1
|
Yu K, Yang S, Song H, Sun Z, Wang K, Zhu Y, Yang C, Hao R, Cao Y. High-Resolution Tracking of Aging-Related Small Molecules: Bridging Pollutant Exposure, Brain Aging Mechanisms, and Detection Innovations. BIOSENSORS 2025; 15:242. [PMID: 40277555 PMCID: PMC12024821 DOI: 10.3390/bios15040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Brain aging is a complex process regulated by genetic, environmental, and metabolic factors, and increasing evidence suggests that environmental pollutants can significantly accelerate this process by interfering with oxidative stress, neuroinflammation, and mitochondrial function-related signaling pathways. Traditional studies have focused on the direct damage of pollutants on macromolecules (e.g., proteins, DNA), while the central role of senescence-associated small molecules (e.g., ROS, PGE2, lactate) in early regulatory mechanisms has been long neglected. In this study, we innovatively proposed a cascade framework of "small molecule metabolic imbalance-signaling pathway dysregulation-macromolecule collapse", which reveals that pollutants exacerbate the dynamics of brain aging through activation of NLRP3 inflammatory vesicles and inhibition of HIF-1α. Meanwhile, to address the technical bottleneck of small molecule spatiotemporal dynamics monitoring, this paper systematically reviews the cutting-edge detection tools such as electrochemical sensors, genetically encoded fluorescent probes and antioxidant quantum dots (AQDs). Among them, AQDs show unique advantages in real-time monitoring of ROS fluctuations and intervention of oxidative damage by virtue of their ultra-high specific surface area, controllable surface modification, and free radical scavenging ability. By integrating multimodal detection techniques and mechanism studies, this work provides a new perspective for analyzing pollutant-induced brain aging and lays a methodological foundation for early intervention strategies based on small molecule metabolic networks.
Collapse
Affiliation(s)
- Keying Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; (K.Y.); (K.W.)
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Sirui Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (S.Y.); (H.S.); (Z.S.); (Y.Z.)
| | - Hongxu Song
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (S.Y.); (H.S.); (Z.S.); (Y.Z.)
| | - Zhou Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (S.Y.); (H.S.); (Z.S.); (Y.Z.)
| | - Kaichao Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; (K.Y.); (K.W.)
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Yuqi Zhu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (S.Y.); (H.S.); (Z.S.); (Y.Z.)
| | - Chengkai Yang
- Beijing Friendship Hospital, Capital Medical University, Beijing 100069, China;
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; (K.Y.); (K.W.)
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; (K.Y.); (K.W.)
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Jiang S, Xie C, Liu T, Yuan X, Zheng J, Lian Z, Ouyang M, Peng Y, Zhou L. Robust Fluorescent Nanoprobe for Rapid Evaluation of the Selenium Supplementation Effect and Imaging. Anal Chem 2024; 96:19483-19490. [PMID: 39589074 DOI: 10.1021/acs.analchem.4c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
At present, an increasing number of people pay more attention to selenium-enriched food, but the quality of the selenium-enriched food varies. Therefore, there is an urgent need to develop a new tool to assess the effects of selenium supplementation in foods by rapidly detecting the levels of the metabolite selenium selenocysteine (Sec). In this work, a fluorescent nanoprobe CS-Sec was designed, synthesized, and characterized for Sec detection and imaging in living biosystems, which exhibited the advantages of good biocompatibility, excellent water solubility, high sensitivity, high selectivity, and rapid response (2.5 min) for Sec detection and imaging in vitro and in vivo and evaluation of selenium supplementation in selenium-rich foods. Specifically, CS-Sec was constructed by grafting alkyne groups on organic small-molecule fluorescent probes with azide groups on azido chitosan by click chemistry. A 2,4-dinitrophenyl ether (DNB) with a strong intramolecular charge transfer (ICT) effect was selected as a response group and fluorescence-quenching group, which had excellent chemical specificity toward Sec. In addition, CS-Sec has high selectivity and sensitivity toward Sec over other analytes, and an excellent limit of detection (LOD) is as low as 15 nM. Impressively, CS-Sec has been successfully used to detect and image the concentration of Sec in living HepG2 cells and mouse models with exciting results, indicating that the newly constructed CS-Sec can provide a robust molecule tool for the rapid evaluation of the selenium supplementation effect and imaging in the future.
Collapse
Affiliation(s)
- Shali Jiang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jiaxin Zheng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zimin Lian
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Peng
- The Key Laboratory of Biochemistry and Mo-lecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
3
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
4
|
Chen Y, Ji X, Tao L, Ma C, Nie J, Lu C, Yang G, Wang E, Liu H, Wang F, Ren J. Rational design of a ratiometric fluorescent nanoprobe for real-time imaging of hydroxyl radical and its therapeutic evaluation of diabetes. Biosens Bioelectron 2024; 246:115868. [PMID: 38029709 DOI: 10.1016/j.bios.2023.115868] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Hydroxyl radical (•OH), one of the most reactive and deleterious substances in organisms, belongs to a class of reactive oxygen species (ROS), and it has been verified to play an essential role in numerous pathophysiological scenarios. However, due to its extremely high reactivity and short lifetime, the development of a reliable and robust method for tracking endogenous •OH remains an ongoing challenge. In this work, we presented the first ratiometric fluorescent nanoprobe NanoDCQ-3 for •OH sensing based on oxidative C-H abstraction of dihydroquinoline to quinoline. The study mainly focused on how to modulate the electronic effects to achieve an ideal ratiometric detection of •OH, as well as solving the inherent problem of hydrophilicity of the probe, so that it was more conducive to monitoring •OH in living organisms. The screened-out probe NanoDCQ-3 exhibited an exceptional ratiometric sensing capability, better biocompatibility, good cellular uptake, and appropriate in vivo retention, which has been reliably used for detecting exogenous •OH concentration fluctuation in living cells and zebrafish models. More importantly, NanoDCQ-3 facilitated visualization of •OH and evaluation of drug treatment efficacy in diabetic mice. These findings afforded a promising strategy for designing ratiometric fluorescent probes for •OH. NanoDCQ-3 emerged as a valuable tool for the detection of •OH in vivo and held potential for drug screening for inflammation-related diseases.
Collapse
Affiliation(s)
- Yiyu Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Xueying Ji
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Linlin Tao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Chao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Junqi Nie
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Cuifen Lu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Guichun Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Erfei Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Heng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
| | - Feiyi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
5
|
Su H, Lv Y, Zhu L, Wang Y. Roles of PTEN gene methylation in Se-CQDs induced mitochondrial apoptosis of osteosarcoma cells. Colloids Surf B Biointerfaces 2024; 234:113757. [PMID: 38241895 DOI: 10.1016/j.colsurfb.2024.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Biocompatible carbon quantum dots (CQDs) containing anti-osteosarcoma elements are intriguing therapeutics promising for bioimaging and tumor therapy. However, how the anti-osteosarcoma element doped in the structure of such CQDs triggers tumor inhibition remains unclear. Here, selenium-doped CQDs (Se-CQDs) are developed via a one-step hydrothermal route using discarded orange peel as a carbon source and structurally characterized by various physicochemical techniques. The biocompatibility and anti-osteosarcoma efficacy are deeply evaluated using animal and cell models. The resulting spherical Se-CQDs, with a 3-7 nm diameter, possess green-yellow tunable luminescence and excellent biocompatibility. Cell experiments show that Se-CQDs can be up-taken by osteosarcoma U2OS cells and activate the mitochondrial apoptosis pathway triggered by increased reactive oxygen species. They can arrest the cell cycle at the G2/S phase and promote cellular apoptosis with reduced invasion and migration. Molecularly, Se-CQDs can down-regulate the expression of DNMT1 while up-regulating the expression of PTEN due to the decreased promoter methylation. Notably, Se-incorporated CQDs are more effective in inhibiting the proliferation, migration, and invasion of osteosarcoma than Se-free CQDs. It is feasible to use Se-CQDs as candidates for the potential application of early monitoring and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Huahua Su
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yan Lv
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Lixian Zhu
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yanhua Wang
- Department of Morphology, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; The Third-Grade Pharmacological Laboratory on Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
6
|
Zuo G, Zhuang P, Yang X, Jia Q, Cai Z, Qi J, Deng L, Zhou Z, Cui W, Xiao J. Regulating Chondro-Bone Metabolism for Treatment of Osteoarthritis via High-Permeability Micro/Nano Hydrogel Microspheres. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305023. [PMID: 38084002 PMCID: PMC10837371 DOI: 10.1002/advs.202305023] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/13/2023] [Indexed: 02/04/2024]
Abstract
Destruction of cartilage due to the abnormal remodeling of subchondral bone (SB) leads to osteoarthritis (OA), and restoring chondro-bone metabolic homeostasis is the key to the treatment of OA. However, traditional intra-articular injections for the treatment of OA cannot directly break through the cartilage barrier to reach SB. In this study, the hydrothermal method is used to synthesize ultra-small size (≈5 nm) selenium-doped carbon quantum dots (Se-CQDs, SC), which conjugated with triphenylphosphine (TPP) to create TPP-Se-CQDs (SCT). Further, SCT is dynamically complexed with hyaluronic acid modified with aldehyde and methacrylic anhydride (AHAMA) to construct highly permeable micro/nano hydrogel microspheres (SCT@AHAMA) for restoring chondro-bone metabolic homeostasis. In vitro experiments confirmed that the selenium atoms scavenged reactive oxygen species (ROS) from the mitochondria of mononuclear macrophages, inhibited osteoclast differentiation and function, and suppressed early chondrocyte apoptosis to maintain a balance between cartilage matrix synthesis and catabolism. In vivo experiments further demonstrated that the delivery system inhibited osteoclastogenesis and H-vessel invasion, thereby regulating the initiation and process of abnormal bone remodeling and inhibiting cartilage degeneration in SB. In conclusion, the micro/nano hydrogel microspheres based on ultra-small quantum dots facilitate the efficient penetration of articular SB and regulate chondro-bone metabolism for OA treatment.
Collapse
Affiliation(s)
- Guilai Zuo
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
- Department of Orthopaedic OncologyChangzheng HospitalNaval Military Medical UniversityShanghai200003P. R. China
- Department of Bone TumorThe Affiliated Hospital of Qingdao UniversityNo. 59, Haier RoadQingdaoShandong266000P. R. China
| | - Pengzhen Zhuang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurku20520Finland
| | - Xinghai Yang
- Department of Orthopaedic OncologyChangzheng HospitalNaval Military Medical UniversityShanghai200003P. R. China
| | - Qi Jia
- Department of Orthopaedic OncologyChangzheng HospitalNaval Military Medical UniversityShanghai200003P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhenhua Zhou
- Department of Orthopaedic OncologyChangzheng HospitalNaval Military Medical UniversityShanghai200003P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jianru Xiao
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
- Department of Orthopaedic OncologyChangzheng HospitalNaval Military Medical UniversityShanghai200003P. R. China
| |
Collapse
|
7
|
Lu Y, Song W, Tang Z, Shi W, Gao S, Wu J, Wang Y, Pan H, Wang Y, Huang H. The Preparation of Golgi Apparatus-Targeted Polymer Dots Encapsulated with Carbon Nanodots of Bright Near-Infrared Fluorescence for Long-Term Bioimaging. Molecules 2023; 28:6366. [PMID: 37687195 PMCID: PMC10488926 DOI: 10.3390/molecules28176366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
As a vital organelle in eukaryotic cells, the Golgi apparatus is responsible for processing and transporting proteins in cells. Precisely monitoring the status of the Golgi apparatus with targeted fluorescence imaging technology is of enormous importance but remains a dramatically challenging task. In this study, we demonstrate the construction of the first Golgi apparatus-targeted near-infrared (NIR) fluorescent nanoprobe, termed Golgi-Pdots. As a starting point of our investigation, hydrophobic carbon nanodots (CNDs) with bright NIR fluorescence at 674 nm (fluorescence quantum yield: 12.18%), a narrow emission band of 23 nm, and excellent stability were easily prepared from Magnolia Denudata flowers using an ultrasonic method. Incorporating the CNDs into a polymer matrix modified with Golgi-targeting molecules allowed for the production of the water-soluble Golgi-Pdots, which showed high colloidal stability and similar optical properties compared with pristine CNDs. Further studies revealed that the Golgi-Pdots showed good biocompatibility and Golgi apparatus-targeting capability. Based on these fascinating merits, utilizing Golgi-Pdots for the long-term tracking of the Golgi apparatus inside live cells was immensely successful.
Collapse
Affiliation(s)
- Yiping Lu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China (Z.T.)
| | - Wei Song
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Zhiquan Tang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China (Z.T.)
| | - Wenru Shi
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China (Z.T.)
| | - Shumei Gao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China (Z.T.)
| | - Jun Wu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Yuan Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China (Z.T.)
| | - Hu Pan
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China (Z.T.)
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China (Z.T.)
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China (Z.T.)
| |
Collapse
|
8
|
Han M, Liu K. Selenium and selenoproteins: their function and development of selenium‐rich foods. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengqing Han
- School of Food and Strategic Reserves Henan University of Technology 450001 Zhengzhou China
- College of Food Science and Engineering Henan University of Technology 450001 Zhengzhou China
| | - Kunlun Liu
- School of Food and Strategic Reserves Henan University of Technology 450001 Zhengzhou China
- College of Food Science and Engineering Henan University of Technology 450001 Zhengzhou China
| |
Collapse
|
9
|
Wang M, Ren J, Liu Z, Li S, Su L, Wang B, Han D, Liu G. Beneficial Effect of Selenium Doped Carbon Quantum Dots Supplementation on the in vitro Development Competence of Ovine Oocytes. Int J Nanomedicine 2022; 17:2907-2924. [PMID: 35814612 PMCID: PMC9270046 DOI: 10.2147/ijn.s360000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background After the synthesis of selenium doped carbon quantum dots (Se/CDs) via a step-by-step hydrothermal synthesis method with diphenyl diselenide (DPDSe) as precursor, the beneficial effects of Se/CDs’ supplementation on the in vitro development competence of ovine oocytes were firstly investigated in this study by the assay of maturation rate, cortical granules’ (CGs) dynamics, mitochondrial activity, reactive oxygen species (ROS) production, epigenetic modification, transcript profile, and embryonic development competence. Results The results showed that the Se/CDs’ supplementation during the in vitro maturation (IVM) process not only enhanced the maturation rate, CGs’ dynamics, mitochondrial activity and embryonic developmental competence of ovine oocytes, but remarkably decreased the ROS production level of ovine oocytes. In addition, the expression levels of H3K9me3 and H3K27me3 in the ovine oocytes were significantly up-regulated after the Se/CDs’ supplementation, in consistent with the expression levels of 5mC and 5hmC. Moreover, 2994 up-regulated differentially expressed genes (DEGs) and 846 repressed DEGs were found in the oocytes after the Se/CDs’ supplementation. According to the analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), these DEGs induced by the Se/CDs’ supplementation were positively related to the progesterone mediated oocyte maturation and mitochondrial functions. And these remarkably up-regulated expression levels of DEGs related to oocyte maturation, mitochondrial function, and epigenetic modification induced by the Se/CDs’ supplementation further confirmed the beneficial effect of Se/CDs’ supplementation on the in vitro development competence of ovine oocytes. Conclusion The Se/CDs prepared in our study significantly promoted the in vitro development competence of ovine oocytes, benefiting the extended research about the potential applications of Se/CDs in mammalian breeding technologies.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Jingyu Ren
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Zhanpeng Liu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Daoning Han
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
- Correspondence: Gang Liu, Email
| |
Collapse
|
10
|
Liu J, Ma L, Zhang G, Chen Y, Wang Z. Recent Progress of Surface Modified Nanomaterials for Scavenging Reactive Oxygen Species in Organism. Bioconjug Chem 2021; 32:2269-2289. [PMID: 34669378 DOI: 10.1021/acs.bioconjchem.1c00402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) are essential for normal physiological processes and play important roles in signal transduction, immunity, and tissue homeostasis. However, excess ROS may have a negative effect on the normal cells leading to various diseases. Nanomaterials are an attractive therapeutic alternative of antioxidants and possess an intrinsic ability to scavenge ROS. Surface modification for nanomaterials is a critical strategy to improve their comprehensive performances. Herein, we review the different surface modified strategies for nanomaterials to scavenge ROS and their inherent antioxidant capability, mechanisms of action, and biological applications. At last, the primary challenges and future perspectives in this emerging research frontier have also been highlighted. It is believed that this review paper will offer a top understanding and guidance on engineering future high-performance surface modified ROS scavenging nanomaterials for wide biomedical applications.
Collapse
Affiliation(s)
- Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100039, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
11
|
Zhou D, Huang H, Yu J, Hu Z. Lysosome-targetable selenium-doped carbon nanodots for in situ scavenging free radicals in living cells and mice. Mikrochim Acta 2021; 188:223. [PMID: 34097136 DOI: 10.1007/s00604-021-04883-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
Lysosome-targetable selenium-doped carbon nanodots (Lyso-Se-CDs) that can efficiently scavenge lysosomal •OH in living cells and mice were designed in this research. Se-CDs with redox-responsive fluorescence (λex = 379 nm, λem = 471 nm, quantum yield = 7.1%) were initially synthesized from selenocystine by a facile hydrothermal method, followed by the surface modification with morpholine, a lysosome targeting moiety. The as-synthesized Lyso-Se-CDs exhibited excellent colloidal stability, efficient scavenging abilities towards •OH, low biotoxicity, as well as good biocompatibility and lysosome targetability. Due to these desirable properties, Lyso-Se-CDs had been successfully utilized for rescuing cells from elevated lysosomal •OH levels. More importantly, Lyso-Se-CDs efficiently relieved phorbol 12-myristate 13-acetate (PMA) triggered ear inflammation in live mice. These findings reveal that Lyso-Se-CDs are potent candidates for treating •OH-related inflammation.
Collapse
Affiliation(s)
- Danling Zhou
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hong Huang
- College of Biological Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Junrong Yu
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zuming Hu
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
12
|
Kuznetsova DA, Vasileva LA, Gaynanova GA, Pavlov RV, Sapunova AS, Voloshina AD, Sibgatullina GV, Samigullin DV, Petrov KA, Zakharova LY, Sinyashin OG. Comparative study of cationic liposomes modified with triphenylphosphonium and imidazolium surfactants for mitochondrial delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Yang D, Li L, Cao L, Zhang Y, Ge M, Yan R, Dong WF. Superior reducing carbon dots from proanthocyanidin for free-radical scavenging and for cell imaging. Analyst 2021; 146:2330-2338. [PMID: 33624640 DOI: 10.1039/d0an02479a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of excessive ROS can cause much harm to the human body and can even cause diseases. Therefore, it is important to detect and remove ROS, but there is no ideal method available for this at present. In this research, using procyanidins, a type of plant extract with strong reducibility, as raw materials, fluorescent carbon dots (CDs) were prepared by a hydrothermal method. The proanthocyanidin-based carbon dots (PCDs) emit a light-green colored light under UV irradiation. The PCDs retain the strong reducibility of procyanidins and are highly water-soluble compared with procyanidins. The PCDs, in addition to having good biocompatibility, also have the superior properties of radical scavenging activity and cell imaging. In in vitro experiments, 1,1-diphenyl-2-picrylhydrazyl (DPPH; 100 μM) was reduced by 30% when PCDs were added up to a concentration of 87.5 μg mL-1. At the same time, the fluorescence quenching correlates with the concentration of hypochlorite and hydrogen peroxide and has a good linearity in the range of 250-2250 nM and 60-180 μM with a detection limit of 3.676 nM and 0.602 μM, respectively. Based on the previously described advantages, PCDs have potential as a biomedicine.
Collapse
Affiliation(s)
- Dian Yang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG. Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge. Molecules 2021; 26:692. [PMID: 33525729 PMCID: PMC7866183 DOI: 10.3390/molecules26030692] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.
Collapse
Affiliation(s)
- Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Prasad M. Sonawane
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Donghyeon Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Dooronbek Mametov
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Yunseon Park
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon 34141, Korea
| |
Collapse
|
15
|
Chang S, Chen BB, Lv J, Fodjo EK, Qian RC, Li DW. Label-free chlorine and nitrogen-doped fluorescent carbon dots for target imaging of lysosomes in living cells. Mikrochim Acta 2020; 187:435. [PMID: 32647994 DOI: 10.1007/s00604-020-04412-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
Lysosomes with a single-layered membrane structure are mainly involved in the scavenging of foreign substances and play an important role in maintaining normal physiological functions of living cells. In this work, near-neutrally charged fluorescent carbon dots (CDs) were prepared with lipophilicity through a facile one-pot hydrothermal carbonization of chloranil and triethylenetetramine at 160 °C for 3 h. The as-obtained CDs are proved to have good photostability, low cost, and excellent biocompatibility. Importantly, the as-prepared CDs with high quantum yield of 30.8% show excitation-dependent emission with great stability, and thus, they can be well used for the long-term target imaging of lysosomes in living cells without further modification. Meanwhile, the CDs can quickly enter into the lysosomes within 30 min, and the green fluorescence (FL) of CDs reaches the plateau when incubated for 60 min. By comparing the fluorescent intensity, the information about distribution and amount of lysosomes in different cells can be obtained. The proposed CD-based strategy demonstrates great promise for label-free target imaging of lysosomes in living cells. Graphical abstract The near-neutral carbon dots (CDs) with lipophilicity are used as label-free fluorescent nanoprobes for the long-term imaging of lysosomes in living cells.
Collapse
Affiliation(s)
- Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bin Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Essy Kouadio Fodjo
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ruo Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Da Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|