1
|
Ghazi R, Ibrahim TK, Nasir JA, Gai S, Ali G, Boukhris I, Rehman Z. Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review. RSC Adv 2025; 15:11587-11616. [PMID: 40230636 PMCID: PMC11995399 DOI: 10.1039/d5ra00728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Iron-oxide nanoparticles (IONPs) have garnered substantial attention in both research and technological domains due to their exceptional chemical and physical properties. These nanoparticles have mitigated the adverse effects of conventional treatment procedures by facilitating advanced theranostic approaches in integration with biomedicine. These IONPs have been extensively utilized in MRI (as contrast agents in diagnosis), drug delivery (as drug carriers), and hyperthermia (treatment), demonstrating promising results with potential for further enhancement. This study elucidates the operational principles of these NPs during diagnosis, drug delivery, and treatment, and emphasizes their precision and efficacy in transporting therapeutic agents to targeted sites without drug loss. It also analyses various challenges associated with the application of these IONPs in this field, such as biocompatibility, agglomeration, and toxicity. Furthermore, diverse strategies have been delineated to address these challenges. Overall, this review provides a comprehensive overview of the applications of IONPs in the field of biomedicine and treatment, along with the associated challenges. It offers significant assistance to researchers, professionals, and clinicians in the field of biomedicine.
Collapse
Affiliation(s)
- Rizwana Ghazi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Talib K Ibrahim
- Department of Petroleum Engineering, College of Engineering, Knowledge University Erbil Iraq
- Department of Petroleum Engineering, Al-Kitab University Altun Kupri Iraq
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 P. R. China
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH Nilore Islamabad Pakistan
| | - Imed Boukhris
- Department of Physics, Faculty of Science, King Khalid University P. O. Box 9004 Abha Saudi Arabia
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| |
Collapse
|
2
|
Sui C, Tan R, Liu Z, Li X, Xu W. Smart Chemical Oxidative Polymerization Strategy To Construct Au@PPy Core-Shell Nanoparticles for Cancer Diagnosis and Imaging-Guided Photothermal Therapy. Bioconjug Chem 2023; 34:257-268. [PMID: 36516477 DOI: 10.1021/acs.bioconjchem.2c00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging-guided photothermal therapy (PTT) in a single nanoscale platform has aroused extensive research interest in precision medicine, yet only a few methods have gained wide acceptance. Thus, it remained an urgent need to facilely develop biocompatible and green probes with excellent theranostic capacity for superior biomedical applications. In this study, a smart chemical oxidative polymerization strategy was successfully developed for the synthesis of Au@PPy core-shell nanoparticles with polyvinyl alcohol (PVA) as the hydrophile. In the reaction, the reactant tetrachloroauric acid (HAuCl4) was reduced by pyrrole to fabricate a gold (Au) core, and pyrrole was oxidized to deposit around the Au core to form a polypyrrole (PPy) shell. The as-synthesized Au@PPy nanoparticles showed a regular core-shell morphology and good colloidal stability. Relying on the high X-ray attenuation of Au and strong near-infrared (NIR) absorbance of PPy and Au, Au@PPy nanoparticles exhibited excellent performance in blood pool/tumor imaging and PTT treatment by a series of in vivo experiments, in which tumor could be precisely positioned and thoroughly eradicated. Hence, the facile chemical oxidative polymerization strategy for constructing monodisperse Au@PPy core-shell nanoparticles with potential for cancer diagnosis and imaging-guided photothermal therapy shed light on an innovative design concept for the facile fabrication of biomedical materials.
Collapse
Affiliation(s)
- Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Rui Tan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Zifan Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| |
Collapse
|
3
|
Polypyrrole Hollow Nanotubes Loaded with Au and Fe3O4 Nanoparticles for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Wang S, Ma Z, Shi Z, Huang Y, Chen T, Hou L, Jiang T, Yang F. Chidamide stacked in magnetic polypyrrole nano-composites counter thermotolerance and metastasis for visualized cancer photothermal therapy. Drug Deliv 2022; 29:1312-1325. [PMID: 35475384 PMCID: PMC9067950 DOI: 10.1080/10717544.2022.2068697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Photothermal therapy (PTT) has become one of the most promising therapies in cancer treatment as its noninvasiveness, high selectivity, and favorable compliance in clinic. However, tumor thermotolerance and distal metastasis reduce its efficacy, becoming the bottleneck of applying PTT in clinic. In this study, a chidamide-loaded magnetic polypyrrole nanocomposite (CMPP) has been fabricated as a visualized cancer photothermal agent (PTA) to counter tumor thermotolerance and metastasis. The efficacy of CMPP was characterized by in vitro and in vivo assays. As a result, this kind of magnetic polypyrrole nanocomposites were black spherical nanoparticles, possessing a favorable photothermal effect and the suitable particle size of 176.97 ± 1.45 nm with a chidamide loading rate of 12.92 ± 0.45%. Besides, comparing with PTT, CMPP exhibited significantly higher cytotoxicity and cellular apoptosis rate in two tumor cell lines (B16-F10 and HepG2). In vivo study, the mice showed obvious near-infrared (NIR) and magnetic resonance imaging (MRI) dual-modal imaging at tumor sites and sentinel lymph nodes (SLNs); on the other hand, magnetic targeting guided CMPP achieved a cure level on melanoma-bearing mice through preventing metastasis and thermotolerance. Overall, with high loading efficiency of chidamide and strong magnetic targeting to tumor sites and SLNs, CMPP could significantly raise efficiency of PTT by targeting tumor thermotolerance and metastasis, and this strategy may be exploited therapeutically to upgrade PTT with MPP as one of appropriate carriers for histone deacetylase inhibitors (HDACis).
Collapse
Affiliation(s)
- Sizhen Wang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University School, Shanghai, PR China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, PR China
| | - Zhiqiang Ma
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University School, Shanghai, PR China
| | - Zhang Shi
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Ying Huang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University School, Shanghai, PR China
| | - Tianheng Chen
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University School, Shanghai, PR China
| | - Lei Hou
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University School, Shanghai, PR China
| | - Tao Jiang
- Department of Nuclear Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Feng Yang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University School, Shanghai, PR China
| |
Collapse
|
5
|
Wang F, Li J, Chen C, Qi H, Huang K, Hu S. Preparation and synergistic chemo-photothermal therapy of redox-responsive carboxymethyl cellulose/chitosan complex nanoparticles. Carbohydr Polym 2022; 275:118714. [PMID: 34742439 DOI: 10.1016/j.carbpol.2021.118714] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Chemo-photothermal combination therapy has great promise for enhanced tumor treatment. Hereby, we developed a complex nanoparticle using electrostatic absorption method, in which the inner chitosan (CS) NPs loaded polypyrrole (PPy) nanoparticles and 5-fluorouracil (5Fu), the outer shell was carboxymethyl cellulose (CMC) crosslinked with disulfide. The drug loaded polysaccharide complex nanoparticles displayed good photothermal effects, and the drug release would be triggered by multi-model response of NIR irradiation, high glutathione (GSH) and weak acidity in tumor environment. In vitro biological studies indicated the nanopartiles could be effectively internalized by HepG2 cancer cells. Moreover, the remarkable inhibition of the CMC complex PPy and 5Fu loaded CS nanoparticles (CMC/CS@PPy + 5Fu NPs) against tumor growth was achieved in HepG2-bearing mice model, suggesting its great potential for synergetic chemo-photothermal therapy.
Collapse
Affiliation(s)
- Fang Wang
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China; Nanjing Forestry Univ, Coinnovat Ctr Efficient Proc & Utilizat Forest Re, Nanjing 210037, Jiangsu, PR China.
| | - Jiarui Li
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Cheng Chen
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Hong Qi
- Nanjing Medical Univ, School of Public Health, Nanjing 211166, Jiangsu, PR China
| | - Kexin Huang
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Sheng Hu
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| |
Collapse
|
6
|
Yougbaré S, Mutalik C, Chung PF, Krisnawati DI, Rinawati F, Irawan H, Kristanto H, Kuo TR. Gold Nanorod-Decorated Metallic MoS 2 Nanosheets for Synergistic Photothermal and Photodynamic Antibacterial Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3064. [PMID: 34835828 PMCID: PMC8621771 DOI: 10.3390/nano11113064] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022]
Abstract
Light-responsive nanocomposites have become increasingly attractive in the biomedical field for antibacterial applications. Visible-light-activated metallic molybdenum disulfide nanosheets (1T-MoS2 NSs) and plasmonic gold nanorods (AuNRs) with absorption at a wavelength of 808 nm were synthesized. AuNR nanocomposites decorated onto 1T-MoS2 NSs (MoS2@AuNRs) were successfully prepared by electrostatic adsorption for phototherapy applications. Based on the photothermal effect, the solution temperature of the MoS2@AuNR nanocomposites increased from 25 to 66.7 °C after 808 nm near-infrared (NIR) laser irradiation for 10 min. For the photodynamic effect, the MoS2@AuNR nanocomposites generated reactive oxygen species (ROS) under visible light irradiation. Photothermal therapy and photodynamic therapy of MoS2@AuNRs were confirmed against E. coli by agar plate counts. Most importantly, the combination of photothermal therapy and photodynamic therapy from the MoS2@AuNR nanocomposites revealed higher antibacterial activity than photothermal or photodynamic therapy alone. The light-activated MoS2@AuNR nanocomposites exhibited a remarkable synergistic effect of photothermal therapy and photodynamic therapy, which provides an alternative approach to fight bacterial infections.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (S.Y.); (C.M.)
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (S.Y.); (C.M.)
| | - Pei-Feng Chung
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Dyah Ika Krisnawati
- Dharma Husada Nursing Academy, Kediri 64114, Indonesia; (D.I.K.); (F.R.); (H.I.); (H.K.)
| | - Fajar Rinawati
- Dharma Husada Nursing Academy, Kediri 64114, Indonesia; (D.I.K.); (F.R.); (H.I.); (H.K.)
| | - Hengky Irawan
- Dharma Husada Nursing Academy, Kediri 64114, Indonesia; (D.I.K.); (F.R.); (H.I.); (H.K.)
| | - Heny Kristanto
- Dharma Husada Nursing Academy, Kediri 64114, Indonesia; (D.I.K.); (F.R.); (H.I.); (H.K.)
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (S.Y.); (C.M.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Zhang C, Wang X, Wang J, Qiu Y, Qi Z, Song D, Wang M. TCPP-Isoliensinine Nanoparticles for Mild-Temperature Photothermal Therapy. Int J Nanomedicine 2021; 16:6797-6806. [PMID: 34675508 PMCID: PMC8502540 DOI: 10.2147/ijn.s317462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Photothermal therapy (PTT) is promising for the treatment of tumors due to its advantages including minimally invasive, easy implementation and selective localized treatment. However, single PTT suffers from several limitations, such as constrained light penetration and low delivery efficiency, typically leading to heterogeneous heating and incomplete elimination of cancer cells. Therefore, combination of PTT with other therapies, eg, chemotherapy is desirable in order to achieve synergistic effects in cancer treatment. Methods Here, we designed a new type of TCPP-Iso combined nanoparticle for synergetic therapy for breast cancer. Specifically, photothermal agent tetra(4-carboxyphenyl) porphine (TCPP) and anti-cancer drug isoliensinine (Iso) were encapsulated in PEG-b-PLGA polymeric nanoparticles through a precipitation process. Results The obtained NPs displayed well-controlled size and high stability over time. Tuning TCPP-Iso/polymer ratio, or total concentration of drug and polymers led to increased hydrodynamic radius of NPs from 65 to 108 nm without disturbing the narrow size distribution. Besides, the formed NPs showed a consequently cumulative release of TCPP and of Iso. The temperature elevation ability of both TCPP NPs and TCPP-Iso NPs was TCPP-concentration dependent. Solutions of TCPP NPs that contained equivalent amount of TCPP with respect to TCPP-Iso NPs, presented the same trend and exhibited non-obvious difference in temperature elevation under certain laser power. The viability of MDA-MB-231 cells treated with TCPP-Iso NPs could be inhibited effectively at a relatively mild temperature (42–43°C) compared to the other groups, which may minimize heat damage to the surrounding healthy tissues. Conclusion The results indicate that the TCPP-Iso combined NPs showed hardly any toxicity to normal tissue cell line, but displayed an efficient synergistic effect for killing cancer cells under laser irradiation. Our study demonstrates that the successful combination of TCPP and Iso realized a synergistic therapy effect at a relatively mild temperature, and the insights obtained here shall be helpful for designing new combined PTT agents for cancer treatment.
Collapse
Affiliation(s)
- Chenglin Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| | - Xinming Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yuening Qiu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhiyao Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| | - Mingwei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
8
|
Liu J, Wang D, Wang G. Magnetic-gold theranostic nanoagent used for targeting quad modalities T 1 & T 2-MRI/CT/PA imaging and photothermal therapy of tumours. RSC Adv 2021; 11:18440-18447. [PMID: 35480951 PMCID: PMC9033428 DOI: 10.1039/d1ra02041b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/08/2021] [Indexed: 01/10/2023] Open
Abstract
We describe a new type of ultra-small magneto-gold nanoparticle (MGN) with folic acid (FA)-based tumour targeting and multimodal imaging-guided photothermal therapy (PTT) properties that can be used as a theranostic nanoagent. The nanoagent integrates these MGNs–FA with surface modifications, and as expected, is monodisperse, and exhibits small size, strong NIR absorption, photothermal stability, good relaxivity and X-ray absorption coefficient, tumour targeting and excellent biocompatibility. Based on these properties, the nanoagent was successfully tested, both as a photothermal agent for high PTT efficacy and as a multimodality contrast agent for T1- & T2-MRI/CT/PA imaging in vitro and in vivo. Notably, the results of in vivo theranostic experiments with these MGNs–FA showed that they are highly effective and safe, indicating that they are efficient and promising theranostic agents that permit comprehensive imaging for diagnosis and therapy. The schematic diagram of the biofunctionalized magneto-gold nanoparticles as theranostic nanoagents for T1 & T2-MRI/CT/PAI quad modalities imaging and PTT therapy of tumours.![]()
Collapse
Affiliation(s)
- Jinlei Liu
- The First Affiliated Hospital of Jinzhou Medical University Jinzhou 121001 China +86-537-7907618 +86-537-7907618
| | - Dan Wang
- Basic Medical College, Beihua University Jilin City 132013 China
| | - Guannan Wang
- The First Affiliated Hospital of Jinzhou Medical University Jinzhou 121001 China +86-537-7907618 +86-537-7907618.,College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| |
Collapse
|
9
|
Zheng N, Wang Q, Li C, Wang X, Liu X, Wang X, Deng G, Wang J, Zhao L, Lu J. Responsive Degradable Theranostic Agents Enable Controlled Selenium Delivery to Enhance Photothermal Radiotherapy and Reduce Side Effects. Adv Healthc Mater 2021; 10:e2002024. [PMID: 33645002 DOI: 10.1002/adhm.202002024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Radiotherapy (RT) is a popular clinical therapy method for extending cancer patient survival, but is hampered by severe side effects and the weak therapy effect. Herein, responsive degradable selenium (Se) theranostic agents (Se@SiO2 @Bi nanocomposites (NCs)) are fabricated, which combine computed tomography (CT) imaging and simultaneously enhance the therapeutic effects of photothermal therapy (PTT) and RT, while reducing the side effects of radiation. The Se@SiO2 @Bi theranostic agents can accumulate at the tumor site, and responsively decompose to releease Se, avoiding systemic toxicity by the element. Se enhances the effect of PTT/RT, simultaneously reducing the side effects of RT. The Se@SiO2 @Bi NCs as CT agents also exhibit significantly enhanced contrast imaging performance due to the high atomic number of Bi. More importantly, the Se@SiO2 @Bi NCs can be rapidly excreted without long-term toxicity, owing to responsive degradation into ultrasmall particles (<5 nm) at the tumor site. In vitro and in vivo results show that the Se@SiO2 @Bi NCs can remarkably inhibit tumor cells, without causing appreciable toxicity during the treatment. This study opens a new perspective in rationally designing responsive degradable theranostic agents for future tumor therapy with enhanced therapeutic efficacy and lesser side effects.
Collapse
Affiliation(s)
- Nannan Zheng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Qi Wang
- Putuo Hospital Shanghai University of Traditional Chinese Medicine No. 164, Lanxi Road, Putuo District Shanghai 200062 China
- Trauma Center Shanghai General Hospital Shanghai Jiaotong University School of Medicine No. 650, Xin Songjiang Road Shanghai 201620 China
| | - Chunlin Li
- Trauma Center Shanghai General Hospital Shanghai Jiaotong University School of Medicine No. 650, Xin Songjiang Road Shanghai 201620 China
| | - Xiang Wang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Xingyan Wang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Guoying Deng
- Trauma Center Shanghai General Hospital Shanghai Jiaotong University School of Medicine No. 650, Xin Songjiang Road Shanghai 201620 China
| | - Jinxia Wang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Linjing Zhao
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Jie Lu
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| |
Collapse
|
10
|
Fe 3O 4-Au Core-Shell Nanoparticles as a Multimodal Platform for In Vivo Imaging and Focused Photothermal Therapy. Pharmaceutics 2021; 13:pharmaceutics13030416. [PMID: 33804636 PMCID: PMC8003746 DOI: 10.3390/pharmaceutics13030416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
In this study, we report the synthesis of gold-coated iron oxide nanoparticles capped with polyvinylpyrrolidone (Fe@Au NPs). The as-synthesized nanoparticles (NPs) exhibited good stability in aqueous media and excellent features as contrast agents (CA) for both magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Additionally, due to the presence of the local surface plasmon resonances of gold, the NPs showed exploitable "light-to-heat" conversion ability in the near-infrared (NIR) region, a key attribute for effective photothermal therapies (PTT). In vitro experiments revealed biocompatibility as well as excellent efficiency in killing glioblastoma cells via PTT. The in vivo nontoxicity of the NPs was demonstrated using zebrafish embryos as an intermediate step between cells and rodent models. To warrant that an effective therapeutic dose was achieved inside the tumor, both intratumoral and intravenous routes were screened in rodent models by MRI and CT. The pharmacokinetics and biodistribution confirmed the multimodal imaging CA capabilities of the Fe@AuNPs and revealed constraints of the intravenous route for tumor targeting, dictating intratumoral administration for therapeutic applications. Finally, Fe@Au NPs were successfully used for an in vivo proof of concept of imaging-guided focused PTT against glioblastoma multiforme in a mouse model.
Collapse
|
11
|
Iron Oxide-Based Magneto-Optical Nanocomposites for In Vivo Biomedical Applications. Biomedicines 2021; 9:biomedicines9030288. [PMID: 34156393 PMCID: PMC8000024 DOI: 10.3390/biomedicines9030288] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 01/07/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) have played a pivotal role in the development of nanomedicine owing to their versatile functions at the nanoscale, which facilitates targeted delivery, high contrast imaging, and on-demand therapy. Some biomedical inadequacies of IONPs on their own, such as the poor resolution of IONP-based Magnetic Resonance Imaging (MRI), can be overcome by co-incorporating optical probes onto them, which can be either molecule- or nanoparticulate-based. Optical probe incorporated IONPs, together with two prominent non-ionizing radiation sources (i.e., magnetic field and light), enable a myriad of biomedical applications from early detection to targeted treatment of various diseases. In this context, many research articles are in the public domain on magneto-optical nanoparticles; discussed in detail are fabrication strategies for their application in the biomedical field; however, lacking is a comprehensive review on real-life applications in vivo, their toxicity, and the prospect of bench-to-bedside clinical studies. Therefore, in this review, we focused on selecting such important nanocomposites where IONPs become the magnetic component, conjugated with various types of optical probes; we clearly classified them into class 1 to class 6 categories and present only in vivo studies. In addition, we briefly discuss the potential toxicity of such nanocomposites and their respective challenges for clinical translations.
Collapse
|
12
|
Shende P, Shah P. Carbohydrate-based magnetic nanocomposites for effective cancer treatment. Int J Biol Macromol 2021; 175:281-293. [PMID: 33571584 DOI: 10.1016/j.ijbiomac.2021.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
The treatment of cancer includes several conventional therapies like surgery, radiation, chemotherapy, etc. but mostly associated with limitations like off-targeted action, fatigue and organ toxicity. The emergence of nanotechnology-enabled drug delivery systems shows revolutionary development to overcome the limitations of such therapies. Magnetic nanocomposites are the new area of research that consists of nanoscale magnetic materials for triggering the release of active in response to an external magnetic field. For targeted drug delivery and enhancing the biocompatibility, effective functionalization of magnetic nanocomposites is required. Therefore, several biological molecules like carbohydrate polymers, proteins, nucleic acids, antibodies, etc. are used. This review article focuses on the insights of advances in the development of carbohydrate-based magnetic nanocomposites for safe and effective cancer treatment. Carbohydrate-based magnetic nanocomposites offer significant advantages like greater stability, higher biocompatibility and lower toxicity with better physicochemical properties such as higher magnetic moments and anisotropy, larger heating properties, etc. Magnetic nanocomposites explore in almost all the areas of cancer therapeutics for drug delivery carrier, as antineoplastic and MRI contrast agents and in photothermal, photodynamic and in combinational therapies for the development of safer nanocarriers. Such progressive trend of carbohydrate-based magnetic nanocomposites will encourage the researchers for better site-specific delivery with higher safety profile in cancer therapy.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - Priyank Shah
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
13
|
Aslan N, Ceylan B, Koç MM, Findik F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128599] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Liu X, Zhang M, Yan D, Deng G, Wang Q, Li C, Zhao L, Lu J. A smart theranostic agent based on Fe-HPPy@Au/DOX for CT imaging and PTT/chemotherapy/CDT combined anticancer therapy. Biomater Sci 2020; 8:4067-4072. [PMID: 32648564 DOI: 10.1039/d0bm00623h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We herein explored a smart Fe-HPPy@Au/DOX theranostic agent for CT diagnosis and PTT/chemotherapy/CDT synergistic treatment of cancer. When the Fe-HPPy@Au/DOX theranostic agent entered the tumor, the tumor environment accelerated the trapped Fe ions release to catalyze the production of ˙OH for CDT. NIR irradiation drove the PTT, and at the same time improved the CDT by increasing the production of ˙OH and triggered DOX release for chemotherapy. In addition, the Au nanoparticles on the surface of Fe-HPPy@Au nanocomposites could be used as a CT imaging agent and catalyzer to produce H2O2 for enhanced CDT.
Collapse
Affiliation(s)
- Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Niu H, Li J, Wang X, Qiang Z, Ren J. Au-Fe 3O 4 decorated polydopamine hollow nanoparticles as high performance catalysts with magnetic responsive properties. NANOTECHNOLOGY 2020; 31:215606. [PMID: 32031990 DOI: 10.1088/1361-6528/ab73ba] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrated a simple approach for fabricating Au-Fe3O4/PDA hollow nanoparticles as high-performance catalysts for water purification. The polydopamine (PDA) shell was in situ formed on the silica surface from self-polymerization, which acts as a medium support for coupling with metal ions (for Fe3O4 nanoparticle deposition) as well as a reducing agent and stabilizer for Au nanoparticle reduction and deposition. A step of simultaneous Fe3O4 nanoparticle deposition and silica core removal under alkaline conditions is first introduced in this study. This process significantly simplifies previous strategies which typically require the use of poisonous agents such as hydrogen fluoride or additional complicated post-treatment steps. Under optimized conditions, the Au-Fe3O4/PDA hollow nanoparticles show a high saturation magnetization of 18.8 emu g-1 and an excellent catalytic performance for the rapid reduction of p-nitrophenol with the reaction kinetic constant of 0.34 min-1. This catalyst can be easily recovered using a permanent magnet and recycled eight times with a high catalytic cycle stability. The strategy presented in this work provides a facile and versatile approach towards designing complicated Au-Fe3O4/PDA hollow nanostructures, which might have great potential for many applications within biological, energy, and environmental technologies.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Huang W, Leng T, Gao M, Hu Q, Liu L, Dou H. Scalable dextran-polypyrrole nano-assemblies with photothermal/photoacoustic dual capabilities and enhanced biocompatibility. Carbohydr Polym 2020; 241:116224. [PMID: 32507183 DOI: 10.1016/j.carbpol.2020.116224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Polypyrroles have shown great potential in photoacoustic imaging and photothermal therapy owing to its excellent photothermal conversion capabilities. However, the synthesis of polypyrrole-based nano-assemblies which have colloidal stability in biological buffers requires a number of steps, including the polymerization of pyrrole monomers, self-assembly of polypyrrole-based copolymers, and even an additional step to increase the biocompatibility of the nano-assemblies. Herein, a "polymerization/assembly" two-in-one synthesis is proposed for the first time to achieve the one-step synthesis of a new family of polypyrrole-based nano-assemblies, dextran-polypyrrole nano-assemblies (Dex-PPy NAs), under ambient conditions and in aqueous media. In addition, the approach employs tetravalent cerium ions as initiators which can initiate the polymerization of pyrrole monomers through the initiation of free radicals from dextran molecular chains. The resultant Dex-PPy NAs have a photothermal conversion efficiency reaching as high as 41 % and an excellent photostability. More importantly, the NAs with controllable nanoscale dimensions display no signs of cytotoxicity in both in vitro and in vivo studies owing to their biocompatible dextran "shell". An in vivo study further confirmed that the Dex-PPy NAs have excellent real-time photoacoustic imaging and photothermal therapy capabilities for malignant tumors. Therefore, this study represents an important step towards the scalable synthesis of polypyrrole-based nano-assemblies with photothermal/photoacoustic dual capabilities and enhanced biocompatibility.
Collapse
Affiliation(s)
- Wanqiu Huang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Leng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Miaomiao Gao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiangqiang Hu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Dutta B, Nema A, Shetake NG, Gupta J, Barick KC, Lawande MA, Pandey BN, Priyadarsini IK, Hassan PA. Glutamic acid-coated Fe 3O 4 nanoparticles for tumor-targeted imaging and therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110915. [PMID: 32409067 DOI: 10.1016/j.msec.2020.110915] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
We have developed surface functionalised Fe3O4 magnetic nanoparticles (MNPs) based system that can be used for tumor-targeted multimodal therapies and MR imaging. Biocompatible, non-essential amino acid (glutamic acid) was introduced onto the surface of Fe3O4 MNPs to provide functional sites for binding of chemotherapeutic drugs. These glutamic acid-coated Fe3O4 MNPs (GAMNPs) exhibit good water-dispersibility, magnetic responsivity and pH dependent charge conversal feature. The magnetic core as well as organic shell of GAMNPs was characterized by XRD, TEM, DLS, FTIR, PPMS and UV-visible spectroscopy and zeta-potential analyzer etc. The broad spectrum anticancer drugs, doxorubicin hydrochloride (DOX) and methotrexate (MTX) were electrostatically and covalently conjugated to the surface of GAMNPs, respectively for combination chemotherapy. These dual drugs loaded system (DOX-MTX-GAMNPs) shows pH dependent release behaviour of both the drugs and enhanced toxicity towards breast cancer cell line (MCF-7) as compared to their individual treatment. Fluorescence microscopy and flow cytometric analyses confirmed the successful uptake of drug loaded system into MCF-7 cell lines. Further MTX being analogue of folic acid, its co-delivery with DOX would help in internalization of both the drugs into MCF-7 cells. These GAMNPs also show good heating efficiency under AC magnetic field (Intrinsic loss power, ILP = 0.95 and 0.73 and 0.48 nHm2/Kg at Fe concentration of 0.5, 1 and 2 mg/ml, respectively) and transverse relaxivity (r2 = 152 mM-1 s-1) indicating their potential capability for hyperthermia therapy and MRI tracking. Furthermore, it has been observed that the combination of chemotherapeutic drugs and hyperthermia leads to an enhancement of cytotoxicity in MCF-7 cells.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anshika Nema
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Tathawade, Pune 411033, India
| | - Neena G Shetake
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Jagriti Gupta
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Malini A Lawande
- Dept. of MRI, Dr. Balabhai Nanavati Hospital and Research Centre, Mumbai 400056, India
| | - B N Pandey
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
18
|
Wang XH, Chen XQ, Peng HS, Wei XF, Wang XJ, Cheng K, Liu YA, Yang W. Facile synthesis of polypyrrole-rhodamine B nanoparticles for self-monitored photothermal therapy of cancer cells. J Mater Chem B 2020; 8:1033-1039. [PMID: 31939981 DOI: 10.1039/c9tb02274k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy following microscopic temperature detection can avoid overheating effects or insufficient heating, and thus improve therapeutic efficacy. In this study, biocompatible dual-functional nanoparticles (NPs) are constructed from polypyrrole (PPy) and rhodamine B (RB) by a one-step modified polymerization method. The polypyrrole serves as a photothemal agent, and rhodamine B acts as a temperature-sensing probe. The polypyrrole-rhodamine B (PPy-RB) NPs possess a high photothermal effect on irradiation by 808 nm laser, and a competent temperature sensitivity for the real-time temperature monitoring based on the emission intensity response of rhodamine B. After acting on HepG2 cells, the PPy-RB NPs can effectively induce cancer cell death, and the microscopic temperature is monitored by fluorescence feedback from rhodamine B during PTT by laser confocal microscopy. Hence, the proposed approach can supply a facile and promising way for the fabrication of effective theranostic nanoplatforms assisted by self-monitoring of cancer therapeutic processes.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Xue-Qiao Chen
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Hong-Shang Peng
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Xiao-Fei Wei
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Xiao-Juan Wang
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Kun Cheng
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Yuan-An Liu
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Wei Yang
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| |
Collapse
|
19
|
Kong W, Wang Q, Deng G, Zhao H, Zhao L, Lu J, Liu X. Se@SiO2@Au-PEG/DOX NCs as a multifunctional theranostic agent efficiently protect normal cells from oxidative damage during photothermal therapy. Dalton Trans 2020; 49:2209-2217. [PMID: 32003374 DOI: 10.1039/c9dt04867g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multifunctional theranostic agent was exploited, which can efficiently prevent healthy cells from oxidative damage during photothermal therapy, thus solving the problem of hyperthermia therapy by introducing selenium.
Collapse
Affiliation(s)
- Wenyan Kong
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Qi Wang
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Guoying Deng
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Hang Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Linjing Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Jie Lu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|
20
|
Wang X, Han Q, Liu X, Wang C, Yang R. Multifunctional inhibitors of β-amyloid aggregation based on MoS 2/AuNR nanocomposites with high near-infrared absorption. NANOSCALE 2019; 11:9185-9193. [PMID: 31038146 DOI: 10.1039/c9nr01845j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent advances in nanotechnology have developed a lot of opportunities for biological applications. In this work, multifunctional MoS2/AuNR nanocomposites with unique high NIR absorption were designed via combining MoS2 nanosheets and gold nanorods (AuNRs). The nanocomposites were synthesized through electrostatic self-assembly and showed high stability and good biocompatibility. Then they were used to modulate the aggregation of amyloid-β peptides, destabilize mature fibrils under NIR irradiation, and eliminate Aβ-induced ROS against neurotoxicity. The inhibition and destabilization effects were confirmed by Thioflavin T (ThT) fluorescence assay and transmission electron microscopy (TEM). Cell viability assay and ROS assay revealed that MoS2/AuNR nanocomposites could alleviate Aβ-induced oxidative stress and cell toxicity. More importantly, both MoS2 nanosheets and AuNRs can be used as NIR photothermal agents, MoS2/AuNR nanocomposites have enhanced ability of disrupting Aβ fibrils and improved cell viability by generating local heat under low power NIR irradiation. Our results provide new insights into the design of new multifunctional systems for the treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Xinhuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 1000190, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Kaliamurthi S, Demir-Korkmaz A, Selvaraj G, Gokce-Polat E, Wei YK, Almessiere MA, Baykal A, Gu K, Wei DQ. Viewing the Emphasis on State-of-the-Art Magnetic Nanoparticles: Synthesis, Physical Properties, and Applications in Cancer Theranostics. Curr Pharm Des 2019; 25:1505-1523. [PMID: 31119998 DOI: 10.2174/1381612825666190523105004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Cancer-related mortality is a leading cause of death among both men and women around the world. Target-specific therapeutic drugs, early diagnosis, and treatment are crucial to reducing the mortality rate. One of the recent trends in modern medicine is "Theranostics," a combination of therapeutics and diagnosis. Extensive interest in magnetic nanoparticles (MNPs) and ultrasmall superparamagnetic iron oxide nanoparticles (NPs) has been increasing due to their biocompatibility, superparamagnetism, less-toxicity, enhanced programmed cell death, and auto-phagocytosis on cancer cells. MNPs act as a multifunctional, noninvasive, ligand conjugated nano-imaging vehicle in targeted drug delivery and diagnosis. In this review, we primarily discuss the significance of the crystal structure, magnetic properties, and the most common method for synthesis of the smaller sized MNPs and their limitations. Next, the recent applications of MNPs in cancer therapy and theranostics are discussed, with certain preclinical and clinical experiments. The focus is on implementation and understanding of the mechanism of action of MNPs in cancer therapy through passive and active targeting drug delivery (magnetic drug targeting and targeting ligand conjugated MNPs). In addition, the theranostic application of MNPs with a dual and multimodal imaging system for early diagnosis and treatment of various cancer types including breast, cervical, glioblastoma, and lung cancer is reviewed. In the near future, the theranostic potential of MNPs with multimodality imaging techniques may enhance the acuity of personalized medicine in the diagnosis and treatment of individual patients.
Collapse
Affiliation(s)
- Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou Hightech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Ayse Demir-Korkmaz
- Department of Chemistry, Istanbul Medeniyet University, 34700 Uskudar, Istanbul, Turkey
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou Hightech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Emine Gokce-Polat
- Department of Engineering Physics, Istanbul Medeniyet University, 34700 Uskudar, Istanbul, Turkey
| | - Yong-Kai Wei
- College of Science, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Munirah A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Keren Gu
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou Hightech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No: 800 Dongchuan Road, Minhang, Shanghai, 200240, China
| |
Collapse
|
22
|
Chen L, Zhong H, Qi X, Shao H, Xu K. Modified core–shell magnetic mesoporous zirconia nanoparticles formed through a facile “outside-to-inside” way for CT/MRI dual-modal imaging and magnetic targeting cancer chemotherapy. RSC Adv 2019; 9:13220-13233. [PMID: 35520762 PMCID: PMC9063760 DOI: 10.1039/c9ra01063g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Iron oxide based magnetic nanoparticles (MNPs) as typical theranostic nanoagents have been popularly used in various biomedical applications. Conventional core–shell MNPs are usually synthesized from inside to outside. This method has strict requirements on the interface properties of magnetic cores and the precursors of the coating shell. The shape and size of MNPs are significantly influenced by that of the pre-synthesized magnetic cores. Most core–shell MNPs have only single T2W MRI imaging ability. Herein, we propose a new synthetic strategy for core-mesoporous shell structural MNPs, where hollow mesoporous nanospheres which exhibit an intrinsic property for both CT imaging and drug loading were used as the shell and the magnetic cores were produced in the cavity of the shell. A new type of MNPs, Fe3O4@ZrO2 nanoparticles (M-MZNs), were developed using this facile outside-to-inside way, where multiple Fe3O4 nanoparticles grew inside the cavity of the mesoporous hollow ZrO2 nanospheres through chemical coprecipitation. The obtained MNPs not only exhibited superior magnetic properties and CT/MR imaging ability but also high drug loading capacity. In vitro experiment results revealed that M-MZNs-PEG loaded with doxorubicin (DOX) presented selective growth inhibition against cancer cells due to pH-sensitive DOX release and enhanced endocytosis by cancer cells under a magnetic field. Furthermore, the proposed MNPs exhibited CT/MRI dual modal imaging ability and effective physical targeting to tumor sites in vivo. More importantly, experiments of magnetic targeting chemotherapy on tumor bearing mice demonstrated that the nanocomposites significantly suppressed tumor growth without obvious pathological damage to major organs. Henceforth, this study provides a new strategy for CT/MRI dual-modal imaging guided and magnetic targeting cancer therapy. Magnetic mesoporous zirconia nanoparticle was synthesized by producing multiple iron oxide cores inside the cavity of mesoporous ZrO2 hollow nanospheres and was used for CT/MRI dual-modal imaging and magnetic targeting chemotherapy.![]()
Collapse
Affiliation(s)
- Lufeng Chen
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| | - Hongshan Zhong
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| | - Xun Qi
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| | - Haibo Shao
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| | - Ke Xu
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| |
Collapse
|
23
|
Liu B, Zhang H, Ding Y. Au-Fe3O4 heterostructures for catalytic, analytical, and biomedical applications. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|