1
|
Nie J, Sun B, Jiao T, Liao J, Zhang M, Yang R, Li Y. Biodegradable air filter with electrospun composite nanofibers and cellulose fibers dual network: Enhanced electrostatic adsorption, humidity resistance, and extended service life. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137557. [PMID: 39938375 DOI: 10.1016/j.jhazmat.2025.137557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Cellulose-based materials have great potential as degradable air filters. Regretfully, the application is limited by their low electrostatic adsorption and hydrophilicity. To meet with the challenge, we designed a composite air filter with dual network. Composite cellulose acetate nanofibers were electrospun on a cellulose-fibers paper substrate, and the resulted multi-scale spider-web-like structure showed high filtration efficiency as well as low resistance. Electrets (silicon nitride and tourmaline) were composited to enhance the electrostatic adsorption for PMs. Hydrophobic modification improved the ability to retain electrostatic charge, promoting the filtration under humid environment. The filtration efficiency for PM0.3 exceeded 99 %, while the pressure drop was only 45.7 Pa. The filtration performance could be maintained for over 12 hours under 90 % relative humidity, and the filter could be completely degraded in natural environment within 80 days.
Collapse
Affiliation(s)
- Jingyi Nie
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Binrong Sun
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Tingting Jiao
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jianfei Liao
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Meiyun Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ruiting Yang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yueqing Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
2
|
Pongkua W, Sriprapat W, Thiravetyan P, Treesubsuntorn C. Active living wall for particulate matter and VOC remediation: potential and application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36180-36191. [PMID: 37428325 DOI: 10.1007/s11356-023-28480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Particulate matters (PM) and volatile organic compounds (VOCs) are the sources of toxic substances that hurt human health and can cause human carcinogens. An active living wall was applied to reduce PM and VOC contamination, while Sansevieria trifasciata cv. Hahnii, a high-performance plant for VOC removal, was selected to grow on the developing wall and used to treat PM and VOCs. The active living wall operating in a 24 m3 testing chamber showed the ability to remediate more than 90% PM within 12 h. The VOC removal can be approximately 25-80% depending on each compound. In addition, the suitable flow velocity of the living wall was also investigated. The flow rate of 1.7 m3 h-1 in front of the living wall was found as the best inlet flow velocity for the developed active living wall. The suitable condition for PM and VOC removal in the active living wall application on the real side was presented in this study. The result confirmed that the application of an active living wall for PM phytoremediation can be an alternative effective technology.
Collapse
Affiliation(s)
- Waleeporn Pongkua
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Wararat Sriprapat
- Biotechnology Research and Development Office, Department of Agriculture, Pathum Thani, 12110, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
3
|
Pang C, You H, Lei S, Su F, Liang L, Li Z, Lin X, Zhang Y, Zhang H, Pan X, Hu Y. Chemically tailored molecular surface modification of bamboo pulp fibers for manipulating the electret performance of electret filter media. Carbohydr Polym 2024; 330:121830. [PMID: 38368109 DOI: 10.1016/j.carbpol.2024.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
The surface chemical composition of materials is essential for regulating their charge trapping and storage capabilities, which directly affect their electret performance. Although chemical modification of materials to alter electret performance has been investigated, the mechanism through which electret properties are regulated more systematically via chemical customization has not been elucidated in detail. Herein, p-phenylenediamine, benzidine and 4,4'-diaminotriphenyl, which have different conjugated strength functional groups, were selected to chemically tailor the surface of bamboo pulp fibers to regulate the electret properties and elucidate the regulatory mechanism more systematically. The results showed that the charge trapping and storage properties of materials could be regulated by introducing functional groups with different conjugated strengths to their surfaces, realizing the regulation of the electret properties. Moreover, the charge trapping and storage ability could be tailored more specifically by regulating the number of functional groups. By chemical customization to provide electrostatic effects to the materials, the purification time was reduced by approximately 45 %-52 %. More importantly, a relatively systematic mechanism was proposed to elucidate the effect of the conjugate group strength on the charge trapping and charge storage properties of the material. These findings will provide guidance for the investigation of chemical modifications to regulate the electret performance of materials.
Collapse
Affiliation(s)
- Chunxia Pang
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China; School of Biological Engineering, Sichuan University of Science and Engineering, 644005 Yibin, Sichuan, China
| | - Huanhuan You
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China
| | - Sijie Lei
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China
| | - Fan Su
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China
| | - Lili Liang
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China
| | - Zhanguo Li
- State Key Laboratory of NBC Protection for Civilian, 102205 Beijing, China
| | - Xiaoyan Lin
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China.
| | - Yaping Zhang
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China
| | - Hao Zhang
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China
| | - Xunhai Pan
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China; School of Biological Engineering, Sichuan University of Science and Engineering, 644005 Yibin, Sichuan, China
| | - Yang Hu
- School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, Sichuan, China
| |
Collapse
|
4
|
Tabatabaei N, Faridi-Majidi R, Boroumand S, Norouz F, Rahmani M, Rezaie F, Fayazbakhsh F, Faridi-Majidi R. Nanofibers in Respiratory Masks: An Alternative to Prevent Pathogen Transmission. IEEE Trans Nanobioscience 2023; 22:685-701. [PMID: 35724284 PMCID: PMC10620960 DOI: 10.1109/tnb.2022.3181745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent global outbreak of COVID-19 has raised serious awareness about our abilities to protect ourselves from hazardous pathogens and volatile organic compounds. Evidence suggests that personal protection equipment such as respiratory masks can radically decrease rates of transmission and infections due to contagious pathogens. To increase filtration efficiency without compromising breathability, application of nanofibers in production of respiratory masks have been proposed. The emergence of nanofibers in the industry has since introduced a next generation of respiratory masks that promises improved filtration efficiency and breathability via nanometric pores and thin fiber thickness. In addition, the surface of nanofibers can be functionalized and enhanced to capture specific particles. In addition to conventional techniques such as melt-blown, respiratory masks by nanofibers have provided an opportunity to prevent pathogen transmission. As the surge in global demand for respiratory masks increases, herein, we reviewed recent advancement of nanofibers as an alternative technique to be used in respiratory mask production.
Collapse
|
5
|
Blachowicz T, Ehrmann A. Optical Properties of Electrospun Nanofiber Mats. MEMBRANES 2023; 13:441. [PMID: 37103868 PMCID: PMC10146296 DOI: 10.3390/membranes13040441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Electrospun nanofiber mats are usually applied in fields where their high specific surface area and small pore sizes are important, such as biotechnology or filtration. Optically, they are mostly white due to scattering from the irregularly distributed, thin nanofibers. Nevertheless, their optical properties can be modified and become highly important for different applications, e.g., in sensing devices or solar cells, and sometimes for investigating their electronic or mechanical properties. This review gives an overview of typical optical properties of electrospun nanofiber mats, such as absorption and transmission, fluorescence and phosphorescence, scattering, polarized emission, dyeing and bathochromic shift as well as the correlation with dielectric constants and the extinction coefficient, showing which effects may occur and can be measured by which instruments or used for different applications.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Center for Science and Education, Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
6
|
Li J, Yin J, Ramakrishna S, Ji D. Smart Mask as Wearable for Post-Pandemic Personal Healthcare. BIOSENSORS 2023; 13:205. [PMID: 36831971 PMCID: PMC9953568 DOI: 10.3390/bios13020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A mask serves as a simple external barrier that protects humans from infectious particles from poor air conditions in the surrounding environment. As an important personal protective equipment (PPE) to protect our respiratory system, masks are able not only to filter pathogens and dust particles but also to sense, reflect or even respond to environmental conditions. This smartness is of particular interest among academia and industries due to its potential in disease detection, health monitoring and caring aspects. In this review, we provide an overlook of the current air filtration strategies used in masks, from structural designs to integrated functional modules that empower the mask's ability to sense and transfer physiological or environmental information to become smart. Specifically, we discussed recent developments in masks designed to detect macroscopic physiological signals from the wearer and mask-based disease diagnoses, such as COVID-19. Further, we propose the concept of next-generation smart masks and the requirements from material selection and function design perspectives that enable masks to interact and play crucial roles in health-caring wearables.
Collapse
Affiliation(s)
- Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117081, Singapore
| | - Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117081, Singapore
| | - Dongxiao Ji
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Al-Abduljabbar A, Farooq I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers (Basel) 2022; 15:polym15010065. [PMID: 36616414 PMCID: PMC9823865 DOI: 10.3390/polym15010065] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Electrospun polymer nanofibers (EPNF) constitute one of the most important nanomaterials with diverse applications. An overall review of EPNF is presented here, starting with an introduction to the most attractive features of these materials, which include the high aspect ratio and area to volume ratio as well as excellent processability through various production techniques. A review of these techniques is featured with a focus on electrospinning, which is the most widely used, with a detailed description and different types of the process. Polymers used in electrospinning are also reviewed with the solvent effect highlighted, followed by a discussion of the parameters of the electrospinning process. The mechanical properties of EPNF are discussed in detail with a focus on tests and techniques used for determining them, followed by a section for other properties including electrical, chemical, and optical properties. The final section is dedicated to the most important applications for EPNF, which constitute the driver for the relentless pursuit of their continuous development and improvement. These applications include biomedical application such as tissue engineering, wound healing and dressing, and drug delivery systems. In addition, sensors and biosensors applications, air filtration, defense applications, and energy devices are reviewed. A brief conclusion is presented at the end with the most important findings and directions for future research.
Collapse
|
8
|
Pang C, You H, Liang L, Li Z, Lin X, Zhang Y, Zhang H, Pan X, Hu Y, Chen Y, Luo X, Wang H. Bamboo pulp-based electret fiber aerogel with enhanced electret performance by P-phenylenediamine modification for simulated radioactive aerosol purification in confined spaces. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Tan P, Jiang Y, Gong D, Shi Y, Shi X, Wu P, Tan L. Synthetic polyurethane nanofibrous membrane with sustained rechargeability for integrated air cleaning. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Sun N, Shao W, Zheng J, Zhang Y, Li J, Liu S, Wang K, Niu J, Li B, Gao Y, Liu F, Jiang H, He J. Fabrication of fully degradable branched poly (lactic acid) nanofiber membranes for high‐efficiency filter paper materials. J Appl Polym Sci 2022. [DOI: 10.1002/app.53186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ning Sun
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Weili Shao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Jin Zheng
- Innovation and Entrepreneurship Academy Zhongyuan University of Technology Zhengzhou Henan Province People's Republic of China
| | - Yuting Zhang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Junli Li
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Simeng Liu
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Kai Wang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Jingyi Niu
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Bo Li
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Yanfei Gao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Fan Liu
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Huadong Jiang
- Jiangxi Zhanghu Medical Technology Co., Ltd Fuzhou People's Republic of China
| | - Jianxin He
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| |
Collapse
|
11
|
Cheng Y, Li J, Chen M, Zhang S, He R, Wang N. Environmentally friendly and antimicrobial bilayer structured fabrics with integrated interception and sterilization for personal protective mask. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Metal-organic frameworks decorated wood aerogels for efficient particulate matter removal. J Colloid Interface Sci 2022; 629:182-188. [DOI: 10.1016/j.jcis.2022.08.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
|
13
|
He R, Li J, Chen M, Zhang S, Cheng Y, Ning X, Wang N. Tailoring moisture electroactive Ag/Zn@cotton coupled with electrospun PVDF/PS nanofibers for antimicrobial face masks. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128239. [PMID: 35030485 DOI: 10.1016/j.jhazmat.2022.128239] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 05/18/2023]
Abstract
Face mask has become an essential and effective apparatus to protect human beings from air pollution, especially the air-borne pathogens. However, most commercial face masks can hardly achieve good particulate matters (PMs) and high bactericidal efficacy concurrently. Herein, a bilayer structured composite filter medium with built-in antimicrobial activities was constructed by combining cotton woven modified by magnetron sputtered Ag/Zn coatings and electrospun poly(vinylidene fluoride)/polystyrene (PVDF/PS) nanofibers. With the benefit of external moisture, an electrical stimulation was generated inside the composite fabric and thus endowed the fabric antimicrobial function. The resultant composite fabric presented conspicuous performance for integrated air pollution control, high filtration performance towards PM0.3 (99.1%, 79.2 Pa) and exceptional interception ratio against Escherichia coli (99.64%) and Staphylococcus aureus (98.75%) within 20 min contact. The high efficiency contact sterilization function of the bilayer fabric could further potentially promote disinfection and reuse of the filter media. This work may provide a new perspective on designing high-performance face mask media for public health protection.
Collapse
Affiliation(s)
- Ruidong He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Meng Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Shaohua Zhang
- Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yixin Cheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Na Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
14
|
Zhou Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K. Electrospun Nanofiber Membranes for Air Filtration: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1077. [PMID: 35407195 PMCID: PMC9000692 DOI: 10.3390/nano12071077] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Nanomaterials for air filtration have been studied by researchers for decades. Owing to the advantages of high porosity, small pore size, and good connectivity, nanofiber membranes prepared by electrospinning technology have been considered as an outstanding air-filter candidate. To satisfy the requirements of material functionalization, electrospinning can provide a simple and efficient one-step process to fabricate the complex structures of functional nanofibers such as core-sheath structures, Janus structures, and other multilayered structures. Additionally, as a nanoparticle carrier, electrospun nanofibers can easily achieve antibacterial properties, flame-retardant properties, and the adsorption properties of volatile gases, etc. These simple and effective approaches have benefited from the significate development of electrospun nanofibers for air-filtration applications. In this review, the research progress on electrospun nanofibers as air filters in recent years is summarized. The fabrication methods, filtration performances, advantages, and disadvantages of single-polymer nanofibers, multipolymer composite nanofibers, and nanoparticle-doped hybrid nanofibers are investigated. Finally, the basic principles of air filtration are concluded upon and prospects for the application of complex-structured nanofibers in the field of air filtration are proposed.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| |
Collapse
|
15
|
Abstract
Air filtration has seen a sizable increase in the global market this past year due to the COVID-19 pandemic. Nanofiber nonwoven mats are able to reach certain efficiencies with a low-pressure drop, have a very high surface area to volume ratio, filter out submicron particulates, and can customize the fiber material to better suit its purpose. Although electrospinning nonwoven mats have been very well studied and documented there are not many papers that combine them. This review touches on the various ways to manufacture nonwoven mats for use as an air filter, with an emphasis on electrospinning, the mechanisms by which the fibrous nonwoven air filter stops particles passing through, and ways that the nonwoven mats can be altered by morphology, structure, and material parameters. Metallic, ceramic, and organic nanoparticle coatings, as well as electrospinning solutions with these same materials and their properties and effects of air filtration, are explored.
Collapse
|
16
|
Wang L, Gao Y, Xiong J, Shao W, Cui C, Sun N, Zhang Y, Chang S, Han P, Liu F, He J. Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning. J Colloid Interface Sci 2022; 606:961-970. [PMID: 34487943 PMCID: PMC8559669 DOI: 10.1016/j.jcis.2021.08.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022]
Abstract
The usage of single-use face masks (SFMs) has increased since the outbreak of the coronavirus pandemic. However, non-degradability and mismanagement of SFMs have raised serious environmental concerns. Moreover, both melt-blown and nanofiber-based mask filters inevitably suffer from poor filtration performance, like a continuous decrease in the removal efficiency for particulate matter (PM) and weak breathability. Herein, we report a new method to create biodegradable and reusable fibrous mask filters. The filter consists of a true nanoscale bio-based poly(lactic acid) (PLA) fiber (an average size of 37 ± 4 nm) that is fabricated via electrospinning of an extremely dilute solution. Furthermore, we designed a multiscale structure with integrated features, such as low basis weight (0.91 g m-2), small pore size (0.73 μm), and high porosity (91.72%), formed by electrospinning deposition of true nanoscale fibers on large pore of 3D scaffold nanofiber membranes. The resultant mask filter exhibited a high filtration efficiency (PM0.3-99.996%) and low pressure drop (104 Pa) superior to the commercial N95 filter. Importantly, this filter has a durable filtering efficiency for PM and natural biodegradability based on PLA. Therefore, this study offers an innovative strategy for the preparation of PLA nanofibers and provides a new design for high-performance nanofiber filters.
Collapse
Affiliation(s)
- Ling Wang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Yanfei Gao
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China.
| | - Junpeng Xiong
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Weili Shao
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China.
| | - Chen Cui
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Ning Sun
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Yuting Zhang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Shuzhen Chang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Pengju Han
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Fan Liu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Jianxin He
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| |
Collapse
|
17
|
Jemec Kokalj A, Dolar A, Drobne D, Marinšek M, Dolenec M, Škrlep L, Strmljan G, Mušič B, Škapin AS. Environmental hazard of polypropylene microplastics from disposable medical masks: acute toxicity towards Daphnia magna and current knowledge on other polypropylene microplastics. MICROPLASTICS AND NANOPLASTICS 2022; 2:1. [PMID: 35005629 PMCID: PMC8724753 DOI: 10.1186/s43591-021-00020-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/01/2021] [Indexed: 05/07/2023]
Abstract
The COVID-19 pandemic has increased the use of disposable plastics, including medical masks, which have become a necessity in our daily lives. As these are often improperly disposed of, they represent an important potential source of microplastics in the environment. We prepared microplastics from polypropylene medical masks and characterised their size, shape, organic chemical leaching, and acute toxicity to the planktonic crustacean Daphnia magna. The three layers of the masks were separately milled and characterised. Each of the inner frontal, middle filtering, and outer layers yielded different types of microplastics: fibres were obtained from the inner and outer layer, but irregular fragments from the middle layer. The shape of the obtained microplastics differed from the initial fibrous structure of the intact medical mask layers, which indicates that the material is deformed during cryo-milling. The chemical compositions of plastics-associated chemicals also varied between the different layers. Typically, the inner layer contained more chemicals related to antimicrobial function and flavouring. The other two layers also contained antioxidants and their degradation products, plasticisers, cross-linking agents, antistatic agents, lubricants, and non-ionic surfactants. An acute study with D. magna showed that these microplastics do not cause immobility but do physically interact with the daphnids. Further long-term studies with these microplastics are needed using a suite of test organisms. Indeed, studies with other polypropylene microplastics have shown numerous adverse effects on other organisms at concentrations that have already been reported in the environment. Further efforts should be made to investigate the environmental hazards of polypropylene microplastics from medical masks and how to handle this new source of environmental burden. PLEASE CHECK THE SI WORD DOCUMENT THE AUTHORS ARE NOT LISTED THERE I CANNOT EDIT THAT FILE PLEASE ADD THE AUTHORS SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43591-021-00020-0.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Marjan Marinšek
- Faculty of Chemistry and Chemical Technology, Chair of Materials and Polymer Science, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Matej Dolenec
- Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, SI-1000 Ljubljana, Slovenia
| | - Luka Škrlep
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia
| | - Gregor Strmljan
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia
| | - Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia
| | - Andrijana Sever Škapin
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Han MC, He HW, Kong WK, Dong K, Wang BY, Yan X, Wang LM, Ning X. High-performance Electret and Antibacterial Polypropylene Meltblown Nonwoven Materials Doped with Boehmite and ZnO Nanoparticles for Air Filtration. FIBERS AND POLYMERS 2022; 23:1947-1955. [PMCID: PMC9112261 DOI: 10.1007/s12221-022-4786-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 05/24/2023]
Abstract
The current pandemic caused by COVID-19 has intensively triggered the development of high-performance air filters. Polypropylene (PP) is widely used as the raw material of meltblown nonwoven materials and is the core layer in air filters, such as masks. In this study, an electret PP meltblown nonwoven with antibacterial activity was developed, and nano boehmite (AlOOH) and nano-ZnO were employed as electret and antibacterial agents, respectively. AlOOH (0.5–2.0 wt%) and ZnO (1.0 wt%) were doped into the PP matrix using a twin-screw extruder, and the resulting masterbatches were applied as raw materials to produce nonwoven materials via a meltblown process. The as-prepared nonwoven samples were characterized by means of SEM, IR and DSC/TG. After corona charging, the filtration efficiency was determined by a filtration tester, charge decay was measured by an infrared electrostatic tester, and the antibacterial properties were evaluated (evaluation method: AATCC 100–2012). A dosage of AlOOH greater than 1.0 wt% endowed the nonwoven material with high filtration efficiency, and 1.0 wt% ZnO brought about antibacterial activity. Corona charging was an effective means to charge the nonwoven electret, and the charges were quicker to decay in air than in a sealed bag. The as-prepared meltblown nonwoven filter is a remarkably promising filter for air filtration.
Collapse
Affiliation(s)
- Ming-Chao Han
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, Shandong China
| | - Hong-Wei He
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, Shandong China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, Shandong China
| | - Wei-Kang Kong
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, Shandong China
| | - Kun Dong
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, Shandong China
| | - Bang-Ying Wang
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, Shandong China
| | - Xu Yan
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, Shandong China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, Shandong China
| | - Li-Ming Wang
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, Shandong China
| | - Xin Ning
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, Shandong China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, Shandong China
| |
Collapse
|
19
|
Ultralight ethyl cellulose-based electret fiber membrane for low-resistance and high-efficient capture of PM2.5. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
PVP-Assisted Shellac Nanofiber Membrane as Highly Efficient, Eco-Friendly, Translucent Air Filter. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM), composed of tiny solids and liquid droplets in polluted air, poses a serious threat to human health. Traditional air filters usually cause secondary pollution due to their poor degradability. Here, shellac, as an environmentally friendly natural organic material, was successfully applied to fabricate biodegradable air filters. Since pure shellac fiber shows poor mechanical properties and bad light transmittance, we then introduced a small amount of polyvinylpyrrolidone (PVP) in the shellac solution to prepare highly efficient air filter membranes by the electrospinning method. The prepared PVP-assisted shellac nanofiber membrane (P-Shellac FME) demonstrated improved filtration efficiencies as high as 95% and 98% for PM2.5 and PM10, respectively. The P-Shellac FME also showed good stability, with filtration efficiencies still above 90% and 95% for PM2.5 and PM10 even after six hours of air filtering under high PM concentrations. The pressure drop going through the filter was only 101 Pa, which is also comparable to the value of 76 Pa obtained using commercial polypropylene nanofibers (PP nanofibers, peeled off from the surgical mask), indicating good air permeability of P-Shellac FME. Additionally, P-Shellac FME also showed the advantages of translucence, biodegradability, improved mechanical properties, and low cost. We believe that the P-Shellac FME will make a significant contribution in the application of air filtration.
Collapse
|
21
|
Tao X, Zhou Y, Qi K, Guo C, Dai Y, He J, Dai Z. Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect. J Colloid Interface Sci 2021; 608:2339-2346. [PMID: 34774315 DOI: 10.1016/j.jcis.2021.10.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023]
Abstract
Flexible triboelectric generators present a wide range of prospective applications owing to their small size, light weight, and wearability; in addition, they can convert external mechanical energy into electrical energy to provide an energy supply for wearable electronic products. In this study, a wearable textile triboelectric generator was developed by weaving polyurethane (PU) nanofiber core-spun yarn and Si3N4-electret-doped polyvinylidene fluoride (PVDF) nanofiber core-spun yarn into a double-layer fabric. Within the double-layer fabric, one layer was Si3N4-doped PVDF (denoted as Si3N4@PVDF) nanofiber fabric, and the other was PU nanofiber fabric. When subjected to an external mechanical force, PU nanofiber fabric and Si3N4@PVDF nanofiber fabric came into contact and were able to convert external mechanical energy into electrical energy. The most notable instantaneous electrical performance of this triboelectric nanogenerator was open circuit voltage of 71 V, short-circuit current of 0.7 μA, and output power of 56 μW. Additionally, the wearable textile triboelectric generator exhibited superior washability, stability, and cycle durability. More significantly, it was capable of driving some low-consumption electronic products, including capacitors, LED bulbs, and digital meters, thereby exhibiting a strong potential for flexible self-powered electronic devices and intelligent textiles.
Collapse
Affiliation(s)
- Xuejiao Tao
- Textile and Garment Industry Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Yuman Zhou
- Textile and Garment Industry Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; Henan International Joint Laboratory of new textile materials and textiles, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China.
| | - Kun Qi
- Textile and Garment Industry Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; Henan International Joint Laboratory of new textile materials and textiles, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China
| | - Chaozhong Guo
- Textile and Garment Industry Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; Henan International Joint Laboratory of new textile materials and textiles, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China
| | - Yunling Dai
- Textile and Garment Industry Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; Henan International Joint Laboratory of new textile materials and textiles, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China
| | - Jianxin He
- Textile and Garment Industry Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; Henan International Joint Laboratory of new textile materials and textiles, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China.
| | - Zhao Dai
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
22
|
Xiong J, Shao W, Wang L, Cui C, Gao Y, Jin Y, Yu H, Han P, Liu F, He J. High-performance anti-haze window screen based on multiscale structured polyvinylidene fluoride nanofibers. J Colloid Interface Sci 2021; 607:711-719. [PMID: 34530191 DOI: 10.1016/j.jcis.2021.09.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
Indoor air quality (IAQ) has assumed new significance given the extensive amount of time spent indoor due to the coronavirus pandemic and particulate matter (PM) pollution. Accordingly, the development of window air filters to effectively intercept PM from outdoor air under natural ventilation conditions is an important research topic. However, most existing filters inevitably suffer from the compromise among filtration capability, transparency, and air permeability. In this study, we fabricate a high-performance transparent air filter to improve IAQ via natural ventilation. polyvinylidene fluoride (PVDF) superfine nanofibers of size 20-35 nm are prepared using extremely dilute solution electrospinning; a multi-scale nanofiber structure is then designed. By adjusting the ratio of PVDF superfine nanofibers (SNs) to PVDF coarse fibers (CNs), we balance the structure-performance relationship. Benefiting from the multiscale structural features that include a small pore size (0.72 μm) and high porosity (92.22%), the resulting filters exhibit excellent performance including high interception efficiency (99.92%) for PM0.3, low air resistance (69 Pa), high transparency (∼80%) and stable filtration after 100 h of UV irradiation. This work describes a new strategy for the fabrication of nanofibers with true-nanoscale diameters and the design of high-performance air filters.
Collapse
Affiliation(s)
- Junpeng Xiong
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Weili Shao
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China.
| | - Ling Wang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Chen Cui
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Yanfei Gao
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Yurui Jin
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China
| | - Hongqin Yu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Pengju Han
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Fan Liu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China
| | - Jianxin He
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China; International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, People's Republic of China.
| |
Collapse
|
23
|
Lyu C, Zhao P, Xie J, Dong S, Liu J, Rao C, Fu J. Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review. NANOMATERIALS 2021; 11:nano11061501. [PMID: 34204161 PMCID: PMC8228272 DOI: 10.3390/nano11061501] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Air pollution caused by particulate matter and toxic gases is violating individual’s health and safety. Nanofibrous membrane, being a reliable filter medium for particulate matter, has been extensively studied and applied in the field of air purification. Among the different fabrication approaches of nanofibrous membrane, electrospinning is considered as the most favorable and effective due to its advantages of controllable process, high production efficiency, and low cost. The electrospun membranes, made of different materials and unique structures, exhibit good PM2.5 filtration performance and multi-functions, and are used as masks and filters against PM2.5. This review presents a brief overview of electrospinning techniques, different structures of electrospun nanofibrous membranes, unique characteristics and functions of the fabricated membranes, and summarization of the outdoor and indoor applications in PM filtration.
Collapse
Affiliation(s)
- Chenxin Lyu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Correspondence:
| | - Jun Xie
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Shuyuan Dong
- School of Mathematics, Jilin University, Changchun 130012, China;
| | - Jiawei Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Chengchen Rao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Trentini A, da Silva Biron D, Duarte J, dos Santos V. Polyurethane membranes reinforced with calcium carbonate and oyster powder for application in the separation of CH4/CO2 from greenhouse gases. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Karmacharya M, Kumar S, Gulenko O, Cho YK. Advances in Facemasks during the COVID-19 Pandemic Era. ACS APPLIED BIO MATERIALS 2021; 4:3891-3908. [PMID: 35006814 PMCID: PMC7839420 DOI: 10.1021/acsabm.0c01329] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The outbreak of coronavirus disease (COVID-19) has transformed the daily lifestyles of people worldwide. COVID-19 was characterized as a pandemic owing to its global spread, and technologies based on engineered materials that help to reduce the spread of infections have been reported. Nanotechnology present in materials with enhanced physicochemical properties and versatile chemical functionalization offer numerous ways to combat the disease. Facemasks are a reliable preventive measure, although they are not 100% effective against viral infections. Nonwoven materials, which are the key components of masks, act as barriers to the virus through filtration. However, there is a high chance of cross-infection because the used mask lacks virucidal properties and can become an additional source of infection. The combination of antiviral and filtration properties enhances the durability and reliability of masks, thereby reducing the likelihood of cross-infection. In this review, we focus on masks, from the manufacturing stage to practical applications, and their abilities to combat COVID-19. Herein, we discuss the impacts of masks on the environment, while considering safe industrial production in the future. Furthermore, we discuss available options for future research directions that do not negatively impact the environment.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Oleksandra Gulenko
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| |
Collapse
|
26
|
Feng J, Shi H, Yang X, Xiao S. Self-Adhesion Conductive Sub-micron Fiber Cardiac Patch from Shape Memory Polymers to Promote Electrical Signal Transduction Function. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19593-19602. [PMID: 33900060 DOI: 10.1021/acsami.0c22844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Myocardial infarction (MI) constitutes the first cause of morbidity and mortality in our life, so using highly conductive and elastic materials to produce an engineered cardiac patch is an effective way to improve the myocardium infarction area function. Here, shape memory polymers of the polyurethane/polyaniline/silicon oxide (PU/PANI/SiO2) electrospinning sub-micron fiber patch were precisely produced in the case of the hydrogen bonding effect and interaction between the carboxyl groups to provide compatibility, phase mixing/miscibility, and stability. The sub-micron fiber patch prepared by our group has some remarkable characteristics, such as sub-micron fibers, 3D porous structure, special thickness to simulate the extracellular matrix (ECM), elastic deformation, good properties in conducting weak electrical signals, stability to maintain the whole structure, and self-adhesion. This sub-micron fiber material has been proven to be effective, easy, and reliable. Through precise design of the material system, structure regulation, and performance optimization, the aim is to produce a sub-micron fiber cardiac patch to simulate the myocardium ECM and improve conductive signal transduction for potential MI therapy.
Collapse
Affiliation(s)
- Jianyong Feng
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, No. 928, 2nd Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Hui Shi
- College of Media Engineering, Communication University of Zhejiang, 998 Xue Yuan Street, Higher Education Zone, Hangzhou 310018, China
| | - Xiaoyuan Yang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, No. 928, 2nd Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Shuang Xiao
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, No. 928, 2nd Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| |
Collapse
|
27
|
Tang X, Dong Y, Wei J, Kong Z, Yu L, Zhang H, Ji Y. Polypropylene nonwoven loaded with cerium-doped manganese oxides submicron particles for ozone decomposition and air filtration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Li D, Shen Y, Wang L, Liu F, Deng B, Liu Q. Hierarchical Structured Polyimide-Silica Hybrid Nano/Microfiber Filters Welded by Solvent Vapor for Air Filtration. Polymers (Basel) 2020; 12:polym12112494. [PMID: 33120971 PMCID: PMC7693890 DOI: 10.3390/polym12112494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022] Open
Abstract
Electrospun polymer membranes were considered to be promising materials for fine particulate matter (PM) filtration. However, the poor mechanical properties of the electrospun membrane restricted their application for pressure-driven air filtration. Herein, strength-enhanced electrospun polyimide (PI) membranes were demonstrated via a synergistic approach. Solvent-vapor treatment was utilized to introduce extra bonding at the cross points of PI nanofiber, while SiO2 nanoparticles (SiO2 NPs) were used to reinforce the body of nanofibers. The mechanical strength and filtration performance of hybrid membranes could be regulated by adjusting the quantity of SiO2 NPs. The tensile strength of the pure PI membrane was increased by 33% via adding 1.5% SiO2 NPs, which was further promoted by 70% after solvent-vapor treatment. With a slight reduction in pressure drop (6.5%), the filtration efficiency was not greatly suppressed by welding the SiO2 NP hybrid PI nanofibers. Moreover, the welded composite filter showed high particulate (0.3–1.0 μm) filtration efficiency (up to nearly 100%) and stable pressure drop throughout the 20 tested filtration cycles.
Collapse
|
29
|
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7286735. [PMID: 32832908 PMCID: PMC7429109 DOI: 10.34133/2020/7286735] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Weiren Cheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Shermin Simin Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Junhua Kong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Bing Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Lu Mao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Ban Hock Tan
- Department of Infectious Disease, Singapore General Hospital, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| |
Collapse
|