and Engineering, National Engineering Research Center of Ultrasound Medicine, Chongqing, China
| | - Junling Wang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Bo Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Li
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Yuanqing Yao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Que Zhu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yonghong Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Yang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Xiao
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; State Key Laboratory of Ultrasound in Medicine and Engineering, National Engineering Research Center of Ultrasound Medicine, Chongqing, China.
| |
Collapse
|
2
|
Liu T, Shi J, Fu Y, Zhang Y, Bai Y, He S, Deng W, Jin Q, Chen Y, Fang L, He L, Li Y, Yang Y, Zhang L, Lv Q, Wang J, Xie M. New trends in non-pharmacological approaches for cardiovascular disease: Therapeutic ultrasound. Trends Cardiovasc Med 2023; 33:431-440. [PMID: 35461990 DOI: 10.1016/j.tcm.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Significant advances in application of therapeutic ultrasound have been reported in the past decades. Therapeutic ultrasound is an emerging non-invasive stimulation technique. This approach has shown high potential for treatment of various disease including cardiovascular disease. In this review, application principle and significance of the basic parameters of therapeutic ultrasound are summarized. The effects of therapeutic ultrasound in myocardial ischemia, heart failure, myocarditis, arrhythmias, and hypertension are explored, with key focus on the underlying mechanism. Further, the limitations and challenges of ultrasound therapy on clinical translation are evaluated to promote application of the novel strategy in cardiovascular diseases.
Collapse
Affiliation(s)
- Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yichan Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ying Bai
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lin He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
3
|
Filippone EJ, Naccarelli GV, Foy AJ. Controversies in Hypertension IV: Renal Denervation. Am J Med 2023; 136:857-868. [PMID: 37230403 DOI: 10.1016/j.amjmed.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Renal denervation is not a cure for hypertension. Although more recent sham-controlled trials were positive, a significant minority of patients in each trial were unresponsive. The optimal patient or patients need to be defined. Combined systolic/diastolic hypertension appears more responsive than isolated systolic hypertension. It remains uncertain whether patients with comorbidities associated with higher adrenergic tone should be targeted, including obesity, diabetes, sleep apnea, and chronic kidney disease. No biomarker can adequately predict response. A key to a successful response is the adequacy of denervation, which currently cannot be assessed in real time. It is uncertain what is the optimal denervation methodology: radiofrequency, ultrasound, or ethanol injection. Radiofrequency requires targeting the distal main renal artery plus major branches and accessory arteries. Although denervation appears to be safe, conclusive data on quality of life, improved target organ damage, and reduced cardiovascular events/mortality are required before denervation can be generally recommended.
Collapse
Affiliation(s)
- Edward J Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pa.
| | - Gerald V Naccarelli
- Department of Medicine, Penn State University Heart and Vascular Institute; Penn State M.S Hershey Medical Center and College of Medicine, Hershey, Pa
| | - Andrew J Foy
- Department of Medicine, Penn State University Heart and Vascular Institute; Penn State M.S Hershey Medical Center and College of Medicine, Hershey, Pa
| |
Collapse
|
4
|
Xiong B, Chen S, Chen W, Yin Y, Ling Z. Advances in Renal Denervation in the Treatment of Hypertension. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2023. [DOI: 10.15212/cvia.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Hypertension significantly increases the risk of cardiovascular events and it is associated with high rates of disability and mortality. Hypertension is a common cause of cardiovascular and cerebrovascular accidents, which severely affect patients’ quality of life and lifespan. Current treatment strategies for hypertension are based primarily on medication and lifestyle interventions. The renal sympathetic nervous system plays an important role in the pathogenesis of hypertension, and catheter-based renal denervation (RDN) has provided a new concept for the treatment of hypertension. In recent years, studies on RDN have been performed worldwide. This article reviews the latest preclinical research and clinical evidence for RDN.
Collapse
|
5
|
Jami O, Tijani Y, Et-Tahir A. Device-Based Therapy for Resistant Hypertension: An Up-to-Date Review. High Blood Press Cardiovasc Prev 2022; 29:537-546. [PMID: 36178479 PMCID: PMC9523625 DOI: 10.1007/s40292-022-00539-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Hypertension is the major risk factor for cardiovascular morbidity and mortality. Matter of fact, untreated hypertension can worsen the overall health, whereas pharmacotherapy can play an important role in lowering the risk of high blood pressure in hypertensive patients. However, persistent uncontrolled hypertension remains an unsolved condition characterized by non-adherence to medication and increased sympathetic activity. This paper will review the non-pharmacological treatments for resistant hypertension (RH) that have emerged in recent years. In addition, the technologies developed in device-based RH therapy, as well as the clinical trials that support their use, will be discussed. Indeed, the novel device-based approaches that target RH present a promising therapy which has been supported by several studies and clinical trials, whereas drug non-adherence and high sympathetic activity are known to be the main causes of RH. Nevertheless, some additional aspects of these RH systems need to be tested in the near future, with a particular focus on the device's design and availability of randomized controlled trials.
Collapse
Affiliation(s)
- Oussama Jami
- High School of Technology in Salé, Materials, Energy and Acoustics Team Rabat, Mohammed V University in Rabat, Rabat, Morocco.
- Biomedical Engineering Department, Mohammed VI University of Health Sciences, Casablanca, Morocco.
| | - Youssef Tijani
- Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Aziz Et-Tahir
- High School of Technology in Salé, Materials, Energy and Acoustics Team Rabat, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
6
|
Liao Q, Yang F, Xiong B, Zheng X, Wang Y, Qian J, Qiao Z, Huang J. Optimal Strategy for HIFU-Based Renal Sympathetic Denervation in Canines. Front Cardiovasc Med 2021; 8:739560. [PMID: 34722673 PMCID: PMC8551579 DOI: 10.3389/fcvm.2021.739560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The association between the treatment efficacy and safety of high-intensity focused ultrasound (HIFU)-based renal sympathetic denervation (RDN) and the acoustic energy dose applied has not been fully studied and may provide important understanding of the mechanism that led to failure of the WAVE IV trial. The objective of this study was to externally deliver different HIFU doses to canines for RDN treatment and to investigate the optimal energy dose for HIFU-based RDN. Methods: Thirty canines were divided into five RDN groups according to dose of acoustic energy applied, and a sham control group that consisted of four canines was used for comparisons. All animals in the RDN groups underwent the RDN procedure with different acoustic energy doses, while in the sham control group, renal arteries were harvested without being subjected to acoustic energy delivery and were imaged using color Doppler flow imaging (CDFI). Blood pressure (BP) was recorded, and blood samples were collected before the RDN procedure and at 28 days after the RDN procedure. Histological examinations and measurement of renal tissue norepinephrine concentration were performed in all retrieved samples. Results: Suppression of BP was significant in the 300 W (15.17/8.33 ± 1.47/1.21 mmHg), 250 W (14.67/9.33 ± 1.21/1.37 mmHg), and 200 W (13.17/9.17 ± 2.32/1.84 mmHg) groups. Semiquantitative histological assessment of periarterial nerves around the kidney revealed that target nerves in the 300 W (9.77 ± 0.63), 250 W (9.42 ± 0.67), and 200 W (9.58 ± 0.54) groups had the highest nerve injury scores, followed by the 150 W group (5.29 ± 0.62). Furthermore, decreased renal tissue norepinephrine concentration, together with decreased expression of tyrosine hydroxylase in the 300, 250, and 200 W groups demonstrated effective sympathetic depression following sufficient acoustic energy deposition. However, the renal artery injury score in the 300 W group (0.93 ± 0.13) was significantly higher than in the other groups (p < 0.001). Conclusion: This study provides evidence that RDN effectiveness is based on the energy dose delivered and that 200–250 W is effective and safe in normal-sized canines.
Collapse
Affiliation(s)
- Qingyao Liao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Yang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Zheng
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yue Wang
- Ultrasonic Technology Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Jun Qian
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhao Qiao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Christophides T, Somaschini A, Demarchi A, Cornara S, Androulaki M, Androulakis E. New Drugs and Interventional Strategies for the Management of Hypertension. Curr Pharm Des 2021; 27:1396-1406. [PMID: 33155904 DOI: 10.2174/1381612826666201106091527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
Essential hypertension is an important cause of cardiovascular morbidity and mortality worldwide with significant clinical and economic implications. The field of antihypertensive treatment already numbers numerous agents and classes of drugs. However, patients are still developing uncontrolled hypertension. Hence there is a continuous need for novel agents with good tolerability. Advances in this field are focusing both on pharmacotherapy, with the developments in traditional and non-traditional targets, as well as interventional techniques such as renal denervation and baroreflex activation therapy. It is likely that future strategies may involve a tailored approach to the individual patient, with genetic modulation playing a key role.
Collapse
|
8
|
Peixoto AJ. Is There a Role for Device Therapies in Resistant Hypertension?: The CON Side. KIDNEY360 2020; 1:9-13. [PMID: 35372851 PMCID: PMC8808493 DOI: 10.34067/kid.0000742019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Aldo J. Peixoto
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut; and
- Hypertension Program, Yale New Haven Hospital Heart and Vascular Center, New Haven, Connecticut
| |
Collapse
|
9
|
Renal Artery Denervation in Resistant Hypertension: The Good, The Bad and The Future. Heart Lung Circ 2020; 29:94-101. [DOI: 10.1016/j.hlc.2019.06.723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/04/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
|
10
|
Papademetriou V, Stavropoulos K, Imprialos K, Doumas M, Schmieder RE, Pathak A, Tsioufis C. New data, new studies, new hopes for renal denervation in patients with uncontrolled hypertension. INTERNATIONAL JOURNAL CARDIOLOGY HYPERTENSION 2019; 3:100022. [PMID: 33447752 PMCID: PMC7803019 DOI: 10.1016/j.ijchy.2019.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/11/2019] [Accepted: 11/07/2019] [Indexed: 11/27/2022]
Abstract
Background following the publication of SYMPLICITY HTN-3 the field of renal of denervation was put on hold. Although SYMPLICITY HTN-3 was well-designed and sham-controlled trial it failed to show any meaningful reduction in office or 24 h ambulatory blood pressure. The procedure was however safe and allowed research to continue. Although several pitfalls of the study have been pointed out, incomplete renal denervation was also implicated. Since then, a great deal of basic and clinical research took place and will be briefly commented on in this article. Methods and results Before and after SYMPLICITY-HTN-3, numerous uncontrolled, single or unblinded studies have shown substantial office BP reduction ranging from -7.7 to -32 mmHg and ambulatory BP ranging from -2.2 to 10.2 mmHg. Average weighted office systolic BP reduction was -20.8 mmHg and weighted average 24 h ambulatory BPM reduction was -7.8 mmHg. National and international registries have shown similar BP reductions, but results remained unconvincing due to lack of reliable sham controls. In recent years, 5 well-designed sham - controlled studies (beyond, SYMPLICITY-HTN-3) have been published. Of those studies two were single center and three were multicenter international studies. Four studies used single tip or multi-electrode, radiofrequency catheters and one used focused ultrasound. The three multicenter studies reported positive-placebo subtracted results and established BP reductions measured both in the office and by ambulatory monitoring. No serious adverse events were reported. Conclusions It can therefore be concluded that the latest sham controlled studies established efficacy and safety of renal denervation.
Collapse
Affiliation(s)
| | - Konstantinos Stavropoulos
- Georgetown University and VA Medical Center, Washington DC, USA.,Aristotle University, Thessaloniki, Greece
| | - Kostas Imprialos
- Georgetown University and VA Medical Center, Washington DC, USA.,Aristotle University, Thessaloniki, Greece
| | | | - Roland E Schmieder
- University Hospital Erlangen, Friedrich Alexander University, Erlangen/Nuremberg, Germany
| | - Atul Pathak
- Clinique Pasteur, Hypertension, Risk Factors and Heart Failure Unit, INSERM 1048, Clinical Research Center, Toulouse, France
| | | |
Collapse
|
11
|
Stereotactic Radiotherapy for Renal Denervation: To Beam, or Not to Beam? J Am Coll Cardiol 2019; 74:1710-1713. [PMID: 31558255 DOI: 10.1016/j.jacc.2019.07.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
|
12
|
Zheng X, Liao Q, Wang Y, Li H, Wang X, Wang Y, Wu W, Wang J, Xiao L, Huang J. Ultrasound: The Potential Power for Cardiovascular Disease Therapy. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2019. [DOI: 10.15212/cvia.2019.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Phase II randomized sham-controlled study of renal denervation for individuals with uncontrolled hypertension - WAVE IV. J Hypertens 2019; 36:680-689. [PMID: 29035942 DOI: 10.1097/hjh.0000000000001584] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aim of this double-blind, randomized, sham-controlled study was to verify the blood pressure (BP)-lowering efficacy of externally delivered focused ultrasound for renal denervation (RDN). BACKGROUND Nonrandomized, first proof-of-concept study and experimental evidence suggested that noninvasive techniques of RDN emerged as an alternative approach of RDN to invasive technologies. METHODS WAVE IV, an international, randomized (1 : 1) sham-controlled, double-blind prospective clinical study, was prematurely stopped. Patients were enrolled if office BP was at least 160 mmHg and 24-h ambulatory BP was at least 135 mmHg, while taking three or more antihypertensive medications. The treatment consisted of bilateral RDN using therapeutic levels of ultrasound energy and the sham consisted of bilateral application of diagnostic levels of ultrasound energy. RESULTS In the 81 treated patients neither changes in office BP at 12 and 24 weeks, nor changes in 24-h ambulatory BP at 24-week follow-up visit differed between the two groups significantly. Of note, no safety signal was observed. Adherence analysis disclosed full adherence in 77% at baseline and 82% at 6 months' follow-up visit. Post hoc analysis revealed that stricter criteria for stabilization of BP at baseline were associated with a numerically greater change in 24-h ambulatory BP in the RDN group than in the sham group. CONCLUSION Our data did not prove that antihypertensive efficacy of the externally delivered focused ultrasound for RDN was greater than the sham effect. Stabilization of BP at baseline was identified as an important determinant of BP changes.
Collapse
|
14
|
Renal Artery Denervation for Hypertension. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:7. [PMID: 30762119 DOI: 10.1007/s11936-019-0715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW Hypertension (HTN) has a growing impact, already affecting over 1 billion people. An estimated 2-16% of those with HTN have resistant HTN. The sympathetic nervous system (SNS) is a recognized contributor to the pathophysiology of resistant HTN. Current hypertensive pharmacotherapy has not fully targeted the SNS; therefore, the SNS has become a prominent research therapeutic target. This review summarizes the evidence and rationale behind renal denervation (RDN) therapy and the technology available. RECENT FINDINGS Prior to the SYMPLICITY HTN-3 clinical trial, trials found RDN to be an effective procedure to control resistant hypertension. The failure of SYMPLICITY HTN-3 to meet its primary efficacy endpoint sparked further studies to address potential shortcomings. The subsequent SPYRAL program trials demonstrated efficacy of RDN therapy in a controlled manner; however, they were not adequately powered. Ongoing research is examining new, innovative RDN technology as well as defining appropriate patients to target for treatment. The data currently available for RDN in HTN and other states of SNS activation suffer from potential biases and limitations, highlighting the need for continued exploration. Contemporary studies are more promising and hypothesis-generating. Future trials and continued device innovation will be crucial for understanding the clinical applications of RDN therapy.
Collapse
|
15
|
Anatomy and neural remodeling of the renal sympathetic nerve in a canine model and patients with hypertension. J Hypertens 2018; 36:2059-2067. [PMID: 29957718 DOI: 10.1097/hjh.0000000000001809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The role of renal sympathetic nerve (RSN) in hypertension should be better understood. We aimed to three-dimensionally reconstruct the renal nerves, and explore its anatomical and histochemical characteristics in hypertensive canine model and patients. METHODS Renal arteries with surrounding tissue were collected from canines and cadavers with or without hypertension. Serial renal artery hematoxylin-eosin sections were used for three-dimensional reconstruction, and morphological parameters were collected and analyzed. RESULTS In hypertensive canines, the mean renal nerve number was 26.71 ± 5.68 versus 19.84 ± 5.68 in controls (P = 0.02), and the middle renal nerve volume was 5.31 ± 2.13 versus 2.60 ± 1.00 μl in controls (P = 0.01). Renal tissue norepinephrine concentrations, tyrosine hydroxylase and substance P immunoreactivity in RSN, and growth-associated protein 43 immunoreactivity in renal ganglion were significantly increased in hypertensive canines. In humans, the renal nerve was evenly distributed along the renal artery in a network pattern. The renal ganglion volume was 72.75 ± 33.43 in hypertensive patients versus 37.04 ± 23.95 μl in controls (P = 0.029) and the mean neuronal size in renal ganglion was 1187.3 ± 219.9 μm in patients versus 714.8 ± 142.7 μm in controls (P = 0.002). Tyrosine hydroxylase immunoreactivity in the RSN was 0.153 ± 0.014 in patients versus 0.104 ± 0.019 in controls (P = 0.013). Growth-associated protein 43 immunoreactivity in the renal ganglion was 86 612.8 ± 14 642.0 in patients versus 33 469.8 ± 15 666.8 μm/mm in controls (P < 0.001). CONCLUSION Our study suggests that RSN and renal ganglion histological remodeling occurs in individuals with hypertension and the distal segment or branches of renal artery might be a promising therapeutic target for RSN modulation therapy.
Collapse
|
16
|
Laffin LJ, Bakris GL. Catheter-Based Renal Denervation for Resistant Hypertension: Will It Ever Be Ready for "Prime Time"? Am J Hypertens 2017; 30:841-846. [PMID: 27838622 DOI: 10.1093/ajh/hpw123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 12/30/2022] Open
Abstract
The year 2014 was a turning point for the field of renal denervation (RDN) and its potential use to treat resistant hypertension. Tremendous enthusiasm shifted to sober reflection on the efficacy of a technology once touted as the cure to resistant hypertension. The following review highlights 2 major questions: First, does catheter-based RDN lower blood pressure and, second, will RDN using catheter-directed therapy for the treatment of resistant hypertension ever become more than an investigational technology.
Collapse
Affiliation(s)
- Luke J Laffin
- Section of Endocrinology, Diabetes and Metabolism, ASH Comprehensive Hypertension Center, Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
- Section of Cardiology, Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - George L Bakris
- Section of Endocrinology, Diabetes and Metabolism, ASH Comprehensive Hypertension Center, Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
17
|
Abstract
Invasive treatment methods-more specifically renal denervation and baroreceptor activator therapy-have been used for the treatment of therapy-resistant hypertension for several years now. In particular, renal denervation has aroused great interest because it was easy to perform and the first studies provided very promising results. Meanwhile, however, three randomized, blinded studies have been published, and none showed a significant benefit of renal denervation compared to a sham procedure. In addition, in several studies it was demonstrated that intensification of drug therapy, particularly with spironolactone, is at least comparable. Carotid sinus node baroreceptor activator therapy tends to be superior to renal denervation, but the probe currently used is not optimal. The first results by inserting an arteriovenous shunt between the iliac artery and vein are promising, but lack long-term safety data. Currently, all invasive treatment procedures should be performed within the framework of studies or accurate register surveys.
Collapse
Affiliation(s)
- J Menne
- Klinik für Nieren- und Hochdruckerkrankungen, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - R Wachter
- Klinik für Kardiologie und Pneumologie und Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Universität Göttingen, Göttingen, Deutschland
| |
Collapse
|
18
|
|
19
|
de Jager RL, Casteleijn NF, de Beus E, Bots ML, Vonken EJE, Gansevoort RT, Blankestijn PJ. Catheter-based renal denervation as therapy for chronic severe kidney-related pain. Nephrol Dial Transplant 2017. [DOI: 10.1093/ndt/gfx086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Rosa L de Jager
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niek F Casteleijn
- Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Esther de Beus
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evert-Jan E Vonken
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter J Blankestijn
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Shea J, de Bever J, Kholmovski E, Beal H, Hadley JR, Minalga E, Salama ME, Marrouche NF, Payne A. Effect of applied energy in renal sympathetic denervation with magnetic resonance guided focused ultrasound in a porcine model. J Ther Ultrasound 2017; 5:16. [PMID: 28616236 PMCID: PMC5467056 DOI: 10.1186/s40349-017-0094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background Past catheter-based and focused ultrasound renal denervation studies have indicated that procedure efficacy is related to the number of ablations performed or the amount of energy used for the ablation. This study extends those prior results and investigates energy level effects on the efficacy of MR guided focused ultrasound renal denervation performed in a porcine model. Methods Twenty-four normotensive pigs underwent unilateral denervation at three intensity levels. The applied intensity level was retrospectively de-rated to account for variability in animal size. Efficacy was assessed through evaluating the norepinephrine present in the kidney medulla and through histological analysis. The treatment was performed under MRI guidance including pre- and post-procedure T1-weighted and quantitative T1 and T2 imaging. During treatment, the temperature in the near field of the ultrasound beam was monitored in real time with MR temperature imaging. Energy delivery in the regions surrounding the renal artery was independently confirmed through an invasive fiberoptic temperature probe placed in the right renal artery. Results Animals that underwent denervation at a de-rated acoustic intensity of greater than 1.2 kW/cm2 had a significantly lower norepinephrine concentration in the kidney indicating successful denervation. Images obtained during the treatment indicated no tissue changes in the kidneys as a function of the procedure but there were significant T1 changes present in the right lumbar muscles, although only one animal had indication of muscle damage at the time of necropsy. Conclusions While MR guided focused ultrasound renal denervation was found to be safe and effective in this normotensive animal model, the results indicated the need to incorporate patient-specific details in the treatment planning of MRgFUS renal denervation procedure.
Collapse
Affiliation(s)
- Jill Shea
- Department of Surgery, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132 USA
| | - Joshua de Bever
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108 USA
| | - Eugene Kholmovski
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108 USA
| | - Hannah Beal
- Department of Surgery, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132 USA
| | - J Rock Hadley
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108 USA
| | - Emilee Minalga
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108 USA
| | - Mohamed E Salama
- Department of Pathology, University of Utah, 15 North Medical Drive East Ste #1100, Salt Lake City, UT 84112 USA
| | - Nassir F Marrouche
- CARMA Center, Department of Cardiology, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132 USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108 USA
| |
Collapse
|
21
|
Chernin G, Szwarcfiter I, Bausback Y, Jonas M. Renal Sympathetic Denervation System via Intraluminal Ultrasonic Ablation: Therapeutic Intravascular Ultrasound Design and Preclinical Evaluation. J Vasc Interv Radiol 2017; 28:740-748. [DOI: 10.1016/j.jvir.2017.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/26/2022] Open
|
22
|
Braam B, Taler SJ, Rahman M, Fillaus JA, Greco BA, Forman JP, Reisin E, Cohen DL, Saklayen MG, Hedayati SS. Recognition and Management of Resistant Hypertension. Clin J Am Soc Nephrol 2017; 12:524-535. [PMID: 27895136 PMCID: PMC5338706 DOI: 10.2215/cjn.06180616] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite improvements in hypertension awareness and treatment, 30%-60% of hypertensive patients do not achieve BP targets and subsequently remain at risk for target organ damage. This therapeutic gap is particularly important to nephrologists, who frequently encounter treatment-resistant hypertension in patients with CKD. Data are limited on how best to treat patients with CKD and resistant hypertension, because patients with CKD have historically been excluded from hypertension treatment trials. First, we propose a consistent definition of resistant hypertension as BP levels confirmed by both in-office and out-of-office measurements that exceed appropriate targets while the patient is receiving treatment with at least three antihypertensive medications, including a diuretic, at dosages optimized to provide maximum benefit in the absence of intolerable side effects. Second, we recommend that each patient undergo a standardized, stepwise evaluation to assess adherence to dietary and lifestyle modifications and antihypertensive medications to identify and reduce barriers and discontinue use of substances that may exacerbate hypertension. Patients in whom there is high clinical suspicion should be evaluated for potential secondary causes of hypertension. Evidence-based management of resistant hypertension is discussed with special considerations of the differences in approach to patients with and without CKD, including the specific roles of diuretics and mineralocorticoid receptor antagonists and the current place of emerging therapies, such as renal denervation and baroreceptor stimulation. We endorse use of such a systematic approach to improve recognition and care for this vulnerable patient group that is at high risk for future kidney and cardiovascular events.
Collapse
Affiliation(s)
- Branko Braam
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Scientific Data and Transparency of Conflict of Interest Are Important, Not Biased Editorial Without Facts. JACC Cardiovasc Interv 2016; 9:2263. [DOI: 10.1016/j.jcin.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022]
|
24
|
Renal Denervation for Resistant Hypertension. Prog Cardiovasc Dis 2016; 59:295-302. [DOI: 10.1016/j.pcad.2016.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
|
25
|
White CJ, Reilly JP. “Won’t Get Fooled Again”. JACC Cardiovasc Interv 2016; 9:1300-1301. [DOI: 10.1016/j.jcin.2016.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
26
|
Boddi M. Renal Ultrasound (and Doppler Sonography) in Hypertension: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:191-208. [PMID: 27966109 DOI: 10.1007/5584_2016_170] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrasound (US) allows the non-invasive evaluation of morphological changes of kidney structure (by means of B-Mode) and patterns of renal and extrarenal vascularization (by means of color-Doppler and contrast-enhanced US). In hypertensive subjects it offers a relevant contribution to the diagnosis of early renal damage, acute or chronic nephropathies and nephrovascular disease. However, morphological changes are often detected late and non-specific and in recent years evidence has increased regarding the clinical relevance of renal resistive index (RRI) for the study of vascular and renal parenchymal renal abnormalities. RRI is measured by Doppler sonography in an intrarenal artery, as the difference between the peak systolic and end-diastolic blood velocities divided by the peak systolic velocity. At first RRI was proved to be a marker of renal disease onset and progression; later the influence of systemic vascular properties on RRI was shown and authors claimed its use as an independent predictor of cardiovascular risk rather than of renal damage. Indeed, renal vascular resistance is only one of several renal (vascular compliance, interstitial and venous pressure), and extrarenal (heart rate, pulse pressure) determinants that concur to determine RRI individual values but not the most important one. The clinical relevance of RRI measurement as a surrogate endpoint of specific renal damage or/and as surrogate endpoint of atherosclerotic diffuse vascular damage is still debated.To summarize, from the literature: (a) In hypertensives with normal renal function and no albuminuria, especially in younger people, RRI is an early marker of renal damage that is especially useful when hypertension and diabetes concur in the same subjects. In these subjects RRI could improve current clinical scores used to stratify early renal damage. In older subjects RRI increases in accordance with the increase in systemic vascular stiffness and, because of this close relationship, RRI is also a marker of systemic atherosclerotic burden and the role of renal determinants can weaken. The clinical relevance was not specifically investigated. (b) In transplant kidney and in chronic renal disease high (>0.80) RRI values can independently predict renal failure. The recent claim that systemic (pulse pressure) rather than renal hemodynamic determinants sustain this predictive role of RRI, does not significantly reduce this predictive role of RRI. (c) Doppler ultrasound allows diagnosis and grading of renal stenosis in both fibromuscolar dysplastic and atherosclerotic diseases. Moreover, by RRI assay Doppler ultrasound can indirectly measure the hemodynamic impact of renal artery stenosis on the homolateral kidney, by virtue of the stenosis-related decrease in pulse pressure. However, in elderly subjects with atherosclerotic renal artery stenosis coexisting renal diseases can independently increase RRI by the augmentation in renal vascular stiffness and tubulo-interstitial pressure and hidden changes due to renal artery stenosis.
Collapse
Affiliation(s)
- Maria Boddi
- Experimental and Clinical Department, University of Florence, Florence, Italy.
| |
Collapse
|