1
|
Rohilla P, Pal B, Das RK. Construction of a Bi-doped g-C 3N 4/Bi 2MoO 6 ternary nanocomposite for the effective photodegradation of ofloxacin under visible light irradiation. RSC Adv 2025; 15:2347-2360. [PMID: 39867332 PMCID: PMC11758503 DOI: 10.1039/d4ra08493d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
Water contamination is a result of the excessive use of antibiotics nowadays. Owing to this environmental toxicity, photocatalytic degradation is the primary approach to non-biological degradation for their removal. In this context, zerovalent Bi-doped g-C3N4/Bi2MoO6 [g-C3N4/Bi@Bi2MoO6] ternary nanocomposite was prepared using the wet impregnation method. Surprisingly, zerovalent Bi is generated simultaneously during the hydrothermal synthesis of Bi2MoO6 without using any additional reducing agent. The performance of the synthesized catalyst for the removal of ofloxacin is measured using visible light radiation. Various techniques like XRD, XPS, DRS, HRTEM, FESEM, etc., were used to characterize the nanocomposites. Additionally, XPS, DRS, and HRTEM confirm the presence of zerovalent Bi. The degradation efficiency was recorded as 82% after 3 h for the optimized catalyst. The control experiments confirm that the superoxide radicals and holes function as reactive entities in the degradation process. HRMS was used to identify the intermediates and various fragments, which support the suggested mechanism. The photocatalyst exhibits outstanding stability and reusability. Due to its stability, easy synthesis, excellent catalytic activity, and reusability, the reported photocatalyst can be considered to be an excellent candidate for photocatalytic pollutant degradation.
Collapse
Affiliation(s)
- Priti Rohilla
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
| | - Bonamali Pal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
- TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
| | - Raj Kumar Das
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
- TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
| |
Collapse
|
2
|
Zhang B, Peng G, Dong N, Shi H, Shao T, Ren X, Guo X, Kumar A, Subramaniam V, Ramachandran K, Zhang F, Liu X. Data-Driven Machine Learning Strategy for Designing Metal-Ion-Doped γ-Bi 2MoO 6 Photocatalysts to Enhance Degradation Performance. J Phys Chem B 2025; 129:305-317. [PMID: 39719039 DOI: 10.1021/acs.jpcb.4c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Doped semiconductors are often used to improve photocatalytic efficiency and address the challenges of easy recombination of electron-hole pairs and poor photoluminescence. However, the reproducibility and complexity of experimental studies result in time-consuming and less cost-effective studies, and it is difficult to gain insights into the intrinsic properties of doped photocatalysts to control their performance. Introducing a machine learning approach, we constructed a photocatalytic model of transition-metal- and rare earth metal-ion-doped γ-Bi2MoO6. We selected 18 factors of preparation conditions and dopant ion properties, and constructed 806 data sets through literature collection for correlation analysis, paving the way for a more efficient and cost-effective research process. The results of our study are promising. The trained and improved XGboost model demonstrated high resistance to the variability caused by data segmentation, with a cross-validated model showing a coefficient of determination of 0.942. Through the combination of characteristic importance and Shapley additive explanation analysis, the importance and correlation trends of preparation conditions and dopant ion properties are obtained, especially the positive correlation trend of excitation time and preparation time and the negative correlation trend of atomic mass and bandwidth. Model prediction and experimental validation are used to demonstrate the effectiveness and behavioral prediction ability, and the Zn and Cd elements are successfully predicted for doping modification means. This study contributes to the modification and preparation of γ-Bi2MoO6 materials and provides a solid foundation for the efficient design of photocatalysts.
Collapse
Affiliation(s)
- Bohang Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Guanhongye Peng
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Nan Dong
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Huihui Shi
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Tingting Shao
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Xincheng Ren
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency Safety and Rescue Technology, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Ashish Kumar
- Division of Research and Development, Lovely Professional University, Phagwara 144411, India
| | - Vadivel Subramaniam
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602105, India
| | - Krishnamoorthy Ramachandran
- Department of Physics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani Campus, Chennai 600 026, Tamil Nadu, India
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency Safety and Rescue Technology, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| |
Collapse
|
3
|
Zheng L, Wang S, Zhang S, Zu Y, Huang X, Qian X. Stable loading of MOF-derived carbon skeleton encapsulated Ni and BiOBr on carbonized cellulose fibers for fabricating high-performance and recyclable photocatalytic paper. J Colloid Interface Sci 2024; 676:532-542. [PMID: 39053401 DOI: 10.1016/j.jcis.2024.07.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The highly dispersed small-size metal co-catalysts can effectively improve the photocatalytic efficiency of semiconductor photocatalysts by separating photogenerated electrons and enriching active sites. However, this system tends to aggregate in the absence of carrier, resulting in the decrease of active sites. Here, MOF-derived carbon skeleton (MDCS) encapsulated Ni nanoparticles (Ni@MDCS) and BiOBr was loaded onto carbonized cellulose fibers (CCF) with the help of polydopamine (PDA) to construct high-performance and recyclable photocatalytic paper for photocatalytic degradation of organic dyes in water. The characterization results showed that MDCS promoted good dispersion of Ni nanoparticles and provided sufficient active sites. And Ni@MDCS as a co-catalyst accelerated the separation of photogenerated carriers in BiOBr. The PDA improved the loading state of Ni@MDCS on CCF and converted into N-doped C in the carbonization process for further increasing the transfer efficiency of photogenerated electrons. In the composite paper, the stable loading of Ni@MDCS/BiOBr hybrid on CCF improved the dispersion and reusability of photocatalyst. The degradation rate of rhodamine B on CCF/PDA-C/Ni@MDCS/BiOBr paper was as high as 94.6 % after 60 min visible light irradiation, which was about 2.5 times higher than that of CCF/BiOBr paper. During 10 cycles, CCF/PDA-C/Ni@MDCS/BiOBr paper maintained high photocatalytic efficiency and good structural stability. This study provides a new way for developing high-performance and recyclable photocatalytic paper.
Collapse
Affiliation(s)
- Libo Zheng
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Siyu Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Shuting Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Yuanzhao Zu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Xiujie Huang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| | - Xueren Qian
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| |
Collapse
|
4
|
Li J, Shang E, Li X, Tian J, Xu Z, Li J. Efficient ofloxacin degradation via peroxymonosulfate activation using an S-scheme MoS 2/Co 3O 4 heterojunction composite under visible light: Performance and mechanistic insights. ENVIRONMENTAL RESEARCH 2024; 262:119891. [PMID: 39218336 DOI: 10.1016/j.envres.2024.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Sulfate-radical-mediated photocatalysis technology peroxymonosulfate (PMS) activation via visible light irradiation shows great promise for water treatment applications. However, its effectiveness largely depends on the bifunctional performance of photocatalysis and PMS activation provided by the catalysts. In this study, we successfully synthesized a novel S-scheme MoS2/Co3O4 (MC) heterojunction composite by a hydrothermal method and employed it for the first time to activate PMS for ofloxacin (OFX) degradation under visible light irradiation. The MC-5/PMS/Vis system achieved an impressive 85.11% OFX degradation efficiency within 1 min and complete OFX removal within 15 min under optimal conditions, with an apparent first-order kinetics rate constant of 0.429 min-1. Reactive species trapping experiments and electron spin resonance analysis identified 1O2, h+, and •O2- as the primary active species responsible for OFX degradation. Photoelectrochemical analyses and density functional theory calculations indicated the formation of a built-in electric field between MoS2 and Co3O4, which enhanced the separation and migration of photoinduced carriers. Additionally, the Co-Mo interaction further increased the yield of dominant reactive species, thereby boosting photocatalytic activity. This work underscores the potential of visible-light-assisted PMS-mediated photocatalysis using Co3O4-based catalysts for effective pollutant control.
Collapse
Affiliation(s)
- Jianwei Li
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China.
| | - Xuebing Li
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China
| | - Jiajia Tian
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China
| | - Zesheng Xu
- Chinese Academy for Environmental Planning, Beijing, 100041, China
| | - Jiwen Li
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China.
| |
Collapse
|
5
|
Cheng B, Wang R, Wang X, Wang N, Ouyang XK. Heterojunction functionalized sodium alginate/carboxylated cellulose nanocrystals film enhancing sterilization performance for wound healing. Carbohydr Polym 2024; 345:122550. [PMID: 39227117 DOI: 10.1016/j.carbpol.2024.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024]
Abstract
In the realm of natural polysaccharides, hydrogen bonding is a prevalent feature, yet its role in enhancing photocatalytic antimicrobial properties has been underexplored. In this paper, heterojunctions formed by graphene oxide (GO) and ZIF-8 were locked in sodium alginate/ carboxylated cellulose nanocrystals via hydrogen bonding networks, designated as SCGZ. The SCGZ films exhibit superior photocatalytic performance compared to either ZIF-8 or heterojunctions. This enhancement is primarily due to two key factors: firstly, the hydrogen bonding network significantly enhances the transfer of protons and holes, thereby improving the separation efficiency of photo-generated carriers; secondly, the hydrogen bonding between the layers facilitates a more efficient charge transfer, which expedites the movement of electrons from ZIF-8 to GO upon illumination. In vitro studies demonstrated that the SCGZ films possess remarkable antibacterial capabilities, achieving 99.75 % and 99.61 % inhibition rates against S. aureus and E. coli, respectively. In vivo animal experiments have shown that SCGZ films can significantly accelerate the healing process of damaged tissues, with a healing efficiency of up to 90.5 %. This research provides additional insights into the development of natural polysaccharide-based multi‑hydrogen bonded macromolecules with enhanced photocatalytic properties.
Collapse
Affiliation(s)
- Baijie Cheng
- School of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Ruolin Wang
- School of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xinhao Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
6
|
Pastrana EC, Valdivia-Alvarez D, Radenovich IE, Gonzales-Lorenzo CD, Wang D, de Brito JF, Zanoni MVB, Alarcón HA. Synthesis of a novel bismuth molybdite/iron oxide thin film for oxytetracycline degradation in a photoelectrocatalytic system. CHEMOSPHERE 2024; 366:143505. [PMID: 39384136 DOI: 10.1016/j.chemosphere.2024.143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
In this study, heterostructures based on Bismuth molybdite/iron oxide (Bi2MoO6/Fe2O3) thin films were fabricated by a dip-coating technique using precursor solutions. The heterostructures were deposited on fluorine-doped tin oxide glass substrates. From a detailed characterization using X-ray diffraction and X-ray photoelectron spectroscopy, the formation of the orthorhombic phase for Bi2MoO6 and the co-existence of hematite and maghemite in Fe2O3 was demonstrated. Meanwhile, the field emission scanning electron microscopy cross-section images confirm the formation of well-defined Bi2MoO6 film under the Fe2O3 deposition. The optical band gap energies for the heterostructure obtained were estimated from the diffuse reflectance spectra and ranged from 2.3 to 3.5 eV. Photoluminescence analysis revealed an improved separation and faster transfer of photogenerated electrons and holes for the Bi2MoO6/Fe2O3 (Het) film. The best oxytetracycline (OTC) removal percentage through photoelectrocatalytic treatment was 96.85% using the Het. Besides, were carried out the variation of parameters which affect the OTC photoelectrocatalytic degradation as pH, potential applied, and scavenger assay. The 1O2 was the oxidant predominate, which attack the OTC ring to initiate and accelerate the degradation process. Based on the analysis of degradation intermediates and characteristics of Bi2MoO6/Fe2O3, possible degradation pathways and mechanisms of OTC were displayed. An enhancement of oxytetracycline degradation efficiency of Het fabricated compared to pristine oxides was achieved mainly due to avoid the charge recombination of photogenerated electron-hole pairs provided by Direct Z-scheme heterostructure. Finally, the Het fabricated represents a promising material for efficient and sustainable pharmaceutical removal applications.
Collapse
Affiliation(s)
- Elizabeth C Pastrana
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima, Peru.
| | - Daniel Valdivia-Alvarez
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima, Peru.
| | - Italo Espinoza Radenovich
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima, Peru.
| | | | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA.
| | - Juliana Ferreira de Brito
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara. National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), Av. Prof. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil.
| | - Maria Valnice Boldrin Zanoni
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara. National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), Av. Prof. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil.
| | - Hugo A Alarcón
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima, Peru.
| |
Collapse
|
7
|
Feng L, Ai L, Wang L, Guo N, Xu M, Leng C, Ma Q, Tan C, Shi H. Constructing a Type-II CdS/Bi 2MoO 6 Heterostructure: Promoting Photocatalytic Degradation of Contaminants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18896-18905. [PMID: 39192730 DOI: 10.1021/acs.langmuir.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Constructing a heterostructure is regarded as one of the most favorable approaches to attaining the separation ability of photogenerated carriers and strengthening photocatalysis efficiency. In this study, a CdS/Bi2MoO6 type-II heterostructure was constructed through a hydrothermal technique. The photocatalytic test result shows that the degradation efficiency of rhodamine B (RhB) and tetracycline (TC) over CS/BMO-1 was 100 and 92% under visible light, respectively, which is the highest compared to other samples. The exceptional photocatalytic efficiency is principally associated with generating an inherent electric field within a type-II heterostructure, effectively restraining the recombination of photogenerated electron hole pairs. The intermediate products during the photocatalytic degradation of RhB and TC were identified through liquid chromatography-mass spectrometry, and the hypotheses were formulated regarding the corresponding photodegradation mechanisms. Furthermore, the outcomes of capture tests exhibited that the primary active species were •O2- and h+, and a mechanism of the photocatalytic degradation procedure has been proposed.
Collapse
Affiliation(s)
- Lijuan Feng
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Lili Ai
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Nannan Guo
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Mengjiao Xu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Changyu Leng
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Qingtao Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Chuan Tan
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Haolan Shi
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| |
Collapse
|
8
|
Al Miad A, Saikat SP, Alam MK, Sahadat Hossain M, Bahadur NM, Ahmed S. Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review. NANOSCALE ADVANCES 2024; 6:d4na00517a. [PMID: 39258117 PMCID: PMC11382149 DOI: 10.1039/d4na00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Photocatalytic degradation is a highly efficient technique for eliminating organic pollutants such as antibiotics, organic dyes, toluene, nitrobenzene, cyclohexane, and refinery oil from the environment. The effects of operating conditions, concentrations of contaminants and catalysts, and their impact on the rate of deterioration are the key focuses of this review. This method utilizes light-activated semiconductor catalysts to generate reactive oxygen species that break down contaminants. Modified photocatalysts, such as metal oxides, doped metal oxides, and composite materials, enhance the effectiveness of photocatalytic degradation by improving light absorption and charge separation. Furthermore, operational conditions such as pH, temperature, and light intensity also play a crucial role in enhancing the degradation process. The results indicated that both high pollutant and catalyst concentrations improve the degradation rate up to a threshold, beyond which no significant benefits are observed. The optimal operational conditions were found to significantly enhance photocatalytic efficiency, with a marked increase in degradation rates under ideal settings. Antibiotics and organic dyes generally follow intricate degradation pathways, resulting in the breakdown of these substances into smaller, less detrimental compounds. On the other hand, hydrocarbons such as toluene and cyclohexane, along with nitrobenzene, may necessitate many stages to achieve complete mineralization. Several factors that affect the efficiency of degradation are the characteristics of the photocatalyst, pollutant concentration, light intensity, and the existence of co-catalysts. This approach offers a sustainable alternative for minimizing the amount of organic pollutants present in the environment, contributing to cleaner air and water. Photocatalytic degradation hence holds tremendous potential for remediation of the environment.
Collapse
Affiliation(s)
- Abdullah Al Miad
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Shassatha Paul Saikat
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Md Kawcher Alam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
9
|
Duong TTH, Ding S, Sebek M, Lund H, Bartling S, Peppel T, Le TS, Steinfeldt N. Effect of Bi 2MoO 6 Morphology on Adsorption and Visible-Light-Driven Degradation of 2,4-Dichlorophenoxyacetic Acid. Molecules 2024; 29:3255. [PMID: 39064834 PMCID: PMC11278676 DOI: 10.3390/molecules29143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The development of highly efficient and stable visible-light-driven photocatalysts for the removal of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water is still a challenge. In this work, Bi2MoO6 (BMO) materials with different morphology were successfully prepared via a simple hydrothermal method by altering the solvent. The morphology of the BMO material is mainly influenced by the solvent used in the synthesis (H2O, ethanol, and ethylene glycol or their mixtures) and to a lesser extent by subsequent thermal annealing. BMO with aggregated spheres and nanoplate-like structures hydrothermally synthesized in ethylene glycol (EG) and subsequently calcined at 400 °C (BMO-400 (EG)) showed the highest adsorption capacity and photocatalytic activity compared to other synthesized morphologies. Complete degradation of 2,4-D on BMO upon irradiation with a blue light-emitting diode (LED, λmax = 467 nm) was reached within 150 min, resulting in 2,4-dichlorophenol (2,4-DCP) as the main degradation product. Holes (h+) and superoxide radicals (⋅O2-) are assumed to be the reactive species observed for the rapid conversion of 2,4-D to 2,4-DCP. The addition of H2O2 to the reaction mixture not only accelerates the degradation of 2,4-DCP but also significantly reduces the total organic carbon (TOC) content, indicating that hydroxyl radicals are crucial for the rapid mineralization of 2,4-D. Under optimal conditions, the TOC value was reduced by 84.5% within 180 min using BMO-400 (EG) and H2O2. The improved degradation performance of BMO-400 (EG) can be attributed to its particular morphology leading to lower charge transfer resistance, higher electron-hole separation, and larger specific surface area.
Collapse
Affiliation(s)
- Thi Thanh Hoa Duong
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Shuoping Ding
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Michael Sebek
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Henrik Lund
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Stephan Bartling
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Tim Peppel
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Thanh Son Le
- Faculty of Chemistry, VNU University of Science, Hanoi 100000, Vietnam;
| | - Norbert Steinfeldt
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| |
Collapse
|
10
|
Gomathi A, Ramesh Kumar KA, Maadeswaran P. CeO 2 nanospheres incorporated with Bi 2MoO 6/g-C 3N 4 enhanced photocatalysis towards environmental pollutant Rhodamine B removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48103-48121. [PMID: 39017869 DOI: 10.1007/s11356-024-34073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
We have adopted a novel CeO2/Bi2MoO6/g-C3N4-based ternary nanocomposite that was synthesized via hydrothermal technique. The physiochemical characterization of as-prepared samples was examined through various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy TEM, photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. In addition, the photocatalytic performance was carried out by degradation of Rhodamine B dye under visible light irradiation using this nanocatalyst. The ternary nanocomposite achieved 94% of the degradation efficiency within 100 min which is higher than the pristine and binary composites under the predetermined condition pH = 7, Rhodamine B dye = 5 mg/L, and catalyst concentration = 150 mg/L. The experimental synergetic effect of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite has been ascribed to the interfacial charge carrier migration between CeO2, Bi2MoO6, and g-C3N4. The optical absorption range of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite was enhanced, and the band gap was reduced up to 2.2 eV. In addition, scavenger trapping experiment proves that the super oxide anions (O2-.) and photogenerated holes are the major active species. The reusability and stability experiment proved the CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite keeps good durability during the photocatalytic degradation process after the five successive cycles. Furthermore, based on the results, the charge carrier transfer photocatalytic mechanism was also discussed. This CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite may offer the cheapest material and extend the great opportunity for clean and environmental remediation approach under the visible light irradiation.
Collapse
Affiliation(s)
- Abimannan Gomathi
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem, 636011, India
| | - Kandasamy Athiyanan Ramesh Kumar
- Advanced Bioenergy and Biofuels Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem, 636011, India
| | - Palanisamy Maadeswaran
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem, 636011, India.
- Center for Instrumentation and Maintenance Facility, Periyar University, 636011, Salem, Tamil Nadu, India.
| |
Collapse
|
11
|
Nugroho D, Wannakan K, Nanan S, Benchawattananon R. Hydrothermal synthesis of Zingiber/ZnO for enhanced photodegradation of ofloxacin antibiotic and reactive red azo dye (RR141). PLoS One 2024; 19:e0300402. [PMID: 38805514 PMCID: PMC11132450 DOI: 10.1371/journal.pone.0300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 05/30/2024] Open
Abstract
The examination of photocatalyst powders for the total removal of pollutants from aqueous solutions is a vital research subject within the realm of environmental preservation. The objective of this study is to develop a photocatalyst heterojunction consisting of Zingiber/ZnO-H for the degradation of both the reactive red dye (RR 141) and ofloxacin antibiotic in wastewater. The current investigation outlines the process of synthesising a composite material by combining Zingiber montanum extract with zinc oxide (ZnO) by a hydrothermal method. The synthesis was conducted at a temperature of 180°C for a period of 4 hours. Consequently. The photocatalyst with a constructed heterojunction shown a notable enhancement in its photocatalytic activity as a result of the improved efficiency in charge separation at the interface. The application of economically viable solar energy facilitated the complete eradication of harmful pollutants through the process of detoxification. The removal of impurities occurs by a process that follows a first-order kinetics. Among the pollutants, RR141 demonstrates the greatest rate constant at 0.02 min-1, while ofloxacin has a rate constant of 0.01 min-1. The assessment of the stability of the produced photocatalyst was conducted after undergoing five cycles. This study additionally investigated the influence of sunshine on degradation, uncovering degradation rates of 97% for RR141 and 99% for ofloxacin when exposed to UV Lamp, and degradation rates of 97% for RR141 and 95% for ofloxacin when exposed to Solar Light.
Collapse
Affiliation(s)
- David Nugroho
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Khemika Wannakan
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Suwat Nanan
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | |
Collapse
|
12
|
Qi L, Wang S, Liu Y, Zhao P, Tian J, Zhu B, Zhang S, Xie W, Yu H. Facile Preparation of Magnetically Separable Fe 3O 4/ZnO Nanocomposite with Enhanced Photocatalytic Activity for Degradation of Rhodamine B. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:926. [PMID: 38869551 PMCID: PMC11173383 DOI: 10.3390/nano14110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Magnetic separation of photocatalysts holds great promise for water treatment. A magnetic separation method has a positive effect on the recovery of catalysts after degradation. In this paper, an efficient and reusable catalytic system is developed based on coating magnetic Fe3O4 by depositing Fe2+ on the surface of ZnO. The Fe3O4/ZnO nanocomposite exhibits enhanced performance for organic pollutant degradation. The Fe3O4/ZnO system demonstrates a high photocatalytic activity of 100% degradation efficiency in Rhodamine B (RhB) degradation under UV light irradiation for 50 min. The excellent photocatalytic activity is primarily due to the separation of photogenerated electron-hole pairs being facilitated by the strong interaction between Fe3O4 and ZnO. The induction of the magnetic Fe3O4 endows the Fe3O4/ZnO composite with superior magnetic separation capability from water. Experiments with different radical scavengers revealed that the hydroxyl radical (·OH) is the key reactive radical for the effective degradation of RhB. This work innovatively affords a common interfacial dopant deposition strategy for catalytic application in the degradation of organic dye pollutants and catalyst separation from wastewater efficiently.
Collapse
Affiliation(s)
- Li Qi
- College of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China; (L.Q.); (Y.L.); (W.X.)
| | - Siyu Wang
- College of Chemistry, Nankai University, Tianjin 300071, China; (S.W.); (P.Z.); (J.T.); (B.Z.); (S.Z.)
| | - Yun Liu
- College of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China; (L.Q.); (Y.L.); (W.X.)
| | - Peng Zhao
- College of Chemistry, Nankai University, Tianjin 300071, China; (S.W.); (P.Z.); (J.T.); (B.Z.); (S.Z.)
- The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Jing Tian
- College of Chemistry, Nankai University, Tianjin 300071, China; (S.W.); (P.Z.); (J.T.); (B.Z.); (S.Z.)
| | - Baolin Zhu
- College of Chemistry, Nankai University, Tianjin 300071, China; (S.W.); (P.Z.); (J.T.); (B.Z.); (S.Z.)
- The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shoumin Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China; (S.W.); (P.Z.); (J.T.); (B.Z.); (S.Z.)
- The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Wenqi Xie
- College of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China; (L.Q.); (Y.L.); (W.X.)
| | - Huanhuan Yu
- College of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China; (L.Q.); (Y.L.); (W.X.)
- College of Chemistry, Nankai University, Tianjin 300071, China; (S.W.); (P.Z.); (J.T.); (B.Z.); (S.Z.)
| |
Collapse
|
13
|
Makota O, Yankovych HB, Bondarchuk O, Saldan I, Melnyk I. Sphere-shaped ZnO photocatalyst synthesis for enhanced degradation of the Quinolone antibiotic, Ofloxacin, under UV irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33619-w. [PMID: 38772993 DOI: 10.1007/s11356-024-33619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
The sphere-shaped zinc oxide (ZnO) photocatalyst was synthesized by the homogeneous precipitation method, using Zn(CH3COO)2·2H2O as a zinc precursor and NH4OH as a precipitating agent. The morphology and crystal structure of the prepared ZnO sample were studied by XRD, SEM, FT-IR, XPS, zeta potential measurements, and a low-temperature nitrogen adsorption-desorption technique. The optical characteristics of ZnO were determined by UV - Vis diffuse reflectance spectroscopy. ZnO photocatalyst performance of up to 100% within 210 min was observed in the photodegradation of the ofloxacin antibiotic under ultraviolet (UV) irradiation. The effect of antibiotic concentration, heavy metal ions, and water sources on the photocatalytic activity of ZnO demonstrated both the potential of its application under different conditions, and a good adaptability of this photocatalyst. The photodegradation reaction correlated well with the first-order kinetics model, with a rate constant of 0.0173 min-1. The reusability of the photocatalyst was verified after three cycles of use. Admittedly, photogenerated electrons and holes played a key role in removal of the antibiotic. This work showed the suitability of prepared ZnO for antibiotic removal, and its potential use for environmental protection.
Collapse
Affiliation(s)
- Oksana Makota
- Department of Physical and Physico-Chemical Methods of Mineral Processing, Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovak Republic.
- Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Stepana Bandery 12, 79013, Lviv, Ukraine.
| | - Halyna Bodnar Yankovych
- Department of Physical and Physico-Chemical Methods of Mineral Processing, Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovak Republic
| | - Oleksandr Bondarchuk
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga S/N, 4715-330, Braga, Portugal
| | - Ivan Saldan
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Inna Melnyk
- Department of Physical and Physico-Chemical Methods of Mineral Processing, Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovak Republic
| |
Collapse
|
14
|
Xiong T, Feng Q, Fang C, Chen R, Wang Y, Xu L, Liu C. A novel ZnCo 2O 4/BiOBr p-n/Z-scheme heterojunction photocatalyst for enhancing photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26839-26854. [PMID: 38456981 DOI: 10.1007/s11356-024-32762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
In this study, we developed a novel p-n/Z-scheme heterojunction photocatalyst, ZnCo2O4/BiOBr (ZCo/BB), through a straightforward and safe hydrothermal-calcination-solvent thermal method. The composite photocatalyst demonstrated exceptional photocatalytic efficacy, particularly when the mass ratio of ZnCo2O4 was 25% (referred to as 25% ZCo/BB). Structural characterization and electrochemical analysis revealed that 25% ZCo/BB exhibited a larger specific surface area and a faster electron transfer rate. Under visible light exposure for 30 min, methylene blue (MB) degradation reached 92%, and the reaction rate constants were 8.2 and 3.7 times higher than those observed for individual ZnCo2O4 and BiOBr, respectively. Furthermore, the 25% ZCo/BB demonstrated exceptional photocatalytic stability over four cycles, maintaining over 80% MB degradation after each cycle. The outstanding photocatalytic activity was attributed to the p-n/Z-scheme heterojunction construction, which promoted charge separation and inhibited carrier recombination. In addition, ·OH and h+ were the major active species in photocatalysis, and · O 2 - was identified as a secondary active species. This work presents an efficient heterojunction photocatalyst for the degradation of organic wastewater.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Qi Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Cimei Fang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Rui Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yanxi Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Longjun Xu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Chenglun Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
15
|
Su Y, Hu J, Wang Y, Li Y, Xiao L, He X, Zhang Z, Cai J, Pan D, Chen Y, Geng B, Li P, Shen L. N-Heterocycle Modified Graphene Quantum Dots as Topoisomerase Targeted Nanoantibiotics for Combating Microbial Infections. Adv Healthc Mater 2024; 13:e2302659. [PMID: 38011489 DOI: 10.1002/adhm.202302659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Developing next-generation antibiotics to eliminate multidrug-resistant (MDR) bacteria/fungi and stubborn biofilms is challenging, because of the excessive use of currently available antibiotics. Herein, the fabrication of anti-infection graphene quantum dots (GQDs) is reported, as a new class of topoisomerase (Topo) targeting nanoantibiotics, by modification of rich N-heterocycles (pyridinic N) at edge sites. The membrane-penetrating, nucleus-localizing, DNA-binding GQDs not only damage the cell walls/membranes of bacteria or fungi, but also inhibit DNA-binding proteins, such as Topo I, thereby affecting DNA replication, transcription, and recombination. The obtained GQDs exhibit excellent broad-spectrum antimicrobial activity against non-MDR bacteria, MDR bacteria, endospores, and fungi. Beyond combating planktonic microorganisms, GQDs inhibit the formation of biofilms and can kill live bacteria inside biofilms. RNA-seq further demonstrates the upregulation of riboflavin biosynthesis genes, DNA repair related genes, and transport proteins related genes in methicillin-resistant S. aureus (MRSA) in response to the stress induced by GQDs. In vivo animal experiments indicate that the biocompatible GQDs promote wound healing in MRSA or C. albicans-infected skin wound models. Thus, GQDs may be a promising antibacterial and antifungal candidate for clinical applications in treating infected wounds and eliminating already-formed biofilms.
Collapse
Affiliation(s)
- Yan Su
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuan Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Longfei Xiao
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, China
| | - Xialing He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenlin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinming Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ping Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, China
| |
Collapse
|
16
|
Ma Y, Wu P, Ku M, Guo M, Yang Y, Li X, Chen H. Organic pollutant degradation for micro-molecule product emission over SiO 2 layers-coated g-C 3N 4 photocatalysts. RSC Adv 2024; 14:6727-6737. [PMID: 38405067 PMCID: PMC10884889 DOI: 10.1039/d3ra08775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, a SiO2 layer-coated g-C3N4 catalyst was prepared by a sol-gel method to overcome the poor adsorption ability and high recombination rate of charge carriers of pristine g-C3N4. SEM and TEM images indicated that SiO2 nanoparticles were coated on the surface of g-C3N4 nanoparticles with a layered structure and the layers were tightly contacted with g-C3N4. XRD patterns, FTIR spectra, UV-vis spectra and XPS spectra revealed that the structure of g-C3N4 was not destroyed and its photoelectric catalytic properties were not suppressed by the coating of SiO2 layers. Adsorption experiments revealed that the SiO2 layers improved the adsorption performance of g-C3N4 and their ratios were adjusted. The molecular weights of the final products of the degradation of RhB and antibiotics were at the micro-molecule level while the amount of g-C3N4 reached 1.2% of the mass fraction, which were more suitable for pollutant degradation compared with those of g-C3N4 due to its poor adsorption ability. The reason for this was likely that the SiO2 layers were not only beneficial for the adsorption of pollutants and intermediate products but also for prolonging the life time of the separated electrons and holes. Finally, active trapping experiments confirmed that both the holes and superoxide radicals were the main factors in the degradation of RhB and antibiotics, with the superoxides being the most active species.
Collapse
Affiliation(s)
- Yongning Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology Xi'an 710021 P. R. China
| | - Peihan Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology Xi'an 710021 P. R. China
| | - Mengting Ku
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology Xi'an 710021 P. R. China
| | - Mingyuan Guo
- College of Chemisty and Materials Science, Weinan Normal University Weinan 714099 P. R. China
| | - Yuhao Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology Xi'an 710021 P. R. China
| | - Xiaolong Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology Xi'an 710021 P. R. China
| | - Haiyong Chen
- Gong Cheng Ji Shu Guan Li Bu, Changqing Oil Field Branch Company, PetroChina Xi'an 710018 P. R. China
| |
Collapse
|
17
|
Ye H, Luo Y, Yu S, Shi G, Zheng A, Huang Y, Xue M, Yin Z, Hong Z, Li X, Xie X, Gao B. 2D/2D Bi 2MoO 6/CoAl LDH S-scheme heterojunction for enhanced removal of tetracycline: Performance, toxicity, and mechanism. CHEMOSPHERE 2024; 349:140932. [PMID: 38096991 DOI: 10.1016/j.chemosphere.2023.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
In this paper, the two-dimensional (2D) layered CoAl LDH (CoAl) was coupled with Bi2MoO6 (BMO) nanoplate and used for tetracycline (TC) degradation. Based on the results of UV-visible diffuse reflectance spectrum (UV-vis DRS), Motty-Schottky curves, and in situ X-ray photoelectron spectroscopy (XPS), a novel 2D/2D Bi2MoO6/CoAl LDH S-scheme heterojunction photocatalyst was built. The photodegradation rate constant of TC by the optimized sample BMO/CoAl30 was 3.637 × 10-2 min-1, which was 1.26 times and 4.01 times higher than that of Bi2MoO6 and CoAl LDH, respectively. The favorable photocatalytic performance of the heterojunction was attributed to the increased interfacial contact area of the 2D/2D structure. Besides, the transfer of photogenerated electrons from Bi2MoO6 to CoAl LDH under the effect of the built-in electric field (BIEF) reduced the recombination of photogenerated carriers and further improved the photocatalytic performance. The reactive species of h+, ·O2-, and 1O2 exhibited critical roles to degrade TC molecules by reactive radicals capture experiments and electron spin resonance (ESR) tests. The intermediate products of TC degradation and toxicity of intermediates were analyzed by liquid chromatography-mass spectrometer (LC-MS) and Toxicity Estimation Software Tool (T.E.S.T). Additionally, the BMO/CoAl composite photocatalysts showed high stability and environmental tolerance during the testing of cycles and environmental impacts with various water sources, organic contaminants, initial pH, and inorganic ions. This work provides a new protocol for designing and constructing novel 2D/2D S-scheme heterojunction photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Huiyin Ye
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yidan Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| | - Shuohan Yu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Guangying Shi
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Aofeng Zheng
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yong Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Mingshan Xue
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Zuozhu Yin
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Zhen Hong
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xibao Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
18
|
Nugroho D, Wannakan K, Nanan S, Benchawattananon R. The Synthesis of carbon dots//zincoxide (CDs/ZnO-H400) by using hydrothermal methods for degradation of ofloxacin antibiotics and reactive red azo dye (RR141). Sci Rep 2024; 14:2455. [PMID: 38291079 PMCID: PMC10828376 DOI: 10.1038/s41598-024-53083-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
The development of photocatalytic powders to remove contaminants from air solutions is an important field of research in the field of environmental conservation. CD/ZnO-H400, a heterogeneous photocatalytic production, is utilized to degrade the reactive red dye and the antibiotic ofloxacin found in wastewater. This study explains the synthesis of carbon dots (CDs) derived from coconut air and zinc oxide (ZnO) using a hydrothermal method at a temperature of 180 °C with a duration of 4 h and subsequently calcinated at a 400 °C temperature for 4 h. This shows a significant improvement in photocatalytic performance due to improved delivery efficiency at the interface. The cost-efficient use of solar energy allows the comprehensive elimination of harmful pollutants through detoxification. The removal of the contaminant takes place through the first-order reaction, with RR141 showing the highest constant rate at 0.03 min-1, while ofloxacin has a constant speed at 0.01 min-1. The photocatalytic stability is measured after five cycles. The study also tested the impact of sunlight on degradation, showing a degrading rate of 98% for RR141 and 96% for ofloxacin. This study displays a new catalyst powder synthesized from carbon dots derived from the air, coconut and ZnO, showing remarkable photoactivity to completely remove harmful dyes and antibiotics from the surrounding environment.
Collapse
Affiliation(s)
- David Nugroho
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Khemika Wannakan
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suwat Nanan
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | |
Collapse
|
19
|
Nikitha M, Elanchezhiyan SS, Meenakshi S. Photodegradation of rhodamine-B in aqueous environment using visible-active gC 3N 4@CS-MoS 2 nanocomposite. ENVIRONMENTAL RESEARCH 2023; 238:117032. [PMID: 37673121 DOI: 10.1016/j.envres.2023.117032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Rapid industrial expansion leads to environmental pollution especially in an aqueous environment. Photocatalytic degradation is one of the most efficient and environmentally friendly techniques used to treat industrial pollution due to its complete degradation capability of a variety of water contaminants to their non-toxic state. Graphitic carbon nitride (gC3N4) and molybdenum disulfide (MoS2) provide efficient dye degradation, but MoS2 has few disadvantages. Hence, chitosan (CS) supported gC3N4-MoS2 hybrid nanocomposite was developed in this study to reduce these issues by accelerating the degradation of dye molecules such as rhodamine-B under visible light. The prepared gC3N4@CS-MoS2 hybrid nanocomposite was thoroughly characterized using various analytical tools including FTIR, XRD, SEM, EDX, XPS, UV-Visible, and PL spectra. Several influencing parameters such as irradiation time, initial pH, dosage, and initial dye concentration were optimized by batch mode. The photodegradation of rhodamine-B could be induced by the heterogeneous gC3N4@CS-MoS2-water hybrid nanocomposite. The narrow band gap of gC3N4@CS-MoS2 (1.80 eV) makes it suitable for effective degradation of rhodamine-B due to more active in the visible region and attained its highest degradation efficiency of 99% after 40 min at pH 8 with minimum dosage of 60 mg. The possible degradation mechanism was tentatively proposed for rhodamine-B dye molecules from aqueous environment. The present work shows a novel photocatalyst for the purification and detoxification of dye molecules as well as other water contaminants found in polluted wastewater.
Collapse
Affiliation(s)
- M Nikitha
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624 302, Tamil Nadu, India.
| | - S Sd Elanchezhiyan
- Sethu Institute of Technology, Department of Chemistry, Kariapatti, Virthunagar District, Tamil Nadu, India.
| | - S Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624 302, Tamil Nadu, India.
| |
Collapse
|
20
|
Popa A, Stefan M, Macavei S, Perhaita I, Tudoran LB, Toloman D. Facile Preparation of PVDF/CoFe 2O 4-ZnO Hybrid Membranes for Water Depollution. Polymers (Basel) 2023; 15:4547. [PMID: 38231983 PMCID: PMC10708052 DOI: 10.3390/polym15234547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
In this investigation, CoFe2O4-PVDF and CoFe2O4-ZnO-PVDF hybrid membranes were prepared using a modified phase inversion method in which a magnetic field was applied during the casting process to ensure a uniform distribution of nanomaterials on the membrane surface. Thus, better absorption of light and increased participation of nanoparticles in the photodegradation process is ensured. The influence of nanomaterials on the crystalline structure, surface morphology, and hydrophilicity properties of the PVDF membrane was investigated. The obtained results indicated that the hybrid membrane exhibited significant differences in its intrinsic properties due to the nanomaterials addition. The hydrophilicity properties of the PVDF membrane were improved by the presence of nanoparticles. The photocatalytic decomposition of aqueous Rhodamine B solution in the presence of the prepared membrane and under visible light irradiation was tested. The hybrid membrane containing CoFe2O4-ZnO on its surface exhibited a high removal rate.
Collapse
Affiliation(s)
- Adriana Popa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Maria Stefan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Ioana Perhaita
- Raluca Ripan Institute for Research in Chemistry, Babes Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania;
| | - Lucian Barbu Tudoran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Dana Toloman
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| |
Collapse
|
21
|
Maggu C, Singla S, Basu S. Unleashing the power of sunlight: Bi 2O 3/Sb 2S 3 photocatalysis for sustainable wastewater remediation of Tetracycline and Rhodamine-B. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119424. [PMID: 39492390 DOI: 10.1016/j.jenvman.2023.119424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
The use of heterojunction photocatalysts for pollutant decomposition has garnered significant interest in mitigating water contamination and environmental pollution. Our present study focuses on synthesizing Bi2O3/Sb2S3 heterojunction photocatalyst having variable mole ratios by employing a hydrothermal technique. Loading Sb2S3 onto Bi2O3 enables broad-spectrum solar light absorption, efficient segregation of charges, and enhanced surface area, which are excellent traits for photocatalysis. Both Bi2O3 and Sb2S3 showed nano-rod type morphology, while Sb2S3 was present as smaller nano-rods and Bi2O3 as larger ones. The photocatalytic performance of this heterojunction photocatalyst was examined using Rhodamine-B (RhB) and Tetracycline (TC) under solar light illumination for 120 min. Remarkable decomposition efficiency was achieved, with a 98.2% degradation rate observed for RhB having a rate constant of 0.03149 min-1. Similar experiments were conducted using other light sources as well, such as visible light and UV light. However, only 83% and 69% RhB degradation rates were attained with visible and UV light, respectively, indicating that natural sunlight is the superior light source for our catalyst. A 91.5% degradation rate was achieved for TC with the rate constant of 0.01749 min-1, in the presence of sunlight for 120 min. A small amount (0.3 g/L) of 1:3 Bi2O3/Sb2S3 (13BOSBS) photocatalyst was enough to bring such a good result. The photocatalytic activity of our catalyst, that is, 98.2% RhB degradation, is much higher than that of commercially available TiO2-P25 powder, as the latter only achieved 52% RhB degradation. The pH at which the surface of Bi2O3/Sb2S3 has a zero charge (pHpzc) was determined to be 5.37 and the maximum decomposition of RhB was achieved at pH 7. Reusability tests verified the remarkable stability of this catalyst, with about 74.4% of RhB degradation still present after seven consecutive cycles. Scavenger experiments highlighted the crucial role of •OH radicals in the photodecomposition mechanism, as the incorporation of DMSO significantly influenced the photocatalytic efficiency of the 13BOSBS composite, leading to a notable decrease to 37.5% in RhB degradation. For the RhB dye, the 13BOSBS catalyst demonstrated remarkable 90.2% and 85% reductions in COD and TOC, respectively. The commercially available TC powder substantially reduced 84% in COD and 80% in TOC, whereas there was a 78% reduction in COD and 73% in TOC for TC tablets. The degradation of the contaminants was followed by the formation of simpler intermediates, which were discovered using the GC-MS approach. Owing to its excellent attributes and simple synthesis method, the fabricated heterojunction offers a promising solution to prevent the persistent buildup of harmful toxic pollutants in industrial wastewater systems.
Collapse
Affiliation(s)
- Charu Maggu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, (Deemed to be University), Patiala, Punjab, 147004, India.
| | - Shelly Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, (Deemed to be University), Patiala, Punjab, 147004, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, (Deemed to be University), Patiala, Punjab, 147004, India.
| |
Collapse
|
22
|
Gao X, Jian S, Wang W, Li B, Huang J, Lei Y, Wang D. Study on Photochemical Properties of a Sr-SnS 2/CaIn 2S 4 Heterostructure to Improve Cr(VI) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10542-10552. [PMID: 37463864 DOI: 10.1021/acs.langmuir.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Compound semiconductor photocatalysis technology is considered to be a promising treatment for solving water problems efficiently. The point of designing high-efficiency catalysts is to optimize the band gap structure and facilitate the separation of charge carriers by establishing new electron migration pathways. Recently, 3D porous CaIn2S4 was found to have good photocatalytic ability. However, the quick recombination and agglomeration of carriers still limit its application. Herein, we prepared a heterostructure by introducing 2D Sr-doped SnS2 to 3D CaIn2S4 by a hydrothermal synthesis method. The optimal dosage of Sr-SnS2 is 3%, and the photocatalytic Cr(VI) removal efficiency of 3% Sr-SnS2/CaIn2S4 (SSCS-3) is 5.82 and 10.83 times those of pure CaIn2S4 and SnS2, respectively. According to the results of characterization tests and calculation verification, we inferred that the enhanced photocatalytic removal of Cr(VI) is due to the introduction of Sr-SnS2 that can promote the rapid transfer of photogenerated electrons to the surface of CaIn2S4, and the heterostructure formed between 2D Sr-SnS2 and 3D CaIn2S4 can also provide abundant reaction sites. The promotion of carrier separation is mainly due to the formation of a built-in electric field of the Sr-SnS2/CaIn2S4 heterostructure. This work provides new ideas and technologies for the treatment of Cr(VI) in wastewater.
Collapse
Affiliation(s)
- Xin Gao
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Shouwei Jian
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
- State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan430070,China
| | - Weizhen Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Baodong Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Jianxiang Huang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Yuting Lei
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Danfeng Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| |
Collapse
|
23
|
Meng Z, Wang L, Mo R, Zheng K, Li W, Lu Y, Qin C. Nitrogen doped magnetic porous carbon derived from starch of oatmeal for efficient activation peroxymonosulfate to degradation sulfadiazine. Int J Biol Macromol 2023:125579. [PMID: 37379945 DOI: 10.1016/j.ijbiomac.2023.125579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Nitrogen doped magnetic porous carbon catalyst based on starch of oatmeal was obtained by mixing and pyrolysis process, and its catalytic activity of peroxymonosulfate activation for sulfadiazine degradation was evaluated. When ratio of oatmeal/urea/iron was 1: 2: 0.1, CN@Fe-10 had the best catalytic activity to degrade sulfadiazine. Around 97.8 % removal of 20 mg L-1 sulfadiazine was achieved under incorporating of 0.05 g L-1 catalyst and 0.20 g L-1 peroxymonosulfate. Good adaptability, stability and universality of CN@Fe-10 were verified under different conditions. Electron paramagnetic resonance and radical quenching test suggested that surface-bound reactive oxides species and singlet oxygen were the main reactive oxides species in this reaction. Electrochemical analysis indicated that CN@Fe-10 had a good electrical conductivity and electron transferred did occur among CN@Fe-10 surface, peroxymonosulfate and sulfadiazine. X-ray photoelectron spectroscopy suggested that Fe0, Fe3C, pyridine nitrogen and graphite nitrogen were the potential active sites for peroxymonosulfate activation. Therefore, the work provided a practical approach for recycling biomass.
Collapse
Affiliation(s)
- Zhifei Meng
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Liqiang Wang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Ruixing Mo
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Kewang Zheng
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China; Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan, China.
| | - Wei Li
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China.
| | - Yunlai Lu
- Hubei Yunlai Plastic Technology Co., Ltd., Xiaogan, China
| | - Caiqin Qin
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China; Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Tuc Altaf C, Colak TO, Rostas AM, Popa A, Toloman D, Suciu M, Demirci Sankir N, Sankir M. Impact on the Photocatalytic Dye Degradation of Morphology and Annealing-Induced Defects in Zinc Oxide Nanostructures. ACS OMEGA 2023; 8:14952-14964. [PMID: 37151495 PMCID: PMC10157689 DOI: 10.1021/acsomega.2c07412] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
In this study, three different morphologies, nanoflower (NF), nano sponge (NS), and nano urchin (NU), of zinc oxide (ZnO) nanostructures were synthesized successfully via a mild hydrothermal method. After synthesis, the samples were annealed in the atmosphere at 300, 600, and 800 °C. Although annealing provides different degradation kinetics for different morphologies, ZnO NS performed significantly better than other morphologies for all annealing temperatures we used in the study. When the photoluminescence, electron paramagnetic resonance spectroscopy, BET surface, and X-ray diffraction analysis results are examined, it is revealed that the defect structure, pore diameter, and crystallinity cumulatively affect the photocatalytic activity of ZnO nanocatalysts. As a result, to obtain high photocatalytic activity in rhodamine B (RhB) degradation, it is necessary to develop a ZnO catalyst with fewer core defects, more oxygen vacancies, near band emission, large crystallite size, and large pore diameter. The ZnO NS-800 °C nanocatalyst studied here had a 35.6 × 10-3 min-1 rate constant and excellent stability after a 5-cycle photocatalytic degradation of RhB.
Collapse
Affiliation(s)
- Cigdem Tuc Altaf
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Tuluhan Olcayto Colak
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Arpad Mihai Rostas
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
- E-mail:
| | - Adriana Popa
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Dana Toloman
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria Suciu
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Nurdan Demirci Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- E-mail:
| | - Mehmet Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- E-mail:
| |
Collapse
|
25
|
Mardiroosi A, Mahjoub AR, Khavar AHC, Boukherroub R, Sillanpää M, Kaur P. Effects of functionalized magnetic graphene oxide on the visible-light-induced photocatalytic activity of perovskite-type MTiO3 (M= Zn and Mn) for the degradation of Rhodamine B. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
26
|
Wang T, Kumar A, Wang X, Zhang D, Zheng Y, Wang G, Cui Q, Cai J, Zheng J. Construction of activated biochar/Bi 2WO 6 and /Bi 2MoO 6 composites to enhance adsorption and photocatalysis performance for efficient application in the removal of pollutants and disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30493-30513. [PMID: 36434458 DOI: 10.1007/s11356-022-24049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
To synergistically enhance the adsorption and photocatalytic performance of Bi2WO6 and Bi2MoO6, using activated biochar (ACB) as substrate, ACB-Bi2WO6 and ACB-Bi2MoO6 composites were facilely prepared by hydrothermal synthesis. Their adsorption-photocatalytic degradation effects on rhodamine B (RhB), tetracycline (TC), and norfloxacin (NOR) were comparatively investigated. Additionally, the effects of environmental factors, wastewater treatment tests, and disinfection were systematically studied, and the enhancement mechanisms and reasons for the degradation differences were highlighted. The results showed that ACB-Bi2WO6 and ACB-Bi2MoO6 were confirmed to form intimately contacted heterojunctions by various advanced characterization techniques. The introduction of ACB narrowed the band-gap energy of Bi2WO6 and Bi2MoO6, and improved the visible light absorption range and specific surface area. The optimal loading ratios of ACB-Bi2WO6 and ACB-Bi2MoO6 were 1:1.06 and 1:0.58, respectively. The removal rate of ACB-Bi2WO6 for high concentrations of RhB (200 mg·L-1), TC and NOR (50 mg·L-1) were 89.15%, 87.27%, and 72.17%, respectively, which were higher than those of ACB-Bi2MoO6 and significantly stronger than those of Bi2WO6 and Bi2MoO6. This was attributed to the more effective inhibition of photogenerated carrier recombination, higher absorbance, and uniform morphology via ACB-Bi2WO6. ·OH and holes were dominant active species in photocatalysis, and the possible photogenerated carrier transfer path is type II heterojunction. Furthermore, ACB-Bi2WO6 possessed good reusability, and the removal of RhB and TC from the actual wastewater exceeded 80.63% and 58.54%, respectively. The sterilization rates of ACB-Bi2WO6 reached 99% and 95% for E. coli and S. aureus within 24 h, respectively. Therefore, ACB-Bi2WO6 was more recommended for environmental applications.
Collapse
Affiliation(s)
- Tongtong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, People's Republic of China
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Di Zhang
- College of Plant Sciences, Tarim University, Alar, 843300, People's Republic of China
| | - Yi Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Guogang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jinjun Cai
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China.
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
27
|
Ahmad ARD, Imam SS, Adnan R, Oh WD, Abdul Latip AF, Ahmad AAD. Fenton degradation of ofloxacin antibiotic using calcium alginate beads impregnated with Fe 3O 4-montmorillonite composite. Int J Biol Macromol 2023; 229:838-848. [PMID: 36586654 DOI: 10.1016/j.ijbiomac.2022.12.287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
The primary aim of this study is to develop an economical, stable, and effective heterogeneous catalyst for wastewater remediation via the Fenton oxidation process. For this purpose, Fe3O4-montmorillonite alginate (FeMA) composite beads were synthesized by entrapping Fe3O4-montmorillonite in calcium alginate beads. The performance of the catalysts was evaluated via the Fenton degradation of ofloxacin (OFL), an antibiotic that is frequently detected in water bodies. The physiochemical properties of the FeMA composite beads were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). FeMA composite beads were found to have a higher surface area, higher porosity, and better thermal stability compared to pristine alginate beads. The composite beads were subsequently used for Fenton degradation of ofloxacin (OFL) in an aqueous solution. The effects of Fe3O4-montmorillonite loading on alginate, FeMA composite beads dosage, initial solution pH, initial OFL concentration, different oxidants, H2O2 dosage, reaction temperature, and inorganic salts on Fenton degradation of OFL in aqueous solution was investigated. The results revealed that the percentage of OFL degradation reached about 80 % under optimized conditions, while the total organic carbon (TOC) removal reached about 53 %. The entrapment of Fe3O4-montmorillonite in alginate beads results in less iron ions leaching compared to previous observation, and the efficiency remains constant over the five cycles investigated. The kinetics of the Fenton degradation process are best fitted to the pseudo-first-order kinetic model. It is therefore believed that FeMA composite beads can be a promising material for wastewater remediation via the Fenton oxidation process.
Collapse
Affiliation(s)
| | - Saifullahi Shehu Imam
- Department of Pure and Industrial Chemistry, Bayero University P.M.B 3011, Kano, Nigeria
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Alomari Asma Dhahawi Ahmad
- Chemistry Department, Al-Qunfudah University College, Umm Al-Qura University, Al-Qunfudah 1109, Saudi Arabia
| |
Collapse
|
28
|
Wang W, Lv B, Tao F. NiO/g-C 3N 4 composite for enhanced photocatalytic properties in the wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25620-25634. [PMID: 36413264 DOI: 10.1007/s11356-022-24121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The massive discharge of colored wastewater has seriously harmed the environment and people's health. Photocatalysis technology is an effective method to purify colored wastewater and has been widely concerned in colored wastewater treatment. In this study, based on the obtained nickel oxide (NiO) nanospheres by solvothermal method and graphite phase carbon nitride (g-C3N4) nanosheets by thermal polymerization method, the p-n heterojunction composed of NiO nanospheres and g-C3N4 nanosheets was successfully constructed by heat treatment for the photocatalytic degradation of methyl orange (MO). The morphology, crystallinity, surface features, and optical properties of the NiO/g-C3N4 composites were investigated by various characterization methods such as scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis spectrophotometer, and fluorescence spectrometer (PL), which provided the evidence for the formation of the heterojunction between NiO and g-C3N4. Compared with the g-C3N4 nanosheets and NiO nanospheres, the NiO/g-C3N4 composites showed the improved photocatalytic activity for the degradation of MO under visible light irradiation. And the NiO/g-C3N4 composite with the mole ratio of NiO and g-C3N4 of 2:8 displayed the best photocatalytic activity of MO, and more than 90% of MO can be degraded under the illumination of 100 min. The high photocatalytic properties over the NiO/g-C3N4 composite may be due to high specific surface area, the perfect band matching, and the formation of the p-n heterojunction, which helps to promote interfacial charge transfer and hinder the recombination of photo-generated electrons and holes. Moreover, the NiO/g-C3N4 composite exhibits the universality and cyclic stability, which is expected to have broad application prospects in the treatment of colored wastewater.
Collapse
Affiliation(s)
- Wei Wang
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Beifeng Lv
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Feifei Tao
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
29
|
Photocatalytically Active Semiconductor Cu3P Unites with Flocculent TiN for Efficient Removal of Sulfamethoxazole. Catalysts 2023. [DOI: 10.3390/catal13020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sulfamethoxazole is a widely—used antibiotic with high water solubility and low biodegradability, which was considered a refractory environmental pollutant. Hence, a series of functionalized hybrids uniting Cu3P with TiN were prepared. The Cu3P/TiN—x composites remarkably removed the sulfamethoxazole in solution compared with Cu3P and TiN alone. All the as—prepared Cu3P/TiN—x hybrids integrated the advantages of strong adsorption and photocatalysis and achieved removal rates above 70% of sulfamethoxazole. Among the composites, the Cu3P/TiN—2 with a 1:1 molar ratio of Cu: Ti reached a 90% removal rate under dark adsorption for 30 min and subsequent photodegradation for 120 min. The enhanced performance of the Cu3P/TiN—x composites is attributed to the introduced flocculent TiN with a large specific surface area and high conductivity that provide more reactive sites and high electron transferability. Meanwhile, the strong corrosion resistance and chemical stability were also beneficial to the improved performance. Cycling experiments further demonstrate the stability and reliability of the composites. In addition, the capture experiments indicated that the superoxide radical (·O2−) and hydroxyl radical (·OH) played a major role in sulfamethoxazole degradation.
Collapse
|
30
|
Yan L, Tang J, Qiao QA, Cai H, Dong Y, Jin J, Xu Y, Gao H. Construction and Enhanced Efficiency of Bi 2MoO 6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:214. [PMID: 36616124 PMCID: PMC9824808 DOI: 10.3390/nano13010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Bi2MoO6 was one of the important bismuth-based semiconductors with a narrow bandgap, and has been widely used in selective oxidation catalysts, supercapacitors, and energy-storage devices. A series of Bi2MoO6/ZnO composite photocatalysts with different mass ratios were synthesized by the hydrothermal method. The synthesized samples were characterized by XRD, PL, UV-Vis, SEM, TEM, XPS, and BET analysis techniques. Under visible light conditions, Methylene blue (MB) was used as the target degradation product to evaluate its photocatalytic performance. The results showed that the degradation rate constant of Bi2MoO6/ZnO (0.4-BZO) was about twice that of the traditional photocatalysis of ZnO. The Bi2MoO6/ZnO composite catalyst maintained stable performance after four consecutive runs. The high photocatalytic activity of Bi2MoO6/ZnO was attributed to the efficient electron transport of the heterojunction, which accelerates the separation of electron-hole pairs and reduces the probability of carrier recombination near the Bi2MoO6/ZnO heterojunction. Bi2MoO6/ZnO nanocomposites have potential applications in the field of photodegradation.
Collapse
Affiliation(s)
- Liyun Yan
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jiahui Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Qing-an Qiao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Honglan Cai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuqi Dong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Juan Jin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai 264025, China
| |
Collapse
|
31
|
Mansor ES, El Shall FN, Radwan EK. Simultaneous decolorization of anionic and cationic dyes by 3D metal-free easily separable visible light active photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10775-10788. [PMID: 36083362 PMCID: PMC9898404 DOI: 10.1007/s11356-022-22838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
To overcome the hard and costly post-treatment separation of ultrathin graphitic carbon nitride nanosheets (UGCN), it was supported on polyurethane foam (PUF). The ratio of PUF/UGCN was optimized for the removal of a mixture of methylene blue (MB) and methyl orange (MO) dyes. The characteristics of the composite photocatalyst and its photocatalytic performance were detailly studied. The X-ray diffraction and Fourier transform infrared results proved the successful preparation of UGCN and PUF and that the PUF/UGCN composite combines the features of both pure materials. The transmission electron microscopy illustrated the ultrathin nanosheet shape of the UGCN, while the scanning electron microscope showed the highly porous 3D-hierarchical structure of PUF. Compared to the pure components, the composite photocatalyst with PUF/UGCN mass ratio of 4 achieved better decolorization of MO and almost same decolorization of MB as UGCN. Neutral pH and 1 g/L of the composite photocatalyst were the optimum conditions for MB/MO mixture decolorization. The composite photocatalyst kept its efficiency for five successive cycles. Hydroxyl radicals were the dominant in the degradation of MB, while superoxide radicals were the most influencer in MO degradation. Conclusively, supporting UGCN onto PUF kept the photocatalytic efficiency of UGCN toward MB decolorization and improved its efficiency toward MO. Moreover, it enabled the reuse of the composite photocatalyst and facilitated the post-treatment separation process.
Collapse
Affiliation(s)
- Eman S Mansor
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Fatma N El Shall
- Dyeing, Printing and Textile Auxiliary Department, Textile Research and Technology Institute, National Research Centre, El-Buhouth St. 33, Dokki, Cairo, 12622, Egypt
| | - Emad K Radwan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
32
|
Xu M, Deng Y, Li S, Zheng J, Liu J, Tremblay PL, Zhang T. Bacterial cellulose flakes loaded with Bi 2MoO 6 nanoparticles and quantum dots for the photodegradation of antibiotic and dye pollutants. CHEMOSPHERE 2023; 312:137249. [PMID: 36400196 DOI: 10.1016/j.chemosphere.2022.137249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Effective strategies to improve charge separation in semiconductor particles are critical for improving the photodegradation of organic pollutants at levels sufficient for environmental applications. Herein, Bi2MoO6 (BMOMOF), comprising both nanoparticles (NPs) and quantum dots (QDs), was synthesized from a bismuth-based metal-organic framework (Bi-MOF) precursor. Surface defects on BMOMOF, the combination of NPs and QDs, and modified energy band edges improved photogenerated charge separation and facilitated redox reactions. When compared to BMO derived from uncoordinated Bi, the BMOMOF photocatalyst (PC) was more efficient at photodegrading tetracycline hydrochloride (TCH) and ciprofloxacin (CIP), two widely-used antibiotics ubiquitous in wastewater, as well as the carcinogenic pollutant rhodamine B (RhB). BMOMOF was then loaded on the biopolymer bacterial cellulose (BC) to further enhance photocatalytic performance and facilitate the recovery of the PC after water treatment processes. The novel BMOMOF/BC photocatalytic flakes were significantly larger than pure BMOMOF, and thus easier to recuperate. Furthermore, anchoring BMOMOF on BC flakes augmented significantly the photodegradation of TCH, CIP, and RhB, mainly because hydroxyl groups in BC act as hole traps facilitating photogenerated electron-hole separation. Results obtained with BMOMOF/BC highlight promising approaches to develop optimal PCs for aqueous pollutants degradation.
Collapse
Affiliation(s)
- Mengying Xu
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yichao Deng
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Shanhu Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jingyan Zheng
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jieyu Liu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Tian Zhang
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
33
|
Enhanced removal of fluoroquinolone antibiotics by peroxydisulfate activated with N-doped sludge biochar: Performance, mechanism and toxicity evaluation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Dulyasucharit R, Wongkasemjit S, Nanan S, Intharuksa O, Masingboon C. Magnetic Fe3O4/Bi2O2(OH)(NO3) as a sunlight-driven photocatalyst for rhodamine B degradation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Popcorn-like ZnFe2O4/CdS nanospheres for high-efficient photocatalyst degradation of rhodamine B. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Hydrothermal Synthesis of Cadmium Sulfide Photocatalyst for Detoxification of Azo Dyes and Ofloxacin Antibiotic in Wastewater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227944. [PMID: 36432045 PMCID: PMC9692879 DOI: 10.3390/molecules27227944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The complete detoxification of harmful dyes and antibiotics from aqueous solution is essential for environmental remediation. The present work focuses on a facile hydrothermal synthesis of a cadmium sulfide (CdS) photocatalyst using thioacetamide as a sulfur source. The synthesized CdS showed a hexagonal phase with an energy gap of 2.27 eV, suggesting the promising visible-light-responsive semiconducting photocatalyst. The photoactivity of the prepared CdS was investigated by evaluating the degradation of the Reactive red 141 (RR141) dye, Congo red (CR) dye, and ofloxacin (OFL) antibiotic. After only 180 min of solar light illumination, a high performance of 98%, 97%, and 87% toward degradation of RR141, CR, and OFL was obtained. The photodegradation of the pollutants agrees well with the first-order kinetic model. The rate constant of 0.055 min-1, 0.040 min-1, and 0.026 min-1, respectively, was reported toward degradation of RR141, CR, and OFL. Photogenerated holes and hydroxyl radicals play a vital role in removing toxic organic contaminants. The chemical stability of the prepared CdS was also confirmed. The synthesized CdS photocatalyst still maintains high photocatalytic performance even after five consecutive cycles of use, indicating its excellent cycling ability. The present research shows a facile route to fabricate a CdS photocatalyst to completely detoxify harmful organic pollutants, including dyes and antibiotics, in the environment.
Collapse
|
37
|
Wannakan K, Khansamrit K, Senasu T, Chankhanittha T, Nanan S. Ag-Modified ZnO for Degradation of Oxytetracycline Antibiotic and Reactive Red Azo Dye. Antibiotics (Basel) 2022; 11:1590. [PMID: 36358245 PMCID: PMC9686815 DOI: 10.3390/antibiotics11111590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2023] Open
Abstract
It is known that low electron-hole separation efficiency is the major disadvantage influencing low photoactivity of the UV-active ZnO photocatalyst. To solve this drawback, the excellent fabrication technique has been used to disperse silver metal on ZnO surface. In this study, an addition of silver content up to 15 wt% was carried out. The 5Ag-ZnO sample, comprising 5 wt% of silver metal, displayed a hexagonal wurtzite structure, and a band gap of 3.00 eV, with high sunlight-active photocatalytic performance of 99-100% and low photo-corrosion problem. The complete degradation of oxytetracycline (OTC) antibiotic and reactive red dye 141 (RR141) dye under natural sunlight was achieved. The highest rate constant of 0.061 min-1 was detected. The enhancement of the performance is mainly due to lowering of the electron-hole recombination rate. Dispersion of silver on ZnO causes the generation of the Schottky barrier at the interface between Ag and ZnO, so that improvement of quantum efficiency and enhancement of the resultant photoactivity could be expected. Furthermore, good distribution of metallic silver also causes a red shift in absorption of light toward the visible spectrum. This is strongly attributed to the surface plasmon resonance effect, which occurred after successful decoration of the noble metal on ZnO. The photocatalyst, with great structural stability, still maintains high photocatalytic efficiency even after five times of use, implying its excellent cycling ability. The present finding offers a new road to generate a silver decorated ZnO photocatalyst for the complete removal of dye and antibiotics contaminated in the environment.
Collapse
Affiliation(s)
| | | | | | | | - Suwat Nanan
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
38
|
senasu T, Lorwanishpaisarn N, Hemavibool K, Nijpanich S, Chanlek N, Nanan S. Construction of g-C3N4/BiOCl/CdS heterostructure photocatalyst for complete removal of oxytetracycline antibiotic in wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Jones BMF, Mamba G, Maruthamani D, Muthuraj V. Honeycomb Nb2O5/RGO wrapped on MoO3 nanorods for visible light-driven degradation of sulfasalazine and ciprofloxacin in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Teng D, Qu J, Li P, Jin P, Zhang J, Zhang Y, Cao Y. Heterostructured α-Bi 2O 3/BiOCl Nanosheet for Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3631. [PMID: 36296821 PMCID: PMC9608947 DOI: 10.3390/nano12203631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic degradation of organic pollutants in wastewater is recognized as a promising technology. However, photocatalyst Bi2O3 responds to visible light and suffers from low quantum yield. In this study, the α-Bi2O3 was synthetized and used for removing Cl- in acidic solutions to transform BiOCl. A heterostructured α-Bi2O3/BiOCl nanosheet can be fabricated by coupling Bi2O3 (narrow band gap) with layered BiOCl (rapid photoelectron transmission). During the degradation of Rhodamine B (RhB), the Bi2O3/BiOCl composite material presented excellent photocatalytic activity. Under visible light irradiation for 60 min, the Bi2O3/BiOCl photocatalyst delivered a superior removal rate of 99.9%, which was much higher than pristine Bi2O3 (36.0%) and BiOCl (74.4%). Radical quenching experiments and electron spin resonance spectra further confirmed the dominant effect of electron holes h+ and superoxide radical anions ·O2- for the photodegradation process. This work develops a green strategy to synthesize a high-performance photocatalyst for organic dye degradation.
Collapse
Affiliation(s)
- Daoguang Teng
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Qu
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Li
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jin
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhang
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yijun Cao
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
41
|
Hu Z, Guo C, Wang P, Guo R, Liu X, Tian Y. Electrochemical degradation of methylene blue by Pb modified porous SnO 2 anode. CHEMOSPHERE 2022; 305:135447. [PMID: 35753421 DOI: 10.1016/j.chemosphere.2022.135447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A significant number of pollutants in wastewater can be electrocatalytically oxidized by SnO2-Sb, a relatively inactive electrode. However, the arduous process of environmental remediation due to poor electrochemical performance and short service life of the traditional Ti/SnO2-Sb electrode. In this work the SnO2 electrode with a micron-sized sphere structure was prepared by in-situ hydrothermal. The results of the study that the electrode (Pb-10%) synthesized from the precursor solution in which the Pb:Sn molar ratio is 10% exhibits excellent electrooxidation properties. Impressiveing, the Pb-10% electrode displayed the small charge transfer resistance (10.71 Ω) and the high oxygen evolution potential (2.26 V vs. SCE). Thus, the electrochemical degradation experiment demonstrates that 100 mg L-1 MB was degraded by Pb-10% electrode under the condition of initial pH = 5, and the decolorization rate reached 94.6%. Moreover, the influence of different parameters such as Pb doping amount, initial pH value of solution, initial concentration of MB and inorganic ions on degradation efficiency were also explored, in turn the practical application of electrodes in the field of purifying water resources is optimized. It is worth noting that the service life of the optimized electrode (100 mA cm-2, 0.5 M H2SO4, 90 h) is about 12 times longer than that of the bare electrode (Sn-Sb). Therefore, the high-performance Ti/SnO2-Sb electrode prepared in this work possesses vast application prospects in the electrocatalytic oxidation.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Peng Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Ye Tian
- The First Hospital of Qinhuangdao, 066099, China
| |
Collapse
|
42
|
Bu J, Wan Q, Deng Z, Liu H, Li T, Zhou C, Zhong S. Waste coal cinder catalyst enhanced electrocatalytic oxidation and persulfate advanced oxidation for the degradation of sulfadiazine. CHEMOSPHERE 2022; 303:134880. [PMID: 35584712 DOI: 10.1016/j.chemosphere.2022.134880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Waste coal cinder, a kind of waste cinder discharged from coal combustion of thermal power plants, industrial and civil boilers, and other equipment, was rich in metal oxides with catalytic activity. In this work, waste coal cinder was used to enhance electrochemical coupling peroxymonosulfate (PMS) advanced oxidation degradation of sulfadiazine (SD). The surface morphology, elemental composition, and electrocatalytic activity of waste coal cinder were characterized by various characterization instruments. The results show that compared with simple electrocatalytic oxidation, electrocatalytic oxidation + waste coal cinder and electrocatalytic coupled persulfate oxidation, electrocatalytic oxidation + PMS advanced oxidation + waste coal cinder has the largest removal efficiency (99.95%) and mineralization rates (90.16%) of SD in 90 min, indicating that the introduction of waste coal cinder greatly increases the degradation efficiency. •OH and SO4-• were detected during the process of degradation. The optimal degradation process parameters were explored through different voltage, pH, plate spacing, aeration flow rate, potassium peroxymonosulfate sulfate complex salt dose, and Na2SO4 dosage. Cycling experiments show waste coal cinder has good structural stability. Through the analysis of triple quadrupole liquid chromatography-mass spectrometry (LC-MS), we put forward three possible ways of SD degradation. This research will provide a novel vision for water treatment.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
43
|
Balakumar S, Mahesh N, Kamaraj M, Shyamalagowri S, Manjunathan J, Murugesan S, Aravind J, Babu PS. Outlook on bismuth-based photocatalysts for environmental applications: A specific emphasis on Z-scheme mechanisms. CHEMOSPHERE 2022; 303:135052. [PMID: 35618054 DOI: 10.1016/j.chemosphere.2022.135052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor photocatalysis is thought to be a viable solution for addressing the growing problem of environmental pollution. Bismuth (Bi) metal oxides can function as a direct plasmonic photocatalyst or cocatalyst to accelerate the photogenerated charge separation and thus improve their photocatalytic activity. Hence, Bi-based photocatalysts have received a lot of attention due to their extensive environmental applications, including pollutant remediation and energy concepts. Massive efforts have been undertaken in the recent decade to find superior Bi-metal oxides (Bi2XO6, X = MO, W, or Cr) and to uncover the corresponding photocatalytic reaction mechanism for the degradation of organic contaminants in water. Herein, the unique crystalline and electronic properties and main synthesis methods, as well as the major Bi-Based direct Z-scheme photocatalysts, are timely discussed and summarized in their usage in water treatment. Besides, the impact of Bi2XO6 in energy storage devices and solar energy conversion is reviewed as an energy application. Finally, the future development and challenges of Z-scheme-based Bi2XO6 photocatalysts are briefly explored, summarized, and forecasted.
Collapse
Affiliation(s)
- Srinivasan Balakumar
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | - Narayanan Mahesh
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India.
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology - Ramapuram Campus, Chennai, 600089, Tamil Nadu, India
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - J Manjunathan
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, 600117, Tamil Nadu, India
| | - S Murugesan
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - J Aravind
- Department of Bio-Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
44
|
Koyyada G, Goud BS, Devarayapalli KC, Shim J, Vattikuti SVP, Kim JH. BiFeO 3/Fe 2O 3 electrode for photoelectrochemical water oxidation and photocatalytic dye degradation: A single step synthetic approach. CHEMOSPHERE 2022; 303:135071. [PMID: 35618059 DOI: 10.1016/j.chemosphere.2022.135071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Herein, mixed-phase BiFeO3/Fe2O3 (BF-M) nanocomposite has been successfully prepared in a simple single-step synthetic strategy and its structural, physicochemical and magnetic properties have been characterized. The performance of as-synthesized mixed-phase BF-M catalyst has been investigated in photoelectrochemical (PEC) water oxidation and photocatalytic dye degradation analysis by comparing with the partials Fe2O3 with BiFeO3 (BF-P). The BF-M photocatalyst has degraded 95.7% of the rhodamine B (RhB) dye while BF-P has degraded 82.1% in 80 min. In addition, the BF-M electrode exhibited 0.57 mA cm-2 photocurrent density which was 1.83 times higher than the BF-P electrode (0.31 mA cm-2), signifying that the formation of a mixed-phase nanostructure interface is advantageous in enhancing light absorption capacity and reducing the rate of electron-hole recombination.
Collapse
Affiliation(s)
- Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, Gyeongbuk, 712-749, South Korea
| | - Burragoni Sravanthi Goud
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, Gyeongbuk, 712-749, South Korea
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, Gyeongbuk, 712-749, South Korea.
| |
Collapse
|
45
|
Fan G, Cai C, Yang S, Du B, Luo J, Chen Y, Lin X, Li X, Wang Y. Sonophotocatalytic degradation of ciprofloxacin by Bi2MoO6/FeVO4 heterojunction: Insights into performance, mechanism and pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
46
|
A BaTiO 3/WS 2 composite for piezo-photocatalytic persulfate activation and ofloxacin degradation. Commun Chem 2022; 5:95. [PMID: 36697648 PMCID: PMC9814951 DOI: 10.1038/s42004-022-00707-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/18/2022] [Indexed: 01/28/2023] Open
Abstract
Piezoelectric fields can decrease the recombination rate of photogenerated electrons and holes in semiconductors and therewith increase their photocatalytic activities. Here, a BaTiO3/WS2 composite is synthesized and characterized, which combines piezoelectric BaTiO3 nanofibers and WS2 nanosheets. The piezo-photocatalytic effect of the composite on the persulfate activation is studied by monitoring Ofloxacin (OFL) degradation efficiency. Under mechanical forces, LED lamp irradiation, and the addition of 10 mM persulfate, the OFL degradation efficiency reaches ~90% within 75 min, which is higher than efficiencies obtained for individual BaTiO3, WS2, or TiO3, widely used photocatalysts in the field of water treatment. The boosted degradation efficiency can be ascribed to the promotion of charge carrier separation, resulting from the synergetic effect of the heterostructure and the piezoelectric field induced by the vibration. Moreover, the prepared composite displays good stability over five successive cycles of the degradation process. GC-MS analysis is used to survey the degradation pathway of OFL during the degradation process. Our results offer insight into strategies for preparing highly effective piezo-photocatalysts in the field of water purification.
Collapse
|
47
|
Lu C, Yin Y, Zhou H. Construction of oxygen vacancy enriched Bi2MoO6/BiFeWO6 heterojunction for efficient degradation of organic pollutants. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Facile construction of sandwich-like composited Sm2MoO6/ZnO/rGO and its activity in photodecomposition ibuprofen. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Geng B, Li Y, Hu J, Chen Y, Huang J, Shen L, Pan D, Li P. Graphitic-N-doped graphene quantum dots for photothermal eradication of multidrug-resistant bacteria in the second near-infrared window. J Mater Chem B 2022; 10:3357-3365. [PMID: 35380572 DOI: 10.1039/d2tb00192f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing efficient therapeutic strategies for combating bacterial infection remains a challenge owing to the indiscriminate utilization of antibiotics and the prevalence of multidrug-resistant (MDR) bacteria. Herein, highly graphitic-N-doped graphene quantum dots (N-GQDs) with efficient NIR-II photothermal conversion properties were synthesized for the first time for photothermal antibacterial therapy. The obtained N-GQDs exhibited strong NIR absorption ranging from 700 to 1200 nm, achieving high photothermal conversion efficiency of 77.8% and 50.4% at 808 and 1064 nm, respectively. Outstanding antibacterial and antibiofilm activities against MDR bacteria (methicillin-resistant Staphylococcus aureus, MRSA) were achieved by the N-GQDs in the presence of an 808 or 1064 nm laser. In vivo investigations verified that the generation of hyperthermia by N-GQDs plus a NIR-II laser can combat MDR bacterial infections and thus significantly accelerate wound healing. Our work provides a novel carbon-based nanomaterial as a photothermal antibacterial agent for efficiently avoiding bacterial resistance and fighting MDR bacterial infections.
Collapse
Affiliation(s)
- Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yuan Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yuanyuan Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Junyi Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Ping Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
50
|
Kokilavani S, Syed A, Elgorban AM, Bahkali AH, Al-Shwaiman HA, Varma RS, Das A, Khan SS. Designing Z-scheme AgIO 4 nanorod embedded with Bi 2S 3 nanoflakes for expeditious visible light photodegradation of congo red and rhodamine B. CHEMOSPHERE 2022; 294:133755. [PMID: 35090849 DOI: 10.1016/j.chemosphere.2022.133755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The present study describes the enhanced photodegradation of organic pollutant dyes, congo red (CR) and rhodamine B (RhB) dyes under visible light irradiation. AgIO4 nanorods decorated on Bi2S3 nanoflakes in various proportions were synthesized via sono-chemical route wherein the deposition of varying amounts of AgIO4 on Bi2S3 plays a pivotal role in improving the photodegradation ability. The characterization of the as-synthesized nanohybrids was assessed by XRD, UV-vis DRS, PL, EIS, ESR, FT-IR, XPS, HR-TEM, FE-SEM, N2 adsorption and desorption techniques. The effect of initial CR and RhB dye concentration, reaction pH and usage of nanohybrid concentration were investigated where 30%-AgIO4/Bi2S3 exhibited excellent visible light photodegradation of 95.58% for CR and 96.11% for RhB dyes at 140 min and 100 min respectively. The superoxide (•O2-) and hydroxyl radicals (•OH) played predominant role in the photodegradation of CR and RhB which is experimentally confirmed by radical trapping experiments. Also, the photocatalysts exhibited good photo stability and excellent reusability. The TOC analysis confirmed the complete mineralization of CR and RhB dyes by the nanohybrid and the formation of possible intermediate and degradation pathway was delineated based on GC/MS analysis. The outstanding photodegradation performance were ascribed to the Z-scheme charge transfer path, which effectively promotes the separation and transfer of e-/h+ pairs, resulting in a strong redox activity of the accumulated charge to decompose organic dyes during the degradation reaction. The study suggested that the nanohybrid can be utilized for the removal of organic pollutants from the contaminated water bodies.
Collapse
Affiliation(s)
- S Kokilavani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Asad Syed
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hind A Al-Shwaiman
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Slechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Arunava Das
- Faculty of Life Sciences, Mandsaur University, SH-31, Mhow - Neemuch By-pass Square, Rewas-Dewda Road, Mandsaur, Madhya Pradesh, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|