1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Soh WWM, Zhu J, Zhang Z, Mazlan MDM, Chin EWM, Cheah CH, Goh ELK, Li J. Supramolecular Polycations with a Linear-Star Architecture Containing Hydrophobic Poly[( R, S)-3-hydroxybutyrate]: Formation of DNA Micelleplexes Coated with Apolipoprotein E3 for Blood-Brain Barrier Penetrating Gene Delivery. Biomacromolecules 2025; 26:2157-2170. [PMID: 40052737 DOI: 10.1021/acs.biomac.4c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A novel blood-brain barrier (BBB)-penetrating supramolecular gene delivery system was developed utilizing a host-guest block-building strategy to systematically screen and optimize various block compositions. Linear poly(ethylene glycol) (PEG) was coupled with hydrophobic poly[(R,S)-β-hydroxybutyrate] (PHB) blocks of varying lengths with an adamantyl (Ad) end, giving the PEG-PHB-Ad guest polymers, which were complexed with the cationic 4-arm star-shaped β-cyclodextrin-poly(2-dimethylaminoethyl methacrylate) (βCD-pDMAEMA) host polymer, resulting in the formation of linear-star pseudoblock PEG-PHB-Ad/βCD-pDMAEMA copolymers. These amphiphilic supramolecular copolymers were thoroughly characterized and assessed for the formation of DNA micelleplex nanoparticles as a gene delivery system. Through a rational selection process, an optimal host-guest configuration was identified, considering critical factors such as cytotoxicity, gene transfection efficiency, serum stability, cellular uptake, and hemolytic activity. The optimized host-guest copolymer was subsequently coated with the targeting protein apolipoprotein E3 (ApoE3), endowing it with BBB-penetrating capabilities, which was validated through an in vitro BBB transwell model.
Collapse
Affiliation(s)
- Wilson Wee Mia Soh
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Muhammad Danial Mohd Mazlan
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eunice W M Chin
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Chee Hoe Cheah
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eyleen L K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
3
|
Tang X, Wen Y, Zhang Z, Song X, Zhu J, Tian X, Li J. A β-cyclodextrin-based supramolecular modular system creating micellar carriers for codelivery of doxorubicin and siRNA for potential combined chemotherapy and immunotherapy. Carbohydr Polym 2025; 352:123202. [PMID: 39843103 DOI: 10.1016/j.carbpol.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025]
Abstract
The combination of chemotherapy and gene therapy holds promise in treating cancer. A key strategy is to use small interfering RNAs (siRNAs) to silence programmed death-ligand 1 (PD-L1) expression in cancer cells, disrupting tumor immune evasion and enhancing anticancer treatments, particularly when used in conjunction with chemotherapy drugs such as doxorubicin (Dox). However, effective codelivery of drugs and genes requires carefully designed carriers and complex synthesis procedures. To address this challenge, we propose a convenient modular self-assembly system for creating multifunctional micellar carriers that can efficiently codeliver both Dox and siRNA, where micelles are formed by cationic amphiphilic supramolecular architectures that are constructed through host-guest interactions between β-cyclodextrin (β-CD) and adamantane (Ad) to incorporate various functional polymer segments, such as low-molecular-weight polyethylenimine (oligoethylenimine, OEI), poly(ethylene glycol) (PEG), and polycaprolactone (PCL), at adjustable ratios. The supramolecular micellar carrier systems can be easily optimized to achieve excellent structural stability, drug and gene loading, and delivery efficiency, resulting in significant anticancer effects from Dox delivery and simultaneous inhibition of PD-L1 due to the siRNA delivery. Therefore, this modular supramolecular strategy offers a sophisticated, adaptable, and straightforward approach to creating multifunctional micellar carriers, with potential for drug- and gene-based immune-assisted cancer therapy.
Collapse
Affiliation(s)
- Xichuan Tang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
4
|
Thedrattanawong C, Zhang M, Zhang Z, Song X, Zhu J, Tian X, Li J, Wen Y. Synthesis and Characterization of Lipid-Polyzwitterion Diblock Copolymers for Optimizing Micelle Formation to Enhance Anticancer Drug Delivery in 2D and 3D Cell Cultures. Biomacromolecules 2025; 26:1032-1043. [PMID: 39870033 DOI: 10.1021/acs.biomac.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Amphiphilic polymers with distinct polarity differences, known as sharp polarity contrast polymers (SPCPs), have gained much attention for their ability to form micelles with low critical micelle concentrations (CMCs) and potential in anticancer drug delivery. This study addresses the limited research on structure-property relationships of SPCPs by developing various SPCPs and exploring their physicochemical properties and biological applications. Specifically, the superhydrophobic aliphatic palmitoyl (Pal) was coupled to the superhydrophilic zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) to form Pal-pMPC diblock copolymers. Adjusting the lengths of hydrophilic chains allowed the creation of structures with varying hydrophilic-hydrophobic ratios for micelle formation. Comprehensive evaluations were carried out, including particle size, CMC, chain exchange rates, cellular uptake efficiency, and anticancer effectiveness. Our findings indicate that micelles with optimal hydrophilic-hydrophobic ratios significantly enhanced cellular uptake and cytotoxicity in both two-dimensional (2D) and three-dimensional (3D) tumor models, offering valuable insights for designing SPCPs for anticancer drug delivery.
Collapse
Affiliation(s)
- Chitinart Thedrattanawong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Miao Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
- National University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| |
Collapse
|
5
|
Chen T, Wen Y, Song X, Zhang Z, Zhu J, Tian X, Zeng S, Li J. Rationally designed β-cyclodextrin-crosslinked polyacrylamide hydrogels for cell spheroid formation and 3D tumor model construction. Carbohydr Polym 2024; 339:122253. [PMID: 38823920 DOI: 10.1016/j.carbpol.2024.122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of β-cyclodextrin (β-CD)-crosslinked polyacrylamide hydrogels with different β-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of β-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.
Collapse
Affiliation(s)
- Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China; National University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China.
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China; National University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
6
|
Ooi YJ, Wen Y, Zhu J, Song X, Li J. Codelivery of Doxorubicin and p53 Gene by β-Cyclodextrin-Based Supramolecular Nanoparticles Formed via Host-Guest Complexation and Electrostatic Interaction. Biomacromolecules 2024; 25:2980-2989. [PMID: 38587905 DOI: 10.1021/acs.biomac.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We developed a supramolecular system for codelivery of doxorubicin (Dox) and p53 gene based on a β-CD-containing star-shaped cationic polymer. First, a star-shaped cationic polymer consisting of a β-CD core and 3 arms of oligoethylenimine (OEI), named CD-OEI, was used to form a supramolecular inclusion complex with hydrophobic Dox. The CD-OEI/Dox complex was subsequently used to condense plasmid DNA via electrostatic interactions to form CD-OEI/Dox/DNA polyplex nanoparticles with positive surface charges that enhanced the cellular uptake of both Dox and DNA. This supramolecular drug and gene codelivery system showed high gene transfection efficiency and effective protein expression in cancer cells. The codelivery of Dox and DNA encoding the p53 gene resulted in reduced cell viability and enhanced antitumor effects at low Dox concentrations. With its enhanced cellular uptake and anticancer efficacy, the system holds promise as a delivery carrier for potential combination cancer therapies.
Collapse
Affiliation(s)
- Ying Jie Ooi
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
7
|
Shi J, Wang Y, Wu Y, Li J, Fu C, Li Y, Xie X, Fan X, Hu Y, Hu C, Zhang J. Tumor Microenvironment ROS/pH Cascade-Responsive Supramolecular Nanoplatform with ROS Regeneration Property for Enhanced Hepatocellular Carcinoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7576-7592. [PMID: 38316581 DOI: 10.1021/acsami.3c16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The low targeted drug delivery efficiency, including poor tumor accumulation and penetration and uncontrolled drug release, leads to the failure of cancer therapy. Herein, a multifunctional supramolecular nanoplatform loading triptolide (TPL/PBAETK@GA NPs) was fabricated via the host-guest interaction between glycyrrhetinic-acid-modified poly(ethylene glycol)-adamantanecarboxylic acid moiety and reactive oxygen species (ROS)/pH cascade-responsive copolymer poly(β-amino esters)-thioketal (TK)-β-cyclodextrin. TPL/PBAETK@GA NPs could accumulate in hepatocellular carcinoma (HCC) tissue effectively, mediated by nanoscale advantage and GA' recognition to specific receptors. The elevated concentration of ROS in tumor microenvironment (TME) quickly breaks the TK linkages, causing the detachment of shell (cyclodextrin) CD layer. Then, the accompanying negative-to-positive charge-reversal of NPs was realized via the PBAE moiety protonation under the slightly acidic TME, significantly enhancing the NPs' cellular internalization. Remarkably, the pH-responsive endo/lysosome escape of PBAE core triggered intracellular TPL burst release, promoting the cancer cell apoptosis, autophagy, and intracellular ROS generation, leading to the self-amplification of ROS in TME. Afterward, the ROS positive-feedback loop was generated to further promote size-shrinkage and charge-reversal of NPs. Both in vitro and in vivo tests verified that TPL/PBAETK@GA NPs produced a satisfactory anti-HCC therapy outcome. Collectively, this study offers a potential appealing paradigm to enhance TPL-based HCC therapy outcomes via multifunctionalized supramolecular nanodrugs.
Collapse
Affiliation(s)
- Jinfeng Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yehui Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Li
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Xingliang Xie
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Xiaohong Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yichen Hu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
Degirmenci A, Sanyal R, Sanyal A. Plug-and-Play Biointerfaces: Harnessing Host-Guest Interactions for Fabrication of Functional Polymeric Coatings. Biomacromolecules 2023; 24:3568-3579. [PMID: 37406159 PMCID: PMC10428160 DOI: 10.1021/acs.biomac.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Polymeric surface coatings capable of effectively integrating desired functional molecules and ligands are attractive for fabricating bio-interfaces necessary for various applications. Herein, we report the design of a polymeric platform amenable to such modifications in a modular fashion through host-guest chemistry. Copolymers containing adamantane (Ada) moieties, diethylene glycol (DEG) units, and silyloxy groups to provide functionalization handles, anti-biofouling character, and surface attachment, respectively, were synthesized. These copolymers were employed to modify silicon/glass surfaces to enable their functionalization using beta-cyclodextrin (βCD) containing functional molecules and bioactive ligands. Moreover, surface functionalization could be spatially controlled using a well-established technique like microcontact printing. Efficient and robust functionalization of polymer-coated surfaces was demonstrated by immobilizing a βCD-conjugated fluorescent rhodamine dye through the specific noncovalent binding between Ada and βCD units. Furthermore, biotin, mannose, and cell adhesive peptide-modified βCD were immobilized onto the Ada-containing polymer-coated surfaces to direct noncovalent conjugation of streptavidin, concanavalin A (ConA), and fibroblast cells, respectively. It was demonstrated that the mannose-functionalized coating could selectively bind to the target lectin ConA, and the interface could be regenerated and reused several times. Moreover, the polymeric coating was adaptable for cell attachment and proliferation upon noncovalent modification with cell-adhesive peptides. One can envision that the facile synthesis of the Ada-based copolymers, mild conditions for coating surfaces, and their effective transformation to various functional interfaces in a modular fashion offers an attractive approach to engineering functional interfaces for several biomedical applications.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| |
Collapse
|
9
|
Hussain MS, Faisal KS, Clulow AJ, Albrecht H, Krasowska M, Blencowe A. Influence of Lyophilization and Cryoprotection on the Stability and Morphology of Drug-Loaded Poly(ethylene glycol- b-ε-caprolactone) Micelles. Polymers (Basel) 2023; 15:polym15081974. [PMID: 37112121 PMCID: PMC10146133 DOI: 10.3390/polym15081974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Polymeric micelles are promising carriers for the delivery of poorly water-soluble drugs, providing enhanced drug solubility, blood circulation times, and bioavailability. Nevertheless, the storage and long-term stability of micelles in solution present challenges requiring the lyophilization and storage of formulations in the solid state, with reconstitution immediately prior to application. Therefore, it is important to understand the effects of lyophilization/reconstitution on micelles, particularly their drug-loaded counterparts. Herein, we investigated the use of β-cyclodextrin (β-CD) as a cryoprotectant for the lyophilization/reconstitution of a library of poly(ethylene glycol-b-ε-caprolactone) (PEG-b-PCL) copolymer micelles and their drug-loaded counterparts, as well as the effect of the physiochemical properties of different drugs (phloretin and gossypol). The critical aggregation concentration (CAC) of the copolymers decreased with increasing weight fraction of the PCL block (fPCL), plateauing at ~1 mg/L when the fPCL was >0.45. The blank (empty) and drug-loaded micelles were lyophilized/reconstituted in the absence and presence of β-CD (9% w/w) and analyzed via dynamic light scattering (DLS) and synchrotron small-angle X-ray scattering (SAXS) to assess for changes in aggregate size (hydrodynamic diameter, Dh) and morphology, respectively. Regardless of the PEG-b-PCL copolymer or the use of β-CD, the blank micelles displayed poor redispersibility (<10% relative to the initial concentration), while the fraction that redispersed displayed similar Dh to the as-prepared micelles, increasing in Dh as the fPCL of the PEG-b-PCL copolymer increased. While most blank micelles displayed discrete morphologies, the addition of β-CD or lyophilization/reconstitution generally resulted in the formation of poorly defined aggregates. Similar results were also obtained for drug-loaded micelles, with the exception of several that retained their primary morphology following lyophilization/reconstitution, although no obvious trends were noted between the microstructure of the copolymers or the physicochemical properties of the drugs and their successful redispersion.
Collapse
Affiliation(s)
- Md Saddam Hussain
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Khandokar Sadique Faisal
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Andrew J Clulow
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Melbourne, VIC 3052, Australia
| | - Hugo Albrecht
- Drug Discovery and Development Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023; 15:polym15061400. [PMID: 36987181 PMCID: PMC10052104 DOI: 10.3390/polym15061400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|
11
|
Zhu C, Zhang Z, Wen Y, Song X, Zhu J, Yao Y, Li J. Cationic micelles as nanocarriers for enhancing intra-cartilage drug penetration and retention. J Mater Chem B 2023; 11:1670-1683. [PMID: 36621526 DOI: 10.1039/d2tb02050e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is a tremendous unmet medical need for osteoarthritis (OA) treatment around the world, and pharmacological management is the most common option but presents a limited and short efficacy. Insufficient drug delivery to articular cartilage is the key cause. It is widely accepted that the complex structure of articular cartilage and the rapid clearance of joint liquids largely hinder drug penetration and retention in the cartilage. To address these obstacles, we designed and prepared a positively charged micellar system that can effectively deliver a model drug to the deep zone of the cartilage and prolong the drug retention time. In this work, a triblock copolymer composed of cationic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and poly(ε-caprolactone) (PCL), denoted as PDMAEMA-PCL-PDMAEMA, was synthesized. A triblock copolymer composed of brush poly[poly(ethylene glycol) methacrylate] (pPEGMA) and PCL, denoted as pPEGMA-PCL-pPEGMA, was prepared for comparison. The two types of triblock copolymers were self-assembled in an aqueous environment to form cationic and neutral micelles, respectively. A hydrophobic fluorescent dye as a model drug was loaded into micelle cores, and the dye-loaded micelles were evaluated for intra-cartilage penetration and retention using porcine knee cartilage explants. The PDMAEMA-PCL-PDMAEMA cationic micelles were found to significantly enhance the intra-cartilage penetration and retention capability due to the electrostatic interaction between the micelles and the negatively charged cartilage extracellular matrix. The confocal microscopy study showed that the cationic micelles could penetrate the full-thickness porcine cartilage explants (around 1.5 mm) within 24 hours. Up to 87% of the cationic micelles were taken up by porcine cartilage explants, and 71% of the absorbed micelles were retained in the tissue for at least 4 days. Although the pPEGMA-PCL-pPEGMA neutral micelles were able to penetrate the full-thickness cartilage, this type of micelle showed lower uptake (44%) and retention (44%) rates. This observation implied that the surface charge of micelles could play an important role in efficient intra-cartilage drug delivery. This study verified the feasibility and effectiveness of the PDMAEMA-PCL-PDMAEM cationic micelles in intra-cartilage drug delivery, showing that cationic micelles could be promising carriers for OA treatment.
Collapse
Affiliation(s)
- Chenxian Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore. .,National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore. .,NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yifei Yao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore. .,National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China.,NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
12
|
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, Bhardwaj R, Pandey P, Kumari B, Purohit D, Kumar M, Bhatia S, Rahman MH, Mittal V, Singh I, Kaushik D. Cyclodextrin-Based Arsenal for Anti-Cancer Treatments. Crit Rev Ther Drug Carrier Syst 2023; 40:1-41. [PMID: 36734912 DOI: 10.1615/critrevtherdrugcarriersyst.2022038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, India
| | - Sakshi Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology (Pharm), Knowledge Park, Greater Noida, U.P., India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122413, India
| | - Beena Kumari
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
13
|
Programed Thermoresponsive Polymers with Cleavage-Induced Phase Transition. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186082. [PMID: 36144815 PMCID: PMC9501266 DOI: 10.3390/molecules27186082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
A new programed upper critical solution temperature-type thermoresponsive polymer was developed using water-soluble anionic polymer conjugates derived from polyallylamine and phthalic acid with cleavage-induced phase transition property. Intrinsic charge inversion from anion to cation of the polymer side chain is induced through a side chain cleavage reaction in acidic aqueous media. With the progress of side chain cleavage under fixed external conditions, the polymer conjugates express a thermoresponsive property, followed by shifting a phase boundary due to the change in polymer composition. When the phase transition boundary eventually reached the examined temperature, phase transition occurs under fixed external conditions. Such new insight obtained in this study opens up the new concept of time-programed stimuli-responsive polymer possessing a cleavage-induced phase transition.
Collapse
|
14
|
Zhang M, Zhang Z, Song X, Zhu J, Sng JA, Li J, Wen Y. Synthesis and Characterization of Palmitoyl- block-poly(methacryloyloxyethyl Phosphorylcholine) Polymer Micelles for Anticancer Drug Delivery. Biomacromolecules 2022; 23:4586-4596. [DOI: 10.1021/acs.biomac.2c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miao Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Zhongxing Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jing An Sng
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China
| |
Collapse
|
15
|
Bao J, Tu H, Li J, Li Y, Yu S, Gao J, Lei K, Zhang F, Li J. Applications of phase change materials in smart drug delivery for cancer treatment. Front Bioeng Biotechnol 2022; 10:991005. [PMID: 36172021 PMCID: PMC9510677 DOI: 10.3389/fbioe.2022.991005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phase change materials (PCMs) are materials that are stimulated by the external enthalpy change (temperature) to realize solid-liquid and liquid-solid phase transformation. Due to temperature sensitivity, friendly modification, and low toxicity, PCMs have been widely used in smart drug delivery. More often than not, the drug was encapsulated in a solid PCMs matrix, a thermally responsive material. After the trigger implementation, PCMs change into a solid-liquid phase, and the loading drug is released accordingly. Therefore, PCMs can achieve precise release control with different temperature adjustments, which is especially important for small molecular drugs with severe side effects. The combination of drug therapy and hyperthermia through PCMs can achieve more accurate and effective treatment of tumor target areas. This study briefly summarizes the latest developments on PCMs as smart gate-keepers for anti-tumor applications in light of PCMs becoming a research hot spot in the nanomedicine sector in recent years.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Hui Tu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jing Li
- Office of Science & Technology, Henan University of Science and Technology, Luoyang, China
| | - Yijia Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Shan Yu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jingpi Gao
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Fengshou Zhang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Fengshou Zhang, ; Jinghua Li,
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Fengshou Zhang, ; Jinghua Li,
| |
Collapse
|
16
|
Liu M, Zhu J, Song X, Wen Y, Li J. Smart Hydrogel Formed by Alginate- g-Poly( N-isopropylacrylamide) and Chitosan through Polyelectrolyte Complexation and Its Controlled Release Properties. Gels 2022; 8:441. [PMID: 35877526 PMCID: PMC9315676 DOI: 10.3390/gels8070441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Smart hydrogels that can respond to external stimuli such as temperature and pH have attracted tremendous interest for biological and biomedical applications. In this work, we synthesized two alginate-graft-poly(N-isopropylacrylamide) (Alg-g-PNIPAAm) copolymers and aimed to prepare smart hydrogels through formation of polyelectrolyte complex (PEC) between the negatively charged Alg-g-PNIPAAm copolymers and the positively charged chitosan (Cts) in aqueous solutions. The hydrogels were expected to be able to respond to both temperature and pH changes due to the nature of Alg-g-PNIPAAm and chitosan. The hydrogel formation was determined by a test tube inverting method and confirmed by the rheological measurements. The rheological measurements showed that the PEC hydrogels formed at room temperature could be further enhanced by increasing temperature over the lower critical solution temperature (LCST) of PNIPAAm, because PNIPAAm would change from hydrophilic to hydrophobic upon increasing temperature over its LCST, and the hydrophobic interaction between the PNIPAAm segments may act as additional physical crosslinking. The controlled release properties of the hydrogels were studied by using the organic dye rhodamine B (RB) as a model drug at different pH. The PEC hydrogels could sustain the RB release more efficiently at neutral pH. Both low pH and high pH weakened the PEC hydrogels, and resulted in less sustained release profiles. The release kinetics data were found to fit well to the Krosmyer-Peppas power law model. The analysis of the release kinetic parameters obtained by the modelling indicates that the release of RB from the PEC hydrogels followed mechanisms combining diffusion and dissolution of the hydrogels, but the release was mainly governed by diffusion with less dissolution at pH 7.4 when the PEC hydrogels were stronger and stabler than those at pH 5.0 and 10.0. Therefore, the PEC hydrogels are a kind of smart hydrogels holding great potential for drug delivery applications.
Collapse
Affiliation(s)
- Min Liu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; (M.L.); (J.Z.); (X.S.); (Y.W.)
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; (M.L.); (J.Z.); (X.S.); (Y.W.)
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; (M.L.); (J.Z.); (X.S.); (Y.W.)
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; (M.L.); (J.Z.); (X.S.); (Y.W.)
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; (M.L.); (J.Z.); (X.S.); (Y.W.)
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
17
|
|
18
|
Adeli F, Abbasi F, Babazadeh M, Davaran S. Thermo/pH dual-responsive micelles based on the host-guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin-functionalized star block copolymer for smart drug delivery. J Nanobiotechnology 2022; 20:91. [PMID: 35193612 PMCID: PMC8864802 DOI: 10.1186/s12951-022-01290-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
Novel temperature and pH dual-sensitive amphiphilic micelles were fabricated exploiting the host-guest interaction between benzimidazole-terminated PHEMA-g-(PCL-BM) and β-CD-star-PMAA-b-PNIPAM. The fabricated graft copolymer had a brush-like structure with star side chains. The micelles were utilized as dual-responsive nanocarriers and showed the LCST between 40 and 41 °C. The acidic pH promoted the dissociation of the PHEMA-g-(PCL-BM: β-CD-star-PMAA-b-PNIPAM) micelles. DOX.HCl was loaded into the core of the micelles during self-assembly in an aqueous solution with a high encapsulation efficacy (97.3%). The average size of the amphiphilic micelles was about 80 nm, suitable size for the enhanced permeability and retention effect in tumor vasculature. In an aqueous environment, these micelles exhibited very good self-assembly ability, low CMC value, rapid pH- and thermo-responsiveness, optimal drug loading capacity, and effective release of the drug. The biocompatibility was confirmed by the viability assessment of human breast cancer cell line (MCF-7) through methyl tetrazolium assay. DOX-loaded micelles displayed excellent anti-cancer activity performance in comparison with free DOX.
Collapse
Affiliation(s)
- Floria Adeli
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, Tabriz, Iran.
| | - Mirzaagha Babazadeh
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Soodabeh Davaran
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Wen Y, Mensah NN, Song X, Zhu J, Tan WS, Chen X, Li J. A hydrogel with supramolecular surface functionalization for cancer cell capture and multicellular spheroid growth and release. Chem Commun (Camb) 2022; 58:681-684. [PMID: 34919108 DOI: 10.1039/d1cc05846k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A hydrogel scaffold with a non-fouling but specific cancer cell-adhesive surface was fabricated through surface modification using β-cyclodextrin-based host-guest chemistry. Interestingly, the hydrogel surface not only selectively captured specific cancer cells, but also grew the cells into multicellular spheroids. The spheroids could be released without damaging the cell viability through replacing the host moieties on the scaffold, and the released spheroids showed no changes in size or morphology.
Collapse
Affiliation(s)
- Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
| | - Nana Nyarko Mensah
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
| | - Wui Siew Tan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | - Xinwei Chen
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore.
| |
Collapse
|
20
|
Soh WWM, Zhu J, Song X, Jain D, Yim EKF, Li J. Detachment of bovine corneal endothelial cell sheets by cooling-induced surface hydration of poly[( R)-3-hydroxybutyrate]-based thermoresponsive copolymer coating. J Mater Chem B 2022; 10:8407-8418. [DOI: 10.1039/d2tb01926d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A smart surface was prepared by non-covalently coating of a thermoresponsive copolymer via a simple drop-casting method. The smart surface was conducive to cell culture, from which intact cell sheets could be effectively detached by cooling.
Collapse
Affiliation(s)
- Wilson Wee Mia Soh
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Deepak Jain
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K. F. Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
21
|
Li H, Peng E, Zhao F, Li J, Xue J. Supramolecular Surface Functionalization of Iron Oxide Nanoparticles with α-Cyclodextrin-Based Cationic Star Polymer for Magnetically-Enhanced Gene Delivery. Pharmaceutics 2021; 13:1884. [PMID: 34834299 PMCID: PMC8624969 DOI: 10.3390/pharmaceutics13111884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Supramolecular polymers formed through host-guest complexation have inspired many interesting developments of functional materials for biological and biomedical applications. Here, we report a novel design of a non-viral gene delivery system composed of a cationic star polymer forming supramolecular complexes with the surface oleyl groups of superparamagnetic iron oxide nanoparticles (SPIONs), for magnetically enhanced delivery of DNA into mammalian cells. The cationic star polymer was synthesized by grafting multiple oligoethylenimine (OEI) chains onto an α-cyclodextrin (α-CD) core. The SPIONs were synthesized from iron(III) acetylacetonate and stabilized by hydrophobic oleic acid and oleylamine in hexane, which were characterized in terms of their size, structure, morphology, and magnetic properties. The synthesized magnetic particles were found to be superparamagnetic, making them a suitable ferrofluid for biological applications. In order to change the hydrophobic surface of the SPIONs to a hydrophilic surface with functionalities for plasmid DNA (pDNA) binding and gene delivery, a non-traditional but simple supramolecular surface modification process was used. The α-CD-OEI cationic star polymer was dissolved in water and then mixed with the SPIONs stabilized in hexane. The SPIONs were "pulled" into the water phase through the formation of supramolecular host-guest inclusion complexes between the α-CD unit and the oleyl surface of the SPIONs, while the surface of the SPIONs was changed to OEI cationic polymers. The α-CD-OEI-SPION complex could effectively bind and condense pDNA to form α-CD-OEI-SPION/pDNA polyplex nanoparticles at the size of ca. 200 nm suitable for delivery of genes into cells through endocytosis. The cytotoxicity of the α-CD-OEI-SPION complex was also found to be lower than high-molecular-weight polyethylenimine, which was widely studied previously as a standard non-viral gene vector. When gene transfection was carried out in the presence of an external magnetic field, the α-CD-OEI-SPION/pDNA polyplex nanoparticles greatly increased the gene transfection efficiency by nearly tenfold. Therefore, the study has demonstrated a facile two-in-one method to make the SPIONs water-soluble as well as functionalized for enhanced magnetofection.
Collapse
Affiliation(s)
- Hanyi Li
- Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (H.L.); (E.P.)
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore 119085, Singapore
| | - Erwin Peng
- Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (H.L.); (E.P.)
| | - Feng Zhao
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore;
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore;
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (H.L.); (E.P.)
| |
Collapse
|
22
|
Chen Z, Song X, Soh WWM, Wen Y, Zhu J, Zhang M, Li J. In Situ Synthesis of Magnetic Poly(DMAEAB-co-NIPAm)@Fe 3O 4 Composite Hydrogel for Removal of Dye from Water. Gels 2021; 7:201. [PMID: 34842702 PMCID: PMC8628751 DOI: 10.3390/gels7040201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Water pollution by toxic substances, such as dye molecules, remains a major environmental problem that needs to be solved. In the present work, the magnetic composite hydrogel based on the poly(2-(methacryloyloxy)-N-(2-hydroxyethyl)-N,N-dimethylethan-1-aminium bromide-co-N-isopropylacrylamide) copolymer with incorporated Fe3O4 particles ((poly(DMAEAB-co-NIPAm)@Fe3O4)) was prepared by an in situ synthesis technique for the efficient removal of dye molecules from water. The successfully synthesized magnetic hydrogel was characterized by FTIR, XRD, TGA, and TEM. The removal efficiency of the anionic dye bromophenol blue (BPB) and the cationic dye rhodamine B (RDM) by the prepared hydrogel adsorbents was evaluated. Various adsorption parameters, including the concentration of adsorbents and adsorption time, were also investigated. The results showed that the synthesized magnetic hydrogel had excellent BPB removal performance compared to the removal of RDM. The optimum adsorbent concentration for 0.5 mM BPB solution was approximately 0.5 g/L, and the removal efficiency was more than 99%. The kinetics data of BPB removal fitted well into the pseudo-2nd-order model, indicating that BPB dye adsorption involves chemical adsorption and physical adsorption. In addition, recycling studies were conducted to examine the reusability of the magnetic hydrogel for BPB removal for up to five cycles and the hydrogel could be reused without losing its high removal efficiency. The magnetic hydrogel poly(DMAEAB-co-NIPAm)@Fe3O4 with high removal efficiency, good selectivity, and reusability shows great potential for the removal of anionic dyes in wastewater treatment.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Wilson Wee Mia Soh
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Miao Zhang
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (Z.C.); (X.S.); (W.W.M.S.); (Y.W.); (J.Z.); (M.Z.)
| |
Collapse
|
23
|
Pottanam Chali S, Azhdari S, Galstyan A, Gröschel AH, Ravoo BJ. Biodegradable supramolecular micelles via host-guest interaction of cyclodextrin-terminated polypeptides and adamantane-terminated polycaprolactones. Chem Commun (Camb) 2021; 57:9446-9449. [PMID: 34528969 DOI: 10.1039/d1cc03372g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biodegradable supramolecular micelles were prepared exploiting the host-guest interaction of cyclodextrin and adamantane. Cyclodextrin-initiated polypeptides acted as the hydrophilic corona, whereas adamantane-terminated polycaprolactones served as the hydrophobic core.
Collapse
Affiliation(s)
- Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany.
| | - Suna Azhdari
- Physical Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 28, 48149 Münster, Germany
| | - Anzhela Galstyan
- Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - André H Gröschel
- Physical Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 28, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany.
| |
Collapse
|
24
|
Zhang Z, Wen Y, Song X, Zhu J, Li J. Nonviral DNA Delivery System with Supramolecular PEGylation Formed by Host-Guest Pseudo-Block Copolymers. ACS APPLIED BIO MATERIALS 2021; 4:5057-5070. [PMID: 35007054 DOI: 10.1021/acsabm.1c00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cationic supramolecular system based on host-guest pseudoblock copolymers was developed for nonviral DNA delivery. In this system, the macromolecular host was a cationic star-shaped polymer composed of a β-cyclodextrin (β-CD) core and multiple poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) chains grafted on the core, while the macromolecular guest was a linear adamantyl-ended poly(ethylene glycol) (mPEG-Ad). Pseudoblock copolymers were self-assembled from the polymeric host-guest pairs (typically, 1:1 molar ratio) in aqueous media through the inclusion of an adamantyl group at the end of guest polymer into the β-CD cavity of host polymers. Through such an approach, the resultant supramolecular system was integrated with not only a superior DNA condensing ability due to the host polymer but also an outstanding polyplex-stabilizing ability as well as biocompatibility due to the guest polymer. The cationic star-shaped host polymers alone were capable of condensing plasmid DNA efficiently into nanoparticles (70-100 nm) with positive surface charge. They showed obviously lower cytotoxicity than PEI 25K (commercial branched polyethylenimine with a molecular weight around 25 kDa) in cell lines of L929, MB231, and Hela under high dose. In serum-free or serum-containing culture conditions, these host polymers exhibited either higher or lower in vitro DNA transfection efficiency as compared with PEI 25K in the three cell lines under study, which was dependent on the N/P ratios and PDMAEMA arm length. Upon incorporation of the PEG block through host-guest complexation with mPEG-Ad (i.e., supramolecular PEGylation), the resulting host-guest supramolecular systems exhibited even lower cytotoxicity than the host polymers alone. The polyplexes between plasmid DNA (pDNA) and the host-guest systems showed significantly improved stability in BSA-PBS buffer solution (pH 7.4) and enhanced in vitro DNA transfection efficiency in the cases of higher N/P ratios or longer PDMAEMA arms in all tested cell lines under both serum-free and serum-containing culture conditions, as compared with the corresponding polyplexes without supramolecular PEGylation. Further, through forming pseudoblock copolymer, the DNA transfection ability of the supramolecular system can be easily modulated and optimized either by changing the ratio between the guest and host or by using different hosts with varied PDMAEMA arm lengths.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
25
|
Kasza G, Stumphauser T, Bisztrán M, Szarka G, Hegedüs I, Nagy E, Iván B. Thermoresponsive Poly( N, N-diethylacrylamide- co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers (Basel) 2021; 13:987. [PMID: 33806995 PMCID: PMC8004754 DOI: 10.3390/polym13060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Responsive (smart, intelligent, adaptive) polymers have been widely explored for a variety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropylacrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, characterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with various comonomer contents and monomer/initiator ratios are reported. It was found that all the investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hysteresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct, one-step reaction, leading to enzyme-polymer nanoparticle (EPNP) with average size of 56.9 nm. This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the enzyme-polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced by conjugation the with P(DEAAm-co-GMA) copolymer.
Collapse
Affiliation(s)
- György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Márk Bisztrán
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Imre Hegedüs
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37–47, H-1094 Budapest, Hungary
| | - Endre Nagy
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| |
Collapse
|
26
|
Synthesis of cyclodextrin-derived star poly(N-vinylpyrrolidone)/poly(lactic-co-glycolide) supramolecular micelles via host-guest interaction for delivery of doxorubicin. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Jiang G, Wang N, Jia L, Che H, Wang L, Yang J, Xu H, Wu C, Liu M. Multi-functional DNA-conjugated nanohydrogels for aptamer-directed breast cancer cell targeting. NEW J CHEM 2021. [DOI: 10.1039/d1nj04152e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A multi-functional DNA-conjugated nanohydrogel was prepared through the direct copolymerization method for aptamer-directed cancer cell targeting.
Collapse
Affiliation(s)
- Gangfeng Jiang
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Nannan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Hongli Che
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Mingzhe Liu
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| |
Collapse
|
28
|
Li H, Cheng Z, Wang Y, Zhou D, Su M, Wang X, He P, Zhang Y. Self‐Assembled Star‐Shaped sPCL–PEG Copolymer Nanomicelles with pH‐Sensitivity for Anticancer Drug Delivery. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hanhong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Zhenqi Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Dong Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Mingji Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Xianxun Wang
- Department of Orthopedics The Third People's Hospital of Hubei Province Jianghan University Wuhan 430033 China
| | - Peixin He
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Yuhong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| |
Collapse
|
29
|
Zhang S, Zhu P, He J, Dong S, Li P, Zhang CY, Ma T. TME-Responsive Polyprodrug Micelles for Multistage Delivery of Doxorubicin with Improved Cancer Therapeutic Efficacy in Rodents. Adv Healthc Mater 2020; 9:e2000387. [PMID: 32815646 DOI: 10.1002/adhm.202000387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/28/2020] [Indexed: 01/05/2023]
Abstract
It is of great significance to develop multifunctional biomaterials to effectively deliver anticancer drug to tumor cells for cancer therapy. Here, inspired by the specific tumor microenvironment (TME) cues, a unique multistage pH/redox-responsive polyprodrug composed of amphiphilic pH-sensitive diblock copolymer poly(ethylene glycol) methyl ether-b-poly(β-amino esters) conjugated with doxorubicin (DOX) via redox-sensitive disulfide bonds (mPEG-b-PAE-ss-DOX) is designed and developed. This polyprodrug can self-assemble into micelles (DOX-ss@PMs) at low concentration with high serum stability, indicating that DOX-ss@PMs have prolonged circulation time. The dual pH/redox-responsiveness of the multistage platform is thoroughly evaluated. In vitro results demonstrate that DOX-ss@PMs can highly accumulate at tumor site, followed by responding to the acidity for disassembly and effectively penetrating into the tumor cells. DOX is released from the platform due to the cleavage of disulfide bonds induced by high glutathione (GSH) concentration, thereby inducing the apoptosis of tumor cells. In vivo studies further reveal that multistage DOX-ss@PMs can more efficiently inhibit the growth of tumors and improve the survival of tumor-bearing mice in comparison to the free drug and control. These results imply that multistage delivery system might be a potential and effective strategy for drug delivery and DOX-ss@PMs could be a promising nanomedicine for cancer chemotherapy.
Collapse
Affiliation(s)
- Shuguang Zhang
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Peiyao Zhu
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Jiayuan He
- Department of Neurobiology School of Life Sciences China Medical University Shenyang 110001 P. R. China
| | - Siyuan Dong
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Peiwen Li
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Can Yang Zhang
- Singapore‐MIT Alliance for Research and Technology 1 CREATE Way, 03‐12/13/14 Enterprise Wing Singapore 138602 Singapore
| | - Teng Ma
- Department of Neurobiology School of Life Sciences China Medical University Shenyang 110001 P. R. China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology Ministry of Education of China China Medical University Shenyang 110122 China
| |
Collapse
|
30
|
Zhou M, Ling F, Li J. A supramolecular diagnosis and treatment integrated agent: Synthesis and self-assembly of stimulus-responsive star-shaped copolymer. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Wen Y, Bai H, Zhu J, Song X, Tang G, Li J. A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles. SCIENCE ADVANCES 2020; 6:eabc2148. [PMID: 32832695 PMCID: PMC7439508 DOI: 10.1126/sciadv.abc2148] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/12/2020] [Indexed: 05/24/2023]
Abstract
It requires multistep synthesis and conjugation processes to incorporate multifunctionalities into a polyplex gene vehicle to overcome numerous hurdles during gene delivery. Here, we describe a supramolecular platform to precisely control, screen, and optimize molecular architectures of siRNA targeted delivery vehicles, which is based on rationally designed host-guest complexation between a β-cyclodextrin-based cationic host polymer and a library of guest polymers with various PEG shape and size, and various density of ligands. The host polymer is responsible to load/unload siRNA, while the guest polymer is responsible to shield the vehicles from nonspecific cellular uptake, to prolong their circulation time, and to target tumor cells. A series of precisely controlled molecular architectures through a simple assembly process allow for a rapid optimization of siRNA delivery vehicles in vitro and in vivo for therapeutic siRNA-Bcl2 delivery and tumor therapy, indicating the platform is a powerful screening tool for targeted gene delivery vehicles.
Collapse
Affiliation(s)
- Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Jingling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
32
|
Ma S, Li G, Tao Q, Guo L, Zhou Z, Yu J. Formation of H 2O 2/temperature dual-responsive supramolecular micelles for drug delivery and kinetics. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Lei Guo
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Zaishuai Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Jiahui Yu
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| |
Collapse
|
33
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
34
|
Song X, Zhang Z, Zhu J, Wen Y, Zhao F, Lei L, Phan-Thien N, Khoo BC, Li J. Thermoresponsive Hydrogel Induced by Dual Supramolecular Assemblies and Its Controlled Release Property for Enhanced Anticancer Drug Delivery. Biomacromolecules 2020; 21:1516-1527. [PMID: 32159339 DOI: 10.1021/acs.biomac.0c00077] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Zhongxing Zhang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Feng Zhao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Lijie Lei
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Boo Cheong Khoo
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| |
Collapse
|
35
|
Li N, Mai Y, Liu Q, Gou G, Yang J. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res 2020; 11:131-141. [PMID: 32052357 DOI: 10.1007/s13346-020-00720-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, D-alpha-tocopheryl polyethylene glycol-1000 succinate (TPGS)-coated docetaxel-loaded liposomes were developed to reverse multidrug resistance (MDR) and enhance lung cancer therapy. Evaluations were performed using human lung cancer A549 and resistant A549/DDP cells. The reversal multidrug resistant effect was assessed by P-gp inhibition assay, cytotoxicity, cellular uptake, and apoptosis assay. The tumor xenograft model was built by subcutaneous injection of A549/DDP cells in the right dorsal area of nude mice. The tumor volumes and body weights were measured every other day. The TPGS-coated liposomes showed a concentration- and time-dependent cytotoxicity and significantly enhanced the cytotoxicity of docetaxel in A549/DDP cells. Confocal laser scanning images indicated that higher concentrations of coumarin-6 were successfully delivered into the cytoplasm, and the TPGS-coated liposomes enhanced intracellular drug accumulation by inhibiting overexpressed P-glycoprotein. The TPGS-coated liposomes were shown to induce apoptosis. Furthermore, in vivo anti-tumor studies revealed that TPGS-coated docetaxel-loaded liposomes had outstanding anti-tumor efficacy in an A549/DDP xenograft model. The TPGS-coated liposomes, compared with PEG-coated liposomes, showed significant advantages in vitro and in vivo. The TPGS-coated liposomes were able to reverse MDR and enhance lung cancer therapy. Graphical abstract .
Collapse
Affiliation(s)
- Na Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China
| | - Yaping Mai
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China
| | - Qiang Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China
| | - Guojing Gou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China.
| |
Collapse
|
36
|
Abebe Alemayehu Y, Tewabe Gebeyehu B, Cheng CC. Photosensitive Supramolecular Micelles with Complementary Hydrogen Bonding Motifs To Improve the Efficacy of Cancer Chemotherapy. Biomacromolecules 2019; 20:4535-4545. [DOI: 10.1021/acs.biomac.9b01322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Pang J, Gao Z, Tan H, Mao X, Xu J, Kong J, Hu X. Fabrication, Investigation, and Application of Light-Responsive Self-Assembled Nanoparticles. Front Chem 2019; 7:620. [PMID: 31572711 PMCID: PMC6751253 DOI: 10.3389/fchem.2019.00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Light-responsive materials have attracted increasing interest in recent years on account of their adjustable on-off properties upon specific light. In consideration of reversible isomerization transition for azobenzene (AZO), it was designed as a light-responsive domain for nanoparticles in this research. At the same time, the interaction between AZO domain and β-cyclodextrin (β-CD) domain was designed as a driving force to assemble nanoparticles, which was fabricated by two polymers containing AZO domain and β-CD domain, respectively. The formed nanoparticles were confirmed by Dynamic Light Scattering (DLS) results and Transmission Electron Microscope (TEM) images. An obvious two-phase structure was formed in which the outer layer of nanoparticles was composed of PCD polymer, as verified by 1HNMR spectroscopy. The efficient and effective light response of the nanoparticles, including quick responsive time, controllable and gradual recovered process and good fatigue resistance, was confirmed by UV-Vis spectroscopy. The size of the nanoparticle could be adjusted by polymer ratio and light irradiation, which was ascribed to its light-response property. Nanoparticles had irreversibly pH dependent characteristics. In order to explore its application as a nanocarrier, drug loading and in vitro release profile in different environment were investigated through control of stimuli including light or pH value. Folic acid (FA), as a kind of target fluorescent molecule with specific protein-binding property, was functionalized onto nanoparticles for precise delivery for anticancer drugs. Preliminary in vitro cell culture results confirmed efficient and effective curative effect for the nanocarrier on MCF-7 cells.
Collapse
Affiliation(s)
- Juan Pang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Ziyu Gao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Huaping Tan
- Biomaterials for Organogenesis Laboratory, School of Materials Science & Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Xincheng Mao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Jialing Xu
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Jingyang Kong
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Xiaohong Hu
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| |
Collapse
|
38
|
Li J, Yang J. Synthesis of folate mediated carboxymethyl cellulose fatty acid ester and application in drug controlled release. Carbohydr Polym 2019; 220:126-131. [DOI: 10.1016/j.carbpol.2019.05.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
|
39
|
Liu M, Wen Y, Song X, Zhu JL, Li J. A smart thermoresponsive adsorption system for efficient copper ion removal based on alginate-g-poly(N-isopropylacrylamide) graft copolymer. Carbohydr Polym 2019; 219:280-289. [DOI: 10.1016/j.carbpol.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
40
|
Zhou A, Chen W, Liao L, Xie P, Zhang TC, Wu X, Feng X. Comparative adsorption of emerging contaminants in water by functional designed magnetic poly(N-isopropylacrylamide)/chitosan hydrogels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:377-387. [PMID: 30933794 DOI: 10.1016/j.scitotenv.2019.03.183] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The magnetic poly(N-isopropylacrylamide)/chitosan hydrogel with interpenetrating network (IPN) structure was designed based on the functional groups of targeted emerging contaminants, represented by hydrophilic sulfamethoxazole (SMZ) and hydrophobic bisphenol A (BPA). The average particle size, specific surface area, and total pore volume of the hydrogel were turned out to be 103.7 μm, 60.70 m2/g and 0.0672 cm3/g, respectively. Adsorption results indicated that the maximum adsorption capacity occurred at the pH where SMZ was anionic and BPA was uncharged. When the adsorption temperature increased from 25 °C to 35 °C, the amount of adsorbed SMZ hardly changed, but that of BPA increased by two times. The adsorption capacity of the binary system (i.e., with both SMZ and BPA) was almost the same as that of the single system, indicating that simultaneous adsorption of SMZ and BPA was achieved. The adsorption equilibrium was reached quickly (within 5 min) for both SMZ and BPA. For adsorption isotherm, the Freundlich model fitted well for SMZ at 25, 35 and 45 °C. However, the adsorption of BPA exhibited the sigmoidally shaped isotherm at 25 °C with the Slips model fitting well, and both the Freundlich isotherm and the Slips isotherm fitted the data well at 35 °C and 45 °C, suggesting that the adsorption force was initially weak but greatly enhanced with an increase in adsorbate concentration or ambient temperature. The main adsorption mechanism was inferred to be electrostatic interactions for SMZ, and hydrophobic interactions as well as hydrogen bonding for BPA. The hydrogel adsorbent maintained favorable adsorption capacity for BPA after five adsorption-desorption cycles. These findings may provide a strategy for designing high performance adsorbents that can remove both hydrophilic and hydrophobic organic contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Aijiao Zhou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wangwei Chen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Liao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengchao Xie
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tian C Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Xumeng Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaonan Feng
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
41
|
Zhong L, Xu L, Liu Y, Li Q, Zhao D, Li Z, Zhang H, Zhang H, Kan Q, Wang Y, Sun J, He Z. Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Acta Pharm Sin B 2019; 9:397-409. [PMID: 30972285 PMCID: PMC6437598 DOI: 10.1016/j.apsb.2018.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/02/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) is a natural ligand of tumor-targeted drug delivery systems (DDS) due to the relevant CD44 receptor overexpressed on tumor cell membranes. However, other HA receptors (HARE and LYVE-1) are also overexpressing in the reticuloendothelial system (RES). Therefore, polyethylene glycol (PEG) modification of HA-based DDS is necessary to reduce RES capture. Unfortunately, pegylation remarkably inhibits tumor cellular uptake and endosomal escapement, significantly compromising the in vivo antitumor efficacy. Herein, we developed a Dox-loaded HA-based transformable supramolecular nanoplatform (Dox/HCVBP) to overcome this dilemma. Dox/HCVBP contains a tumor extracellular acidity-sensitive detachable PEG shell achieved by a benzoic imine linkage. The in vitro and in vivo investigations further demonstrated that Dox/HCVBP could be in a "stealth" state at blood stream for a long circulation time due to the buried HA ligands and the minimized nonspecific interaction by PEG shell. However, it could transform into a "recognition" state under the tumor acidic microenvironment for efficient tumor cellular uptake due to the direct exposure of active targeting ligand HA following PEG shell detachment. Such a transformative concept provides a promising strategy to resolve the dilemma of natural ligand-based DDS with conflicting two processes of tumor cellular uptake and in vivo nonspecific biodistribution.
Collapse
Key Words
- AD-B-PEG, the pH-responsive adamantane-PEG conjugate
- AD-O-PEG, the non-pH sensitive adamantane-PEG conjugate
- ADA, 1-adamantane carboxylic acid
- AUC, area under the plasma concentration—time curve
- Active-targeting
- Benzoic imine linkage
- CLSM, confocal laser scanning microscope
- Cancer therapy
- DAPI, 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride
- DCC, N,N′-dicyclohexylcarbodiimide
- DCM, dichloromethane
- DDS, drug delivery systems
- DL, drug-loading content
- DLS, dynamic light scattering
- DMAP, 4-dimethylaminopyrideine
- DMEM, Dulbecco׳s modified Eagle׳s medium
- DiR, 1,1′-dioctadecyltetramethyl indotricarbocyanine iodide
- Dox/HCVBP, Dox-loaded hyaluronic acid-based transformable supramolecular nanoplatform
- Dox/HCVOP, Dox-loaded hyaluronic acid-based untransformable supramolecular nanoplatform
- Dox·HCl, doxorubicin hydrochloride
- EDC, 1-ethyl-3-(3-dimethyalminopropl) carbodiimide
- EE, encapsulation efficiency
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- HA, hyaluronic acid
- HA-CD, hydroxypropyl-β-cyclodextrin grafted hyaluronic acid polymer
- HCBP, hydroxypropyl-β-cyclodextrin grafted hyaluronic acid polymer and pH-responsive adamantane-PEG conjugate inclusion complex
- HCPs, hydroxypropyl-β-cyclodextrin grafted hyaluronic acid polymer and adamantane-PEG conjugate inclusion complexes
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesul-fonic acid
- HOBT, 1-hydroxybenzotriazole
- HPCD, hydroxypropyl-β-cyclodextrin
- Hyaluronic acid
- MW, molecular weight
- NPs, nanoparticles
- Natural ligand
- PCC, Pearson׳s correlation coefficient
- PDI, polydispersity index
- PEG dilemma
- RES, reticuloendothelial system
- RPMI-1640, Roswell Park Memorial Institute-1640
- Supramolecular nanoplat-form
- THF, tetrahydrofuran
- TUNEL, terminal deoxynucleotidyl transferased dUTP nick end labeling
- Transformative nanoparti-cles
- VES, vitamin E succinate
- pHe, the extracellular pH
Collapse
Affiliation(s)
- Lu Zhong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingsong Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenbao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huicong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haotian Zhang
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiming Kan
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
42
|
Seidi F, Shamsabadi AA, Amini M, Shabanian M, Crespy D. Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00495e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin molecules are cyclic oligosaccharides that display a unique structure including an inner side and two faces on their outer sides.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | | | - Mojtaba Amini
- Department of Chemistry
- Faculty of Science
- University of Maragheh
- Maragheh
- Iran
| | - Meisam Shabanian
- Faculty of Chemistry and Petrochemical Engineering
- Standard Research Institute (SRI)
- Karaj
- Iran
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
43
|
Ge F, Qiao Q, Zhu L, Li W, Song P, Zhu L, Tao Y, Gui L. Preparation of a tumor-targeted drug-loading material, amphiphilic peptide P10, and analysis of its anti-tumor activity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:3. [PMID: 30569205 DOI: 10.1007/s10856-018-6204-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
A new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) was designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics were studied. P10 was synthesized by solid-state synthesis and doxorubicin (DOX) was loaded via dialysis. P10 and DOX were mixed with a mass ratio of 6:1 to form regular round spheres. The interconnection between groups was analyzed spectroscopically and the sphere morphology was studied with SEM and a zeta particle size analyzer. Fluorescence spectroscopy was used to analyze the ability of P10 to form micelles and the efficiency of micelle entrapment, and the drug-loading ratio and drug release characteristics were detected. Finally, the in vitro antitumor activity of P10 was studied with HeLa cells as a model. The results showed that P10's critical micelle concentration (CMC) value and its average grain diameter were approximately 0.045 mg/L and 500 nm. The micelle entrapment ratio and drug-loading ratio were 23.011 ± 2.88 and 10.125 ± 2.62%, respectively, and the in vitro drug-releasing properties of P10 were described by the Zero-order model and the Ritger-Peppas model. Compared with DOX, P10-DOX had a higher tumor cell inhibition ratio and a dose-effect relationship with concentration. When P10-DOX's concentration was 20 μg/mL, the inhibition ratio was 44.17%. The new amphiphilic peptide designed and prepared in this study could be a tumor-targeted drug-loading material with better prospects for application. In this paper, a new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) is designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics are studied, providing a theoretical basis and design ideas for further studies and the development of targeted drug-loading materials on tumor cells.
Collapse
Affiliation(s)
- Fei Ge
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Qianqian Qiao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longbao Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Wanzhen Li
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Ping Song
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longlong Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Yugui Tao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China.
| | - Lin Gui
- Department of Microbiology and immunology, Wannan Medical College, No. 22 Wenchang West Road, 241002, Wuhu, China.
| |
Collapse
|
44
|
Zhou Z, Li G, Wang N, Guo F, Guo L, Liu X. Synthesis of temperature/pH dual-sensitive supramolecular micelles from β-cyclodextrin-poly(N-isopropylacrylamide) star polymer for drug delivery. Colloids Surf B Biointerfaces 2018; 172:136-142. [DOI: 10.1016/j.colsurfb.2018.08.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
|
45
|
Yang Z, Peng Y, Qiu L. pH-Responsive supramolecular micelle based on host-guest interaction of poly(β-amino ester) derivatives and adamantyl-terminated poly(ethylene glycol) for cancer inhibition. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
|
47
|
Ramesh K, Anugrah DSB, Lim KT. Supramolecular poly(N-acryloylmorpholine)-b-poly(d,l-lactide) pseudo-block copolymer via host-guest interaction for drug delivery. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Zhou Z, Guo F, Wang N, Meng M, Li G. Dual pH-sensitive supramolecular micelles from star-shaped PDMAEMA based on β-cyclodextrin for drug release. Int J Biol Macromol 2018; 116:911-919. [DOI: 10.1016/j.ijbiomac.2018.05.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
|
49
|
Yang C, Qin Y, Tu K, Xu C, Li Z, Zhang Z. Star-shaped polymer of β‑cyclodextrin-g-vitamin E TPGS for doxorubicin delivery and multidrug resistance inhibition. Colloids Surf B Biointerfaces 2018; 169:10-19. [DOI: 10.1016/j.colsurfb.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022]
|
50
|
|