1
|
de Souza Araújo IJ, Bottino MC. Biofabrication - Revolutionizing the future of regenerative periodontics. Dent Mater 2025; 41:179-193. [PMID: 39632205 DOI: 10.1016/j.dental.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Periodontium is a compartmentalized and highly specialized tissue responsible for tooth stability. Loss of tooth attachment due to periodontitis and trauma is a complex clinical burden affecting a large parcel of the adult and elderly population worldwide, and regenerative strategies to reestablish the native conditions of the periodontium are paramount. Biofabrication of scaffolds, through various techniques and materials, for regenerative periodontics has significantly evolved in the last decades. From the basics of occlusive membranes and graft materials to the complexity of converging 3D printing and Bioprinting using image-based models, biofabrication opens many possibilities for patient-specific scaffolds that recapitulate the anatomical and physiological conditions of periodontal tissues and interfaces. Thus, this review presents fundamental concepts related to the native characteristics of the periodontal tissues, the key to designing personalized strategies, and the latest trends of biofabrication in regenerative periodontics with a critical overview of how these emerging technologies have the potential to shift the one-size-fits-all paradigm.
Collapse
Affiliation(s)
- Isaac J de Souza Araújo
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Wu Z, Mo L, Wang Z, Song L, Kobatake E, Ito Y, Wang Y, Zhang P. Biointerface engineering through amalgamation of gene technology and site-specific growth factor conjugation for efficient osteodifferentiation. Biotechnol Bioeng 2025; 122:80-94. [PMID: 39300684 DOI: 10.1002/bit.28852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The development of bone implants through bioinspired immobilization of growth factors remains a key issue in the generation of biological interfaces, especially in enhancing osteodifferentiation ability. In this study, we developed a strategy for surface functionalization of poly(lactide-glycolide) (PLGA) and hydroxyapatite (HA) composite substrates through site-specific conjugation of bone morphogenetic protein 2 containing 3,4-hydroxyphenalyalanine (DOPA-BMP2) mediated by tyrosinase and sortase A (SrtA). Firstly, the growth factor BMP2-LPETG containing LPETG motif was successfully expressed in Escherichia coli through recombinant DNA technology. The excellent binding affinity of binding growth factor (DOPA-BMP2) was achieved by converting the tyrosine residue (Y) of YKYKY-GGG peptide into DOPA (X) by tyrosinase, which bound to the substrates. Then its GGG motif was specifically bound to the end of BMP2-LPETG mediated by SrtA. Therefore, the generated bioactive DOPA-BMP2/PLGA/HA substrates significantly promoted the osteogenic differentiation of MC3T3-E1 cells. Thanks to this microbial-assisted engineering approach, our work presents a facile and highly site-specific strategy to engineer biomimetic materials for orthopedics and dentistry by effectively delivering growth factors, peptides, and other biomacromolecules.
Collapse
Affiliation(s)
- Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Li Mo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Liangsong Song
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| |
Collapse
|
3
|
Ang BC, Nam HY, Abdullah MF, Muhammad F, Truong YB. A Review on Advances and Challenges in Core-Shell Scaffolds for Bone Tissue Engineering: Design, Fabrication, and Clinical Translation. Macromol Rapid Commun 2024:e2400620. [PMID: 39489721 DOI: 10.1002/marc.202400620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
This review explores core-shell scaffolds in bone tissue engineering, highlighting their osteoconductive and osteoinductive properties critical for bone growth and regeneration. Key design factors include material selection, porosity, mechanical strength, biodegradation kinetics, and bioactivity. Electrospun core-shell nanofibrous scaffolds demonstrate potential in delivering therapeutic agents and enhancing bone regeneration. Critical characterization techniques include structural, surface, chemical composition, mechanical, and degradation analyses. Scaling up production poses challenges, addressed by innovative electrospinning techniques. Future research focuses on regulatory and commercial considerations, while exploring advanced materials and fabrication methods to optimize scaffold performance for improved clinical outcomes.
Collapse
Affiliation(s)
- Bee Chin Ang
- Center of Advanced Materials, University Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Chemical Engineering, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Hui Yin Nam
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, 43000, Malaysia
| | - Muhammad Faiq Abdullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau Perlis, 02600, Malaysia
| | - Farina Muhammad
- Department of Biomedical Engineering, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yen Bach Truong
- CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| |
Collapse
|
4
|
Tyowua AT, Harbottle D, Binks BP. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Adv Colloid Interface Sci 2024; 332:103274. [PMID: 39159542 DOI: 10.1016/j.cis.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Department of Chemistry, Benue State University, PMB, 102119, Makurdi, Nigeria; School of Chemical Engineering, University of Birmingham, Edgbaston. B15 2TT. UK.
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT. UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull. HU6 7RX. UK
| |
Collapse
|
5
|
Salerno S, Piscioneri A, Morelli S, Gori A, Provasi E, Gagni P, Barile L, Cretich M, Chiari M, De Bartolo L. Extracellular vesicles selective capture by peptide-functionalized hollow fiber membranes. J Colloid Interface Sci 2024; 667:338-349. [PMID: 38640653 DOI: 10.1016/j.jcis.2024.04.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Recently, membrane devices and processes have been applied for the separation and concentration of subcellular components such as extracellular vesicles (EVs), which play a diagnostic and therapeutic role in many pathological conditions. However, the separation and isolation of specific EV populations from other components found in biological fluids is still challenging. Here, we developed a peptide-functionalized hollow fiber (HF) membrane module to achieve the separation and enrichment of highly pure EVs derived from the culture media of human cardiac progenitor cells. The strategy is based on the functionalization of PSf HF membrane module with BPt, a peptide sequence able to bind nanovesicles characterized by highly curved membranes. HF membranes were modified by a nanometric coating with a copoly azide polymer to limit non-specific interactions and to enable the conjugation with peptide ligand by click chemistry reaction. The BPt-functionalized module was integrated into a TFF process to facilitate the design, rationalization, and optimization of EV isolation. This integration combined size-based transport of species with specific membrane sensing ligands. The TFF integrated BPt-functionalized membrane module demonstrated the ability to selectively capture EVs with diameter < 200 nm into the lumen of fibers while effectively removing contaminants such as albumin. The captured and released EVs contain the common markers including CD63, CD81, CD9 and syntenin-1. Moreover, they maintained a round shape morphology and structural integrity highlighting that this approach enables EVs concentration and purification with low shear stress. Additionally, it achieved the removal of contaminants such as albumin with high reliability and reproducibility, reaching a removal of 93%.
Collapse
Affiliation(s)
- Simona Salerno
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy
| | - Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy
| | - Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy
| | - Alessandro Gori
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Elena Provasi
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, via Tesserete 48, 6900 Lugano, Switzerland
| | - Paola Gagni
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa 5, 6500 Bellinzona, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Via Buffi 13, 6900 Lugano, Switzerland
| | - Marina Cretich
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Marcella Chiari
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy.
| |
Collapse
|
6
|
Koons GL, Kontoyiannis PD, Diaz-Gomez L, Elsarrag SZ, Scott DW, Diba M, Mikos AG. Influence of Polymeric Microparticle Size and Loading Concentration on 3D Printing Accuracy and Degradation Behavior of Composite Scaffolds. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e813-e827. [PMID: 38694834 PMCID: PMC11058418 DOI: 10.1089/3dp.2022.0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Successful employment of 3D printing for delivery of therapeutic biomolecules requires protection of their bioactivity on exposure to potentially inactivating conditions. Although intermediary encapsulation of the biomolecules in polymeric particulate delivery vehicles is a promising strategy for this objective, the inclusion of such particles in 3D printing formulations may critically impact the accuracy or precision of 3D printed scaffolds relative to their intended designed architectures, as well as the degradation behavior of both the scaffolds and the included particles. The present work aimed to elucidate the effect of poly(d,l-lactic-co-glycolic acid) particle size and loading concentration on material accuracy, machine precision, and degradation of 3D printed poly(ɛ-caprolactone)-based scaffolds. Using a main effects analysis, the sizes and loading concentrations of particle delivery vehicles investigated were found to have neither a beneficial nor disadvantageous influence on the metrics of printing quality such as material accuracy and machine precision. Meanwhile, particle loading concentration was determined to influence degradation rate, whereas printing temperature affected the trends in composite weight-average molecular weight. Neither of the two particle-related parameters (concentration nor diameter) was found to exhibit a significant effect on intra-fiber nor inter-fiber porosity. These findings evidence the capacity for controlled loading of particulate delivery vehicles in 3D printed scaffolds while preserving construct accuracy and precision, and with predictable dictation of composite degradation behavior for potential controlled release of encapsulated biomolecules.
Collapse
Affiliation(s)
- Gerry L. Koons
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Panayiotis D. Kontoyiannis
- Department of Bioengineering, Rice University, Houston, Texas, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Luis Diaz-Gomez
- Department of Pharmacology, Pharmacy, and Pharmaceutical Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Selma Z. Elsarrag
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Quantitative and Computational Biology, Baylor College of Medicine, Houston, Texas, USA
| | - David W. Scott
- Department of Statistics, Rice University, Houston, Texas, USA
| | - Mani Diba
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
7
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
8
|
Berraquero-García C, Pérez-Gálvez R, Espejo-Carpio FJ, Guadix A, Guadix EM, García-Moreno PJ. Encapsulation of Bioactive Peptides by Spray-Drying and Electrospraying. Foods 2023; 12:foods12102005. [PMID: 37238822 DOI: 10.3390/foods12102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used to stabilize functional ingredients, helping to maintain their activity after processing, storage, and digestion, thus improving their bioaccessibility. Monoaxial spray-drying and electrospraying are common and economical techniques used for the encapsulation of nutrients and bioactive compounds in both the pharmaceutical and food industries. Although less studied, the coaxial configuration of both techniques could potentially improve the stabilization of protein-based bioactives via the formation of shell-core structures. This article reviews the application of these techniques, both monoaxial and coaxial configurations, for the encapsulation of bioactive peptides and protein hydrolysates, focusing on the factors affecting the properties of the encapsulates, such as the formulation of the feed solution, selection of carrier and solvent, as well as the processing conditions used. Furthermore, this review covers the release, retention of bioactivity, and stability of peptide-loaded encapsulates after processing and digestion.
Collapse
Affiliation(s)
| | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | |
Collapse
|
9
|
Oliveira ACDJ, Silva EB, Oliveira TCD, Ribeiro FDOS, Nadvorny D, Oliveira JWDF, Borrego-Sánchez A, Rodrigues KADF, Silva MS, Rolim-Neto PJ, Viseras C, Silva-Filho EC, Silva DAD, Chaves LL, Soares MFDLR, Soares-Sobrinho JL. pH-responsive phthalate cashew gum nanoparticles for improving drugs delivery and anti-Trypanosoma cruzi efficacy. Int J Biol Macromol 2023; 230:123272. [PMID: 36649864 DOI: 10.1016/j.ijbiomac.2023.123272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.
Collapse
Affiliation(s)
- Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Emilliany Bárbara Silva
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Thaisa Cardoso de Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Daniella Nadvorny
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | - Marcelo Sousa Silva
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Pedro José Rolim-Neto
- Laboratory of Technology of Medicines - LTM, Federal University of Pernambuco, Recife, Brazil
| | - César Viseras
- Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology - BIOTEC, Federal University of Delta of Parnaiba, Parnaiba, PI, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
10
|
Peranidze K, Safronova TV, Kildeeva NR. Electrospun Nanomaterials Based on Cellulose and Its Derivatives for Cell Cultures: Recent Developments and Challenges. Polymers (Basel) 2023; 15:1174. [PMID: 36904415 PMCID: PMC10007370 DOI: 10.3390/polym15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The development of electrospun nanofibers based on cellulose and its derivatives is an inalienable task of modern materials science branches related to biomedical engineering. The considerable compatibility with multiple cell lines and capability to form unaligned nanofibrous frameworks help reproduce the properties of natural extracellular matrix and ensure scaffold applications as cell carriers promoting substantial cell adhesion, growth, and proliferation. In this paper, we are focusing on the structural features of cellulose itself and electrospun cellulosic fibers, including fiber diameter, spacing, and alignment responsible for facilitated cell capture. The study emphasizes the role of the most frequently discussed cellulose derivatives (cellulose acetate, carboxymethylcellulose, hydroxypropyl cellulose, etc.) and composites in scaffolding and cell culturing. The key issues of the electrospinning technique in scaffold design and insufficient micromechanics assessment are discussed. Based on recent studies aiming at the fabrication of artificial 2D and 3D nanofiber matrices, the current research provides the applicability assessment of the scaffolds toward osteoblasts (hFOB line), fibroblastic (NIH/3T3, HDF, HFF-1, L929 lines), endothelial (HUVEC line), and several other cell types. Furthermore, a critical aspect of cell adhesion through the adsorption of proteins on the surfaces is touched upon.
Collapse
Affiliation(s)
- Kristina Peranidze
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
| | - Tatiana V. Safronova
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| | - Nataliya R. Kildeeva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin State University of Russia, Malaya Kaluzhskaya 1, 119071 Moscow, Russia
| |
Collapse
|
11
|
Doyle ME, Dalgarno K, Masoero E, Ferreira AM. Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering. Biopolymers 2023; 114:e23527. [PMID: 36444710 PMCID: PMC10078151 DOI: 10.1002/bip.23527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.
Collapse
Affiliation(s)
| | - Kenny Dalgarno
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
12
|
Ren L, Gong P, Gao X, Wang Q, Xie L, Tang W, Long J, Liu C, Tian W, He M. Metal-phenolic networks acted as a novel bio-filler of a barrier membrane to improve guided bone regeneration via manipulating osteoimmunomodulation. J Mater Chem B 2022; 10:10128-10138. [PMID: 36468640 DOI: 10.1039/d2tb01804g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A guided bone tissue regeneration membrane (GBRM) is traditionally viewed as an inert physical barrier to isolate soft tissue from the bone defect area. However, as a "foreign body", the implantation of a GBRM would inevitably modulate immune response and subsequently affect bone dynamics. Herein, we developed strontium ion (Sr2+)-based metal-phenolic network complexes (MPNs) as a novel type of bio-filler to manipulate the osteoimmunomodulation of the advanced GBRM. For controllable delivery of Sr2+ depending on the difference in affinity between phenolic ligands and Sr2+, tannic acid (TA), epigallocatechin gallate (EGCG), and epigallocatechin (EGC) were selected to chelate with Sr2+. The formed MPNs were incorporated into PCL nanofibrous membranes by blending electrospinning. Among them, TA/Sr based MPN particles displayed the most sustainable release profile of phenolic ligands and Sr2+. Further investigations demonstrated that Sr2+ could not only directly promote osteogenic differentiation of BMSCs, but also manipulate an anti-inflammatory osteoimmune microenvironment in a synergistic manner with TA, thus enhancing osteogenesis and inhibiting bone resorption. The rat alveolar bone defect model also confirmed that the TA/Sr nanoparticle modified membrane displayed better bone regeneration performance than the pure PCL membrane via inhibiting bone resorption. This work provides a new platform for controllable delivery of bioactive nutrient elements, and holds great promise for advancing multi-functional biocomposites.
Collapse
Affiliation(s)
- Lulu Ren
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pei Gong
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Xie
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Long
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Can Liu
- Beijing Jimafei Technology Development Co., LTD, Beijing, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
14
|
Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions. BIOLOGY 2022; 11:biology11121706. [PMID: 36552216 PMCID: PMC9774464 DOI: 10.3390/biology11121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
A new strategy based on the combination of electrically conductive polymer nanocomposites and extracellular Zn2+ ions as a myogenic factor was developed to assess its ability to synergically stimulate myogenic cell response. The conductive nanocomposite was prepared with a polymeric matrix and a small amount of graphene (G) nanosheets (0.7% wt/wt) as conductive filler to produce an electrically conductive surface. The nanocomposites' surface electrical conductivity presented values in the range of human skeletal muscle tissue. The biological evaluation of the cell environment created by the combination of the conductive surface and extracellular Zn2+ ions showed no cytotoxicity and good cell adhesion (murine C2C12 myoblasts). Amazingly, the combined strategy, cell-material interface with conductive properties and Zn bioactive ions, was found to have a pronounced synergistic effect on myoblast proliferation and the early stages of differentiation. The ratio of differentiated myoblasts cultured on the conductive nanocomposites with extracellular Zn2+ ions added in the differentiation medium (serum-deprived medium) was enhanced by more than 170% over that of non-conductive surfaces (only the polymeric matrix), and more than 120% over both conductive substrates (without extracellular Zn2+ ions) and non-conductive substrates with extracellular Zn2+. This synergistic effect was also found to increase myotube density, myotube area and diameter, and multinucleated myotube formation. MyoD-1 gene expression was also enhanced, indicating the positive effect in the early stages of myogenic differentiation. These results demonstrate the great potential of this combined strategy, which stands outs for its simplicity and robustness, for skeletal muscle tissue engineering applications.
Collapse
|
15
|
Multifunctional membranes for lipidic nanovesicle capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Alamán-Díez P, García-Gareta E, Napal PF, Arruebo M, Pérez MÁ. In Vitro Hydrolytic Degradation of Polyester-Based Scaffolds under Static and Dynamic Conditions in a Customized Perfusion Bioreactor. MATERIALS 2022; 15:ma15072572. [PMID: 35407903 PMCID: PMC9000590 DOI: 10.3390/ma15072572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
Abstract
Creating biofunctional artificial scaffolds could potentially meet the demand of patients suffering from bone defects without having to rely on donors or autologous transplantation. Three-dimensional (3D) printing has emerged as a promising tool to fabricate, by computer design, biodegradable polymeric scaffolds with high precision and accuracy, using patient-specific anatomical data. Achieving controlled degradation profiles of 3D printed polymeric scaffolds is an essential feature to consider to match them with the tissue regeneration rate. Thus, achieving a thorough characterization of the biomaterial degradation kinetics in physiological conditions is needed. Here, 50:50 blends made of poly(ε-caprolactone)-Poly(D,L-lactic-co-glycolic acid (PCL-PLGA) were used to fabricate cylindrical scaffolds by 3D printing (⌀ 7 × 2 mm). Their hydrolytic degradation under static and dynamic conditions was characterized and quantified. For this purpose, we designed and in-house fabricated a customized bioreactor. Several techniques were used to characterize the degradation of the parent polymers: X-ray Photoelectron Spectroscopy (XPS), Gel Permeation Chromatography (GPC), Scanning Electron Microscopy (SEM), evaluation of the mechanical properties, weigh loss measurements as well as the monitoring of the degradation media pH. Our results showed that flow perfusion is critical in the degradation process of PCL-PLGA based scaffolds implying an accelerated hydrolysis compared to the ones studied under static conditions, and up to 4 weeks are needed to observe significant degradation in polyester scaffolds of this size and chemical composition. Our degradation study and characterization methodology are relevant for an accurate design and to tailor the physicochemical properties of polyester-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Pilar Alamán-Díez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
- Correspondence:
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6BT, UK
| | - Pedro Francisco Napal
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), University of Zaragoza, 50018 Zaragoza, Spain;
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I + D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Tissue regenerative solutions for musculoskeletal disorders have become increasingly important with a growing aged population. Current growth factor treatments often require high dosages with the potential for off-target effects. Growth factor immobilization strategies offer approaches towards alleviating these concerns. This review summarizes current growth factor immobilization techniques (encapsulation, affinity interactions, and covalent binding) and the effects of immobilization on growth factor loading, release, and bioactivity. RECENT FINDINGS The breadth of immobilization techniques based on encapsulation, affinity, and covalent binding offer multiple methods to improve the therapeutic efficacy of growth factors by controlling bioactivity and release. Growth factor immobilization strategies have evolved to more complex systems with the capacity to load and release multiple growth factors with spatiotemporal control. The advancements in immobilization strategies allow for development of new, complex musculoskeletal tissue treatment strategies with improved spatiotemporal control of loading, release, and bioactivity.
Collapse
Affiliation(s)
- Joseph J Pearson
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
18
|
Sun L, Li S, Yang K, Wang J, Li Z, Dan N. Polycaprolactone strengthening keratin/bioactive glass composite scaffolds with double cross-linking networks for potential application in bone repair. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-021-00077-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractIn this study, we aimed at constructing polycaprolactone (PCL) reinforced keratin/bioactive glass composite scaffolds with a double cross-linking network structure for potential bone repair application. Thus, the PCL-keratin-BG composite scaffold was prepared by using keratin extracted from wool as main organic component and bioactive glass (BG) as main inorganic component, through both cross-linking systems, such as the thiol-ene click reaction between abundant sulfhydryl groups of keratin and the unsaturated double bond of 3-methacryloxy propyltrimethoxy silane (MPTS), and the amino-epoxy reaction between amino groups of keratin and the epoxy group in (3-glycidoxymethyl) methyldiethoxysilane (GPTMS) molecule, along with introduction of PCL as a reinforcing agent. The success of the thiol-ene reaction was verified by the FTIR and 1H-NMR analyses. And the structure of keratin-BG and PCL-keratin-BG composite scaffolds were studied and compared by the FTIR and XRD characterization, which indicated the successful preparation of the PCL-keratin-BG composite scaffold. In addition, the SEM observation, and contact angle and water absorption rate measurements demonstrated that the PCL-keratin-BG composite scaffold has interconnected porous structure, appropriate pore size and good hydrophilicity, which is helpful to cell adhesion, differentiation and proliferation. Importantly, compression experiments showed that, when compared with the keratin-BG composite scaffold, the PCL-keratin-BG composite scaffold increased greatly from 0.91 ± 0.06 MPa and 7.25 ± 1.7 MPa to 1.58 ± 0.21 MPa and 14.14 ± 1.95 MPa, respectively, which suggesting the strong reinforcement of polycaprolactone. In addition, the biomineralization experiment and MTT assay indicated that the PCL-keratin-BG scaffold has good mineralization ability and no-cytotoxicity, which can promote cell adhesion, proliferation and growth. Therefore, the results suggested that the PCL-keratin-BG composite scaffold has the potential as a candidate for application in bone regeneration field.
Graphical Abstract
Collapse
|
19
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
20
|
Fibers by Electrospinning and Their Emerging Applications in Bone Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering (BTE) is an optimized approach for bone regeneration to overcome the disadvantages of lacking donors. Biocompatibility, biodegradability, simulation of extracellular matrix (ECM), and excellent mechanical properties are essential characteristics of BTE scaffold, sometimes including drug loading capacity. Electrospinning is a simple technique to prepare fibrous scaffolds because of its efficiency, adaptability, and flexible preparation of electrospinning solution. Recent studies about electrospinning in BTE are summarized in this review. First, we summarized various types of polymers used in electrospinning and methods of electrospinning in recent work. Then, we divided them into three parts according to their main role in BTE, (1) ECM simulation, (2) mechanical support, and (3) drug delivery system.
Collapse
|
21
|
Aytac Z, Dubey N, Daghrery A, Ferreira JA, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Innovations in Craniofacial Bone and Periodontal Tissue Engineering - From Electrospinning to Converged Biofabrication. INTERNATIONAL MATERIALS REVIEWS 2021; 67:347-384. [PMID: 35754978 PMCID: PMC9216197 DOI: 10.1080/09506608.2021.1946236] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 06/02/2023]
Abstract
From a materials perspective, the pillars for the development of clinically translatable scaffold-based strategies for craniomaxillofacial (CMF) bone and periodontal regeneration have included electrospinning and 3D printing (biofabrication) technologies. Here, we offer a detailed analysis of the latest innovations in 3D (bio)printing strategies for CMF bone and periodontal regeneration and provide future directions envisioning the development of advanced 3D architectures for successful clinical translation. First, the principles of electrospinning applied to the generation of biodegradable scaffolds are discussed. Next, we present on extrusion-based 3D printing technologies with a focus on creating scaffolds with improved regenerative capacity. In addition, we offer a critical appraisal on 3D (bio)printing and multitechnology convergence to enable the reconstruction of CMF bones and periodontal tissues. As a future outlook, we highlight future directions associated with the utilization of complementary biomaterials and (bio)fabrication technologies for effective translation of personalized and functional scaffolds into the clinics.
Collapse
Affiliation(s)
- Zeynep Aytac
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Jessica A. Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Isaac J. de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Miguel Castilho
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jos Malda
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
22
|
Pedrosa MCG, dos Anjos SA, Mavropoulos E, Bernardo PL, Granjeiro JM, Rossi AM, Dias ML. Structure and biological compatibility of polycaprolactone/zinc-hydroxyapatite electrospun nanofibers for tissue regeneration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211022448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although guided tissue regeneration (GTR) is a useful tool for regenerating lost tissue as bone and periodontal tissue, a biocompatible membrane capable of regenerating large defects has yet to be discovered. This study aimed to characterize the physicochemical properties and biological compatibility of polycaprolactone (PCL) membranes associated with or without nanostructured hydroxyapatite (HA) (PCL/HA) and Zn-doped HA (PCL/ZnHA), produced by electrospinning. PCL, PCL/HA, and PCL/ZnHA were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Nanoparticles of HA or ZnHA were homogeneously distributed and dispersed inside the PCL fibers, which decreased the fiber thickness. At 1 wt% of HA or ZnHA, these nanoparticles acted as nucleating agents. Moreover, HA and ZnHA increased the onset of the degradation temperature and thermal stability of the electrospun membrane. All tested membranes showed no cytotoxicity and allowed murine pre-osteoblast adhesion and spreading; however, higher concentrations of PCL/ZnHA showed less cells and an irregular cell morphology compared to PCL and PCL/HA. This article presents a cytocompatible, electrospun, nanocomposite membrane with a novel morphology and physicochemical properties that make it eligible as a scaffold for GTR.
Collapse
Affiliation(s)
- Maria Clara Guimaraes Pedrosa
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Elena Mavropoulos
- Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
| | | | - José Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, Brazil
| | | | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Lee SS, Santschi M, Ferguson SJ. A Biomimetic Macroporous Hybrid Scaffold with Sustained Drug Delivery for Enhanced Bone Regeneration. Biomacromolecules 2021; 22:2460-2471. [PMID: 33971092 DOI: 10.1021/acs.biomac.1c00241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone regeneration is a highly complex physiological process regulated by several factors. In particular, bone-mimicking extracellular matrix and available osteogenic growth factors such as bone morphogenetic protein (BMP) have been regarded as key contributors for bone regeneration. In this study, we developed a biomimetic hybrid scaffold (CEGH) with sustained release of BMP-2 that would result in enhanced bone formation. This hybrid scaffold, composed of BMP-2-loaded cryoelectrospun poly(ε-caprolactone) (PCL) (CE) surrounded by a macroporous gelatin/heparin cryogel (GH), is designed to overcome the drawbacks of the relatively weak mechanical properties of cryogels and poor biocompatibility and hydrophobicity of electrospun PCL. The GH component of the hybrid scaffold provides a hydrophilic surface to improve the biological response of the cells, while the CE component increases the mechanical strength of the scaffold to provide enhanced mechanical support for the defect area and a stable environment for osteogenic differentiation. After analyzing characteristics of the hybrid scaffold such as hydrophilicity, pore difference, mechanical properties, and surface charge, we confirmed that the hybrid scaffold shows enhanced cell proliferation rate and apatite formation in simulated body fluid. Then, we evaluated drug release kinetics of CEGH and confirmed the sustained release of BMP-2. Finally, the enhanced osteogenic differentiation of CEGH with sustained release of BMP-2 was confirmed by Alizarin Red S staining and real-time PCR analysis.
Collapse
Affiliation(s)
- Seunghun S Lee
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Matthias Santschi
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Stephen J Ferguson
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Yuste I, Luciano FC, González-Burgos E, Lalatsa A, Serrano DR. Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res 2021; 169:105626. [PMID: 33892092 DOI: 10.1016/j.phrs.2021.105626] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Understanding the in vitro biology and behavior of human osteoblasts is crucial for developing research models that reproduce closely the bone structure, its functions, and the cell-cell and cell-matrix interactions that occurs in vivo. Mimicking bone microenvironment is challenging, but necessary, to ensure the clinical translation of novel medicines to treat more reliable different bone pathologies. Currently, bone tissue engineering is moving from 2D cell culture models such as traditional culture, sandwich culture, micro-patterning, and altered substrate stiffness, towards more complex 3D models including spheroids, scaffolds, cell sheets, hydrogels, bioreactors, and microfluidics chips. There are many different factors, such cell line type, cell culture media, substrate roughness and stiffness that need consideration when developing in vitro models as they affect significantly the microenvironment and hence, the final outcome of the in vitro assay. Advanced technologies, such as 3D bioprinting and microfluidics, have allowed the development of more complex structures, bridging the gap between in vitro and in vivo models. In this review, past and current 2D and 3D in vitro models for human osteoblasts will be described in detail, highlighting the culture conditions and outcomes achieved, as well as the challenges and limitations of each model, offering a widen perspective on how these models can closely mimic the bone microenvironment and for which applications have shown more successful results.
Collapse
Affiliation(s)
- I Yuste
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - F C Luciano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - E González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - A Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2 DT, UK
| | - D R Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial. Facultad de Farmacia. Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
25
|
Morelli S, Piscioneri A, Salerno S, De Bartolo L. Hollow Fiber and Nanofiber Membranes in Bioartificial Liver and Neuronal Tissue Engineering. Cells Tissues Organs 2021; 211:447-476. [PMID: 33849029 DOI: 10.1159/000511680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
To date, the creation of biomimetic devices for the regeneration and repair of injured or diseased tissues and organs remains a crucial challenge in tissue engineering. Membrane technology offers advanced approaches to realize multifunctional tools with permissive environments well-controlled at molecular level for the development of functional tissues and organs. Membranes in fiber configuration with precisely controlled, tunable topography, and physical, biochemical, and mechanical cues, can direct and control the function of different kinds of cells toward the recovery from disorders and injuries. At the same time, fiber tools also provide the potential to model diseases in vitro for investigating specific biological phenomena as well as for drug testing. The purpose of this review is to present an overview of the literature concerning the development of hollow fibers and electrospun fiber membranes used in bioartificial organs, tissue engineered constructs, and in vitro bioreactors. With the aim to highlight the main biomedical applications of fiber-based systems, the first part reviews the fibers for bioartificial liver and liver tissue engineering with special attention to their multifunctional role in the long-term maintenance of specific liver functions and in driving hepatocyte differentiation. The second part reports the fiber-based systems used for neuronal tissue applications including advanced approaches for the creation of novel nerve conduits and in vitro models of brain tissue. Besides presenting recent advances and achievements, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Rende, Italy
| | - Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Rende, Italy
| | - Simona Salerno
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Rende, Italy
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Rende, Italy
| |
Collapse
|
26
|
Siddiqui N, Kishori B, Rao S, Anjum M, Hemanth V, Das S, Jabbari E. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Mol Biotechnol 2021; 63:363-388. [PMID: 33689142 DOI: 10.1007/s12033-021-00311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 01/17/2023]
Abstract
Regeneration of bone tissue requires novel load bearing, biocompatible materials that support adhesion, spreading, proliferation, differentiation, mineralization, ECM production and maturation of bone-forming cells. Polycaprolactone (PCL) has many advantages as a biomaterial for scaffold production including tuneable biodegradation, relatively high mechanical toughness at physiological temperature. Electrospinning produces nanofibrous porous matrices that mimic many properties of natural tissue extracellular matrix with regard to surface area, porosity and fibre alignment. The biocompatibility and hydrophilicity of PCL nanofibres can be improved by combining PCL with other biomaterials to form composite scaffolds for bone regeneration. This work reviews the most recent research on synthesis, characterization and cellular response to nanofibrous PCL scaffolds and the composites of PCL with other natural and synthetic materials for bone tissue engineering.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India.
| | - Braja Kishori
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Saranya Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Mohammad Anjum
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Venkata Hemanth
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Swati Das
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
27
|
Chen ZY, Gao S, Zhang YW, Zhou RB, Zhou F. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B 2021; 9:2594-2612. [PMID: 33666632 DOI: 10.1039/d0tb02983a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone infection is a devastating disease characterized by recurrence, drug-resistance, and high morbidity, that has prompted clinicians and scientists to develop novel approaches to combat it. Currently, although numerous biomaterials that possess excellent biocompatibility, biodegradability, porosity, and mechanical strength have been developed, their lack of effective antibacterial ability substantially limits bone-defect treatment efficacy. There is, accordingly, a pressing need to design antibacterial biomaterials for effective bone-infection prevention and treatment. This review focuses on antibacterial biomaterials and strategies; it presents recently reported biomaterials, including antibacterial implants, antibacterial scaffolds, antibacterial hydrogels, and antibacterial bone cement types, and aims to provide an overview of these antibacterial materials for application in biomedicine. The antibacterial mechanisms of these materials are discussed as well.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
28
|
Bizeau J, Mertz D. Design and applications of protein delivery systems in nanomedicine and tissue engineering. Adv Colloid Interface Sci 2021; 287:102334. [PMID: 33341459 DOI: 10.1016/j.cis.2020.102334] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Proteins are biological macromolecules involved in a wide range of biological functions, which makes them very appealing as therapeutics agents. Indeed, compared to small molecule drugs, their endogenous nature ensures their biocompatibility and biodegradability, they can be used in a large range of applications and present a higher specificity and activity. However, they suffer from unfolding, enzymatic degradation, short half-life and poor membrane permeability. To overcome such drawbacks, the development of protein delivery systems to protect, carry and deliver them in a controlled way have emerged importantly these last years. In this review, the formulation of a wide panel of protein delivery systems either in the form of polymer or inorganic nanoengineered colloids and scaffolds are presented and the protein loading and release mechanisms are addressed. A section is also dedicated to the detection of proteins and the characterization methods of their release. Then, the main protein delivery systems developed these last three years for anticancer, tissue engineering or diabetes applications are presented, as well as the major in vivo models used to test them. The last part of this review aims at presenting the perspectives of the field such as the use of protein-rich material or the sequestration of proteins. This part will also deal with less common applications and gene therapy as an indirect method to deliver protein.
Collapse
|
29
|
Ghaffari-Bohlouli P, Zahedi P, Shahrousvand M. Enhanced osteogenesis using poly (l-lactide-co-d, l-lactide)/poly (acrylic acid) nanofibrous scaffolds in presence of dexamethasone-loaded molecularly imprinted polymer nanoparticles. Int J Biol Macromol 2020; 165:2363-2377. [DOI: 10.1016/j.ijbiomac.2020.10.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
|
30
|
Krok-Borkowicz M, Reczyńska K, Rumian Ł, Menaszek E, Orzelski M, Malisz P, Silmanowicz P, Dobrzyński P, Pamuła E. Surface-Modified Poly(l-lactide- co-glycolide) Scaffolds for the Treatment of Osteochondral Critical Size Defects-In Vivo Studies on Rabbits. Int J Mol Sci 2020; 21:E7541. [PMID: 33066080 PMCID: PMC7590021 DOI: 10.3390/ijms21207541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/11/2020] [Indexed: 12/27/2022] Open
Abstract
Poly(l-lactide-co-glycolide) (PLGA) porous scaffolds were modified with collagen type I (PLGA/coll) or hydroxyapatite (PLGA/HAp) and implanted in rabbits osteochondral defects to check their biocompatibility and bone tissue regeneration potential. The scaffolds were fabricated using solvent casting/particulate leaching method. Their total porosity was 85% and the pore size was in the range of 250-320 µm. The physico-chemical properties of the scaffolds were evaluated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), sessile drop, and compression tests. Three types of the scaffolds (unmodified PLGA, PLGA/coll, and PLGA/HAp) were implanted into the defects created in New Zealand rabbit femoral trochlears; empty defect acted as control. Samples were extracted after 1, 4, 12, and 26 weeks from the implantation, evaluated using micro-computed tomography (µCT), and stained by Masson-Goldner and hematoxylin-eosin. The results showed that the proposed method is suitable for fabrication of highly porous PLGA scaffolds. Effective deposition of both coll and HAp was confirmed on all surfaces of the pores through the entire scaffold volume. In the in vivo model, PLGA and PLGA/HAp scaffolds enhanced tissue ingrowth as shown by histological and morphometric analyses. Bone formation was the highest for PLGA/HAp scaffolds as evidenced by µCT. Neo-tissue formation in the defect site was well correlated with degradation kinetics of the scaffold material. Interestingly, around PLGA/coll extensive inflammation and inhibited tissue healing were detected, presumably due to immunological response of the host towards collagen of bovine origin. To summarize, PLGA scaffolds modified with HAp are the most promising materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Małgorzata Krok-Borkowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| | - Katarzyna Reczyńska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| | - Łucja Rumian
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| | - Elżbieta Menaszek
- Department of Cytobiology, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland;
| | - Maciej Orzelski
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, ul. Głęboka 30, 20-612 Lublin, Poland; (M.O.); (P.S.)
| | - Piotr Malisz
- Department of Electroradiology, Collegium Medicum, Faculty of Health Science, Jagiellonian University, ul. Michałowskiego 12, 31-126 Kraków, Poland;
| | - Piotr Silmanowicz
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, ul. Głęboka 30, 20-612 Lublin, Poland; (M.O.); (P.S.)
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. Curie-Sklodowskiej 34, 41-800 Zabrze, Poland;
- Faculty of Science & Technology, Jan Długosz University in Częstochowa, ul. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| |
Collapse
|
31
|
Huang C, Yang G, Zhou S, Luo E, Pan J, Bao C, Liu X. Controlled Delivery of Growth Factor by Hierarchical Nanostructured Core-Shell Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect. ACS Biomater Sci Eng 2020; 6:5758-5770. [PMID: 33320572 DOI: 10.1021/acsbiomaterials.0c00837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrospun nanofibers have received much attention as bone tissue-engineered scaffolds for their capacity to mimic the structure of natural extracellular matrix (ECM). Most studies have reproduced nanofibers with smooth surface for tissue engineering. This is quite different from the triple-helical nanotopography of natural collagen nanofibrils. In this study, hierarchical nanostructures were coated on the surface of drug-loaded core-shell nanofibers to mimic natural collagen nanofibrils. The nanoshish-kebab (SK) structure was decorated regularly on the surface of the nanofibers, and the inner-loaded bone morphogenetic protein 2 (BMP2) exhibited a gentle release pattern, similar to a zero-order release pattern in kinetics. The in vitro study also showed that the SK structure could accelerate cell proliferation, attachment, and osteogenic differentiation. Four groups of scaffolds were implanted in vivo to repair critical-sized rat calvarial defects: (1) PCL/PVA (control); (2) SK-PCL/PVA; (3) PCL/PVA-BMP2; and (4) SK-PCL/PVA-BMP2. Much more bone was formed in the SK-PCL/PVA group (24.57 ± 3.81%) than in the control group (1.21 ± 0.23%). The BMP2-loaded core-shell nanofibers with nanopatterned structure (SK-PCL/PVA-BMP2) displayed the best repair efficacy (76.38 ± 4.13%), followed by the PCL/PVA-BMP2 group (39.86 ± 5.74%). It was believed that the hierarchical nanostructured core-shell nanofibers could promote osteogeneration and that the SK structure showed synergistic ability with nanofiber-loaded BMP2 in vivo for bone regeneration. Thus, this BMP2-loaded core-shell nanofiber scaffold with hierarchical nanostructure holds great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chunpeng Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.,Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
32
|
Samadian H, Mobasheri H, Azami M, Faridi-Majidi R. Osteoconductive and electroactive carbon nanofibers/hydroxyapatite nanocomposite tailored for bone tissue engineering: in vitro and in vivo studies. Sci Rep 2020; 10:14853. [PMID: 32908157 PMCID: PMC7481198 DOI: 10.1038/s41598-020-71455-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, we aimed to fabricate osteoconductive electrospun carbon nanofibers (CNFs) decorated with hydroxyapatite (HA) crystal to be used as the bone tissue engineering scaffold in the animal model. CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers via heat treatment and the carbonized nanofibers were mineralized by a biomimetic approach. The growth of HA crystals was confirmed using XRD, FTIR, and EDAX analysis techniques. The mineralization process turned the hydrophobic CNFs (WCA: 133.5° ± 0.6°) to hydrophilic CNFs/HA nanocomposite (WCA 15.3° ± 1°). The in vitro assessments revealed that the fabricated 24M-CNFs nanocomposite was biocompatible. The osteoconductive characteristics of CNFs/HA nanocomposite promoted in vivo bone formation in the rat’s femur defect site, significantly, observed by computed tomography (CT) scan images and histological evaluation. Moreover, the histomorphometric analysis showed the highest new bone formation (61.3 ± 4.2%) in the M-CNFs treated group, which was significantly higher than the negative control group (the defect without treatment) (< 0.05). To sum up, the results implied that the fabricated CNFs/HA nanocomposite could be considered as the promising bone healing material.
Collapse
|
33
|
Potential Implantable Nanofibrous Biomaterials Combined with Stem Cells for Subchondral Bone Regeneration. MATERIALS 2020; 13:ma13143087. [PMID: 32664278 PMCID: PMC7412392 DOI: 10.3390/ma13143087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
Abstract
The treatment of osteochondral defects remains a challenge. Four scaffolds were produced using Food and Drug Administration (FDA)-approved polymers to investigate their therapeutic potential for the regeneration of the osteochondral unit. Polycaprolactone (PCL) and poly(vinyl-pyrrolidone) (PVP) scaffolds were made by electrohydrodynamic techniques. Hydroxyapatite (HAp) and/or sodium hyaluronate (HA) can be then loaded to PCL nanofibers and/or PVP particles. The purpose of adding hydroxyapatite and sodium hyaluronate into PCL/PVP scaffolds is to increase the regenerative ability for subchondral bone and joint cartilage, respectively. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were seeded on these biomaterials. The biocompatibility of these biomaterials in vitro and in vivo, as well as their potential to support MSC differentiation under specific chondrogenic or osteogenic conditions, were evaluated. We show here that hBM-MSCs could proliferate and differentiate both in vitro and in vivo on these biomaterials. In addition, the PCL-HAp could effectively increase the mineralization and induce the differentiation of MSCs into osteoblasts in an osteogenic condition. These results indicate that PCL-HAp biomaterials combined with MSCs could be a beneficial candidate for subchondral bone regeneration.
Collapse
|
34
|
Rezk AI, Bhattarai DP, Park J, Park CH, Kim CS. Polyaniline-coated titanium oxide nanoparticles and simvastatin-loaded poly(ε-caprolactone) composite nanofibers scaffold for bone tissue regeneration application. Colloids Surf B Biointerfaces 2020; 192:111007. [PMID: 32388027 DOI: 10.1016/j.colsurfb.2020.111007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/05/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Poly(ε-caprolactone) (PCL) nanofibers loaded with polyaniline coated titanium oxide nanoparticles (TiO2/PANI) and simvastatin (SIM) drug were produced by the electrospinning method. As-prepared samples were investigated in terms of morphology characterization, mechanical properties, physiochemical properties, drug release, biomimetic mineralization, and biocompatibility. in vitro drug release studies were conducted in the phosphate buffer saline (PBS) at pH 7.4. The results suggest that varying the concentrations of TiO2/PANI nanoparticles could change the rate of drug release. The release mechanism was studied using several kinetic models, including the Higuchi model, the Hixson-Crowell model, and the Korsmeyer-Peppas model, to clarify the mechanism of SIM release from the composite nanofibers. The assessment of in vitro mineralization of the composite nanofibers for the growth of hydroxyapatite was performed in simulated body fluid (SBF). Field scanning electron microscopy (FE-SEM) imagery and energy-dispersive X-ray spectroscopy (EDS) analyses indicated that after soaking in SBF, a hydroxyapatite layer was formed on the surface of the nanofibrous webs. These novel composite nanofibers release simvastatin in a controlled manner with profound cell proliferation and attachment compared to that in pure PCL nanofiber, which indicates their potential for bone regeneration applications.
Collapse
Affiliation(s)
- Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Deval Prasad Bhattarai
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Jeesoo Park
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
35
|
Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Int J Pharm 2019; 576:118941. [PMID: 31881261 DOI: 10.1016/j.ijpharm.2019.118941] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
Abstract
Implanted scaffold or bone substitute is a common method to treat bone defects. However, the possible bone infection caused by orthopaedic surgery has created a challenging clinical problem and generally invalidate bone repair and regeneration. In this study, a poly (ε-caprolactone) (PCL)/polyethylene glycol (PEG)/roxithromycin (ROX) composite scaffold was prepared via melt electrohydrodynamic (EHD) 3D printing. Fourier transform infrared spectroscopy (FTIR) spectroscopy was performed to verify the existence of PEG and ROX in the scaffolds. By water contact angle measurement, the addition of both PEG and ROX was found to improve the hydrophilicity of the scaffolds. By in vitro drug release assay, the PCL/PEG/ROX scaffolds showed an initial burst drug release and subsequent long-term sustained release behaviour, which is favourable for the prevention and treatment of bone infections. The antibacterial assays against E. coli and S. aureus demonstrated that the composite scaffold with ROX possessed effective antibacterial activity, especially for S. aureus, the main cause of bone infection. The immunostaining and MTT assay with human osteoblast-like cells (MG63) indicated that cells showed good viability and growth on the scaffolds. Therefore, the melt EHD 3D printed PCL/PEG/ROX scaffold could be a promising anti-infective implant for bone tissue engineering.
Collapse
|
36
|
Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers (Basel) 2019; 11:E2008. [PMID: 31817133 PMCID: PMC6960548 DOI: 10.3390/polym11122008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
The key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core-shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core-shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.
Collapse
Affiliation(s)
- Muhammad Faiq Abdullah
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau, Perlis 02600, Malaysia
| | - Tamrin Nuge
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bee Chin Ang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
37
|
Gilarska A, Lewandowska-Łańcucka J, Guzdek-Zając K, Karewicz A, Horak W, Lach R, Wójcik K, Nowakowska M. Bioactive yet antimicrobial structurally stable collagen/chitosan/lysine functionalized hyaluronic acid - based injectable hydrogels for potential bone tissue engineering applications. Int J Biol Macromol 2019; 155:938-950. [PMID: 31712140 DOI: 10.1016/j.ijbiomac.2019.11.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
Abstract
Novel, biocompatible, multifunctional, injectable genipin crosslinked collagen/chitosan/lysine-modified hyaluronic acid based hydrogels (ColChHAmod) were prepared in a facile, one-step procedure. The novelty of the current approach lies in the functionalization of hyaluronic acid (HA) with primary amine groups by lysine attachment, and its further use as a component of the injectable sol. The obtained derivative, HAmod, could form, upon crosslinking with genipin, covalent bonds with other components of the hydrogel network, resulting in structurally stable, better-defined hydrogels. We have demonstrated that, by adjusting HAmod content and genipin concentration, hydrogels with tunable physicochemical characteristics (swelling, wettability, tendency for enzymatic degradation) and properties adequate for the potential bone tissue regeneration can be prepared. Storage modulus measurements indicated that HAmod has positive effect on mechanical characteristics of hydrogels prepared. It was also revealed that the ColChHAmod-based hydrogels are characterized by a high porosity (85-95%). The in situ rheological measurements confirmed the injectability of the obtained hydrogels. The in vitro cell culture studies showed that the surface of all materials prepared was biocompatible, as they supported proliferation and adhesion of osteoblast-like cells followed by ALP expression. The intrinsic antibacterial activity of the hydrogels against Escherichia coli was also demonstrated in in vitro experiment.
Collapse
Affiliation(s)
- Adriana Gilarska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-059 Kraków, Poland
| | | | | | - Anna Karewicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wojciech Horak
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Radosław Lach
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
38
|
Jahangirian H, Azizi S, Rafiee-Moghaddam R, Baratvand B, Webster TJ. Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules 2019; 9:E619. [PMID: 31627453 PMCID: PMC6843632 DOI: 10.3390/biom9100619] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
In recent decades, regenerative medicine has merited substantial attention from scientific and research communities. One of the essential requirements for this new strategy in medicine is the production of biocompatible and biodegradable scaffolds with desirable geometric structures and mechanical properties. Despite such promise, it appears that regenerative medicine is the last field to embrace green, or environmentally-friendly, processes, as many traditional tissue engineering materials employ toxic solvents and polymers that are clearly not environmentally friendly. Scaffolds fabricated from plant proteins (for example, zein, soy protein, and wheat gluten), possess proper mechanical properties, remarkable biocompatibility and aqueous stability which make them appropriate green biomaterials for regenerative medicine applications. The use of plant-derived proteins in regenerative medicine has been especially inspired by green medicine, which is the use of environmentally friendly materials in medicine. In the current review paper, the literature is reviewed and summarized for the applicability of plant proteins as biopolymer materials for several green regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Hossein Jahangirian
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Susan Azizi
- Applied Science and Technology Education Center of Ahvaz Municipality, Ahvaz 617664343, Iran.
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Bahram Baratvand
- Department of Physiotherapy, Faculty of Health and Sport, Mahsa University, Bandar Saujana Putra, Jenjarum Selangor 42610, Malaysia.
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Das P, Salerno S, Remigy JC, Lahitte JF, Bacchin P, De Bartolo L. Double porous poly (Ɛ-caprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells. Colloids Surf B Biointerfaces 2019; 184:110493. [PMID: 31525601 DOI: 10.1016/j.colsurfb.2019.110493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022]
Abstract
In this paper, we developed membrane scaffolds to mimic the biochemical and biophysical properties of human mesenchymal stem cell (hMSC) niches to help direct self-renewal and proliferation providing to cells all necessary chemical, mechanical and topographical cues. The strategy was to create three-dimensional membrane scaffolds with double porosity, able to promote the mass transfer of nutrients and to entrap cells. We developed poly (Ɛ-caprolactone) (PCL)/chitosan (CHT) blend membranes consisting of double porous morphology: (i) surface macrovoids (big pores) which could be easily accessible for hMSCs invasion and proliferation; (ii) interconnected microporous network to transfer essential nutrients, oxygen, growth factors between the macrovoids and throughout the scaffolds. We varied the mean macrovoid size, effective surface area and surface morphology by varying the PCL/CHT blend composition (100/0, 90/10, 80/20, 70/30). Membranes exhibited macrovoids connected with each other through a microporous network; macrovoids size increased by increasing the CHT wt%. Cells adhered on the surfaces of PCL/CHT 100/0 and PCL/CHT 90/10 membranes, that are characterized by a high effective surface area and small macrovoids while PCL/CHT 80/20 and PCL/CHT 70/30 membranes with large macrovoids and low effective surface area entrapped cells inside macrovoids. The scaffolds were able to create a permissive environment for hMSC adhesion and invasion promoting viability and metabolism, which are important for the maintenance of cell integrity. We found a relationship between hMSCs proliferation and oxygen uptake rate with surface mean macrovoid size and effective surface area. The macrovoids enabled the cell invasion into the membrane and the microporosity ensured an adequate diffusive mass transfer of nutrients and metabolites, which are essential for the long-term maintenance of cell viability and functions.
Collapse
Affiliation(s)
- Pritam Das
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France; Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci, cubo 17/C, I-87036, Rende (CS), Italy
| | - Simona Salerno
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci, cubo 17/C, I-87036, Rende (CS), Italy
| | - Jean-Christophe Remigy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| | - Jean-François Lahitte
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| | - Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France.
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci, cubo 17/C, I-87036, Rende (CS), Italy.
| |
Collapse
|
40
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 708] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
41
|
Wang J, Li S, Chen T, Xian W, Zhang H, Wu L, Zhu W, Zeng Q. Nanoscale cationic micelles of amphiphilic copolymers based on star-shaped PLGA and PEI cross-linked PEG for protein delivery application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:93. [PMID: 31392433 DOI: 10.1007/s10856-019-6294-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
To enhance the bioavailability of protein therapeutants and improve the stability of storage and delivery, a series of branched amphiphilic block copolymers consisting of cholic acid (CA) initiated poly(D,L-lactide-co-glycolide) (CA-PLGA) and water-soluble polyethyleneimine cross-linked polyethylene glycol (PEI-PEG) denoted as CA-PLGA-b-(PEI-PEG) were synthesized and characterized. CA-PLGA-b-(PEI-PEG) presented low cytotoxicity by MTT and cck-8 assay. The cationic CA-PLGA-b-(PEI-PEG) micelles (diameter about 100 nm and zeta potential 34-61 mV) were prepared through self-assembly method, and complexed with insulin via electrostatic interaction to obtain nanoscale micelle/insulin complexes. The micelle/insulin complexes-loaded CA-PLGA microspheres (MIC-MS, 10.4 ± 3.85 μm) were manufactured by employing a double emulsion (W1/O/W2) method. The in vitro insulin release behavior and in vivo hypoglycaemic effect of MIC-MS on streptozotocin (STZ) induced diabetic rats were compared with those of the insulin-loaded CA-PLGA microspheres (INS-MS, 7.8 ± 2.57 μm). The initial burst in vitro release of MIC-MS was markedly lower than that of INS-MS (P < 0.01), and the pharmacological availability of MIC-MS via subcutaneous administration was 148.9% relative to INS-MS. Therefore, the cationic CA-PLGA-b-(PEI-PEG) micelles can effectively increase the bioavailability of insulin in CA-PLGA microspheres and can be considered as a potential protein carrier.
Collapse
Affiliation(s)
- Jun Wang
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shunying Li
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Chen
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjiao Xian
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huiwu Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Cancer Therapeutics & Drug Discovery Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lei Wu
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Zhu
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingbing Zeng
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
42
|
Lewandowska-Łańcucka J, Gilarska A, Buła A, Horak W, Łatkiewicz A, Nowakowska M. Genipin crosslinked bioactive collagen/chitosan/hyaluronic acid injectable hydrogels structurally amended via covalent attachment of surface-modified silica particles. Int J Biol Macromol 2019; 136:1196-1208. [PMID: 31252014 DOI: 10.1016/j.ijbiomac.2019.06.184] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Collagen, chitosan and hyaluronic acid based multicomponent injectable and in situ gellating biomimetic hybrid materials for bone tissue engineering applications were prepared in one-step procedure. The bioactive phase in the form of surface-modified silica particles was introduced to the solutions of biopolymers and simultaneously crosslinked with genipin both the biopolymer matrix and dispersed particles at 37 °C. The novel approach presented here involved the use of silica particles which surfaces were priory functionalized with amino groups. That modification makes possible the covalent attachment of silica particles to the polymeric hydrogel network on crosslinking with genipin. That methodology is especially important as it makes possible to obtain the hybrid materials (biopolymer-silica particles) in which the problems related to the potential phase separation of mineral particles, hindering their in vivo application can be eliminated. The hybrids of various compositions were obtained and their physicochemical and biological properties were determined. The in vitro experiments performed under simulated body fluid conditions revealed that the amino-functionalized silica particles covalently attached to the biopolymeric network are still bioactive. Finally, the in vitro cell culture studies shown that the materials developed are biocompatible as they supported MG-63 cells adhesion, proliferation as well as Alkaline phosphatase (ALP) expression.
Collapse
Affiliation(s)
| | - Adriana Gilarska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-059 Kraków, Poland
| | - Aleksandra Buła
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Wojciech Horak
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Anna Łatkiewicz
- Laboratory of Field Emission Scanning Electron Microscopy and Microanalysis at the Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
43
|
Hu Y, Wang J, Li X, Hu X, Zhou W, Dong X, Wang C, Yang Z, Binks BP. Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions. J Colloid Interface Sci 2019; 545:104-115. [DOI: 10.1016/j.jcis.2019.03.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 11/28/2022]
|
44
|
Liu S, Zhou H, Liu H, Ji H, Fei W, Luo E. Fluorine-contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo. Cell Prolif 2019; 52:e12613. [PMID: 30968984 PMCID: PMC6536412 DOI: 10.1111/cpr.12613] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives Fluorine, an organic trace element, has been shown to unfavourably effect osteoclasts function at a low dose. Use of hydroxyapatite (HA) has been effective in exploring its roles in promoting bone repair. In this study, we used HA modified with fluorine to investigate whether it could influence osteoclastic activity in vitro and ovariectomy‐induced osteoclasts hyperfunction in vivo. Materials and methods Fluorohydroxyapatite (FHA) was obtained and characterized by scanning electron microscope (SEM). Osteoclasts proliferation and apoptosis treated with FHA were assessed by MTT and TUNEL assay. SEM, F‐actin, TRAP activity and bone resorption experiment were performed to determine the influence of FHA on osteoclasts differentiation and function. Moreover, HA and FHA were implanted into ovariectomized osteoporotic and sham surgery rats. Histology and Micro‐CT were examined for further verification. Results Fluorine released from FHA slowly and sustainably. FHA hampered osteoclasts proliferation, promoted osteoclasts apoptosis, suppressed osteoclasts differentiation and function. Experiments in vivo validated that FHA participation brought about an inhibitory effect on osteoclasts hyperfunction and less bone absorption. Conclusion The results indicated that FHA served as an efficient regulator to attenuate osteoclasts formation and function and was proposed as a candidature for bone tissue engineering applications.
Collapse
Affiliation(s)
- Shibo Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Zhou
- Department of Stomotology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huanzhong Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Fei
- Department of Stomotology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Lu B, Zhu DY, Yin JH, Xu H, Zhang CQ, Ke QF, Gao YS, Guo YP. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Biofabrication 2019; 11:025012. [PMID: 30754024 DOI: 10.1088/1758-5090/ab0676] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hierarchically porous structures and bioactive compositions of artificial biomaterials play a positive role in bone defect healing and new bone regeneration. Herein, cerium oxide nanoparticles-modified bioglass (Ce-BG) scaffolds were firstly constructed by the incorporation of hollow mesoporous Ce-BG microspheres in CTS via a freeze-drying technology. The interconnected macropores in Ce-BG scaffolds facilitated the in-growth of bone cells/tissues from material surfaces into the interiors, while the hollow cores and mesopore shells in Ce-BG microspheres provides more active sites for bone mineralization. The cerium oxide nanoparticles in the scaffolds rapidly promoted the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs), as confirmed by the up-regulation of osteogenesis-related markers such as OCN, ALP and COL-1. The enhanced osteoinductivity of Ce-BG scaffolds was mainly related to the activated ERK pathway, and it was blocked by adding a selective ERK1/2 inhibitor (SCH772984). In vivo rat cranial defect models revealed that Ce-BG scaffolds accelerated collagen deposition, osteoblast formation and bone regeneration as compared to BG scaffolds. The exciting results demonstrated that the synergistic effects between hierarchically porous structures and cerium oxide nanoparticles contributed to osteogenic ability, and hollow mesoporous Ce-BG scaffolds would be a novel platform for bone regeneration.
Collapse
Affiliation(s)
- Bin Lu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Aragón J, Feoli S, Irusta S, Mendoza G. Composite scaffold obtained by electro-hydrodynamic technique for infection prevention and treatment in bone repair. Int J Pharm 2019; 557:162-169. [DOI: 10.1016/j.ijpharm.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/12/2023]
|
47
|
The potential use of gentamicin sulfate-loaded poly(l-lactic acid)-sericin hybrid scaffolds for bone tissue engineering. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|