1
|
Wong KJ, Foo JJ, Siang TJ, Khoo V, Ong W. Harnessing the Power of Light: The Synergistic Effects of Crystalline Carbon Nitride and Ti 3C 2T x MXene in Photocatalytic Hydrogen Production. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300235. [PMID: 38868601 PMCID: PMC11165523 DOI: 10.1002/gch2.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/11/2024] [Indexed: 06/14/2024]
Abstract
Photocatalytic hydrogen evolution is an environmentally friendly means of energy generation. Although g-C3N4 possesses fascinating features, its inherent shortcomings limit its photocatalytic applications. Therefore, modifying the intrinsic properties of g-C3N4 and introducing cocatalysts are essential to ameliorate the photocatalytic efficiency. To achieve this, metal-like Ti3C2Tx is integrated with crystalline g-C3N4 via a combined salt-assisted and freeze-drying approach to form crystalline g-C3N4/Ti3C2Tx (CCN/TCT) hybrids with different Ti3C2Tx loading amounts (0, 0.2, 0.3, 0.4, 0.5, 1, 5, 10 wt.%). Benefiting from the crystallization of CN, as evidenced by the XRD graph, and the marvelous conductivity of Ti3C2Tx supported by EIS plots, CCN/TCT/Pt loaded with 0.5 wt.% Ti3C2Tx displays an elevated H2 (2) should be subscripted evolution rate of 2651.93 µmol g-1 h-1 and a high apparent quantum efficiency of 7.26% (420 nm), outperforming CN/Pt, CCN/Pt, and other CCN/TCT/Pt hybrids. The enhanced performance is attributed to the synergistic effect of the highly crystalline structure of CCN that enables fleet charge transport and the efficient dual cocatalysts, Ti3C2Tx and Pt, that foster charge separation and provide plentiful active sites. This work demonstrates the potential of CCN/TCT as a promising material for hydrogen production, suggesting a significant advancement in the design of CCN heterostructures for effective photocatalytic systems.
Collapse
Affiliation(s)
- Khai Jie Wong
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Joel Jie Foo
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Tan Ji Siang
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Valerine Khoo
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Wee‐Jun Ong
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- Gulei Innovation InstituteXiamen UniversityZhangzhou363200China
- Shenzhen Research Institute of Xiamen UniversityShenzhen518057China
| |
Collapse
|
2
|
Zhao Y, Shu Y, Linghu X, Liu W, Di M, Zhang C, Shan D, Yi R, Wang B. Modification engineering of TiO 2-based nanoheterojunction photocatalysts. CHEMOSPHERE 2024; 346:140595. [PMID: 37951392 DOI: 10.1016/j.chemosphere.2023.140595] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Titanium dioxide (TiO2)-based photocatalysts have gained increasing attention for their versatile applications in organic degradation, hydrogen production, air purification, and CO2 reduction. Various TiO2-based heterojunction structures, including type I, type II, Schottky junction, Z-scheme, and S-scheme, have been extensively studied. The current research frontier is centered on the engineering modifications of TiO2-based nanoheterojunction photocatalysts, such as defect engineering, morphological engineering, crystal phase/facet engineering, and multijunction engineering. These modifications enhance carrier transport, separation, and light absorption, thereby improving the photocatalytic performance. Remarkably, this aspect has been less addressed in existing reviews. This review aims to fill this gap by focusing on the engineering modifications of TiO2-based nanoheterojunction photocatalysts. We delve into specific topics like oxygen vacancies, n-p homojunctions, and double defects. The review also systematically discusses the applications of multidimensional heterojunctions and examines carrier transport pathways in heterophase/facet junctions and their interactions with heterojunctions. A comprehensive summary of multijunction systems, including multi-Schottky junctions, semiconductor-based heterojunction-attached Schottky junctions, and multisemiconductor-based heterojunctions, is presented. Lastly, we outline future perspectives in this promising research field. This paper will assist researchers in constructing more efficient TiO2-based nanoheterojunction photocatalysts.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Wenqi Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Mengyu Di
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Changyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Ran Yi
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin, 300070, China.
| |
Collapse
|
3
|
Fan WK, Tahir M, Alias H. Synergistic Effect of Nickel Nanoparticles Dispersed on MOF-Derived Defective Co 3O 4 In Situ Grown over TiO 2 Nanowires toward UV and Visible Light Driven Photothermal CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54353-54372. [PMID: 37963084 DOI: 10.1021/acsami.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Catalytic CO2 hydrogenation is an effective approach to producing clean fuels, but this process is expensive, in addition to the low efficiency of catalysts. Thus, photothermal CO2 hydrogenation can effectively utilize solar energy for CH4 production. Metal-organic framework (MOF) derived materials with a controlled structure and morphology are promising to give a high number of active sites and photostability in thermal catalytic reactions. For the first time, a novel heterostructure catalyst was synthesized using a facile approach to in situ grow MOF-derived 0D Co3O4 over 1D TiO2 nanowires (NWs). The original 3D dodecahedral structure of the MOF is engineered into novel 0D Co3O4 nanospheres, which were uniformly embedded over Ni-dispersed 1D TiO2 NWs. In situ prepared 10Ni-7Co3O4@TiO2 NWs-I achieved an excellent photothermal CH4 evolution rate of 8.28 mmol/h at 250 °C under low-intensity visible light, whereas UV light treatment further increased activity by 1.2-fold. UV irradiations promoted high CH4 production while improving the susceptibility of the catalyst to visible light irradiation. The photothermal effect is prominent at lower temperatures, due to the harmonization of both solar and thermal energy. By paralleling with mechanically assembled 10Ni-7Co3O4/TiO2 NWs-M, the catalytic performance of the in situ approach is far superior, attributing to the morphological transformation of 0D Co3O4, which induced intimate interfacial interactions, formation of oxygen vacancies and boosted photo-to-thermal effects. The co-existence of metallic/metal oxide Ni-Co provided beneficial synergies, enhanced photo-to-thermal effects, and improved charge transfer kinetics of the composite. This work uncovers a facile approach to engineering the morphology of MOF derivatives for efficient photothermal CO2 methanation.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates (UAE) University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Hajar Alias
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| |
Collapse
|
4
|
Meng X, Wang L, Wang X, Zhen M, Hu Z, Guo SQ, Shen B. Recent developments and perspectives of MXene-Based heterostructures in photocatalysis. CHEMOSPHERE 2023; 338:139550. [PMID: 37467848 DOI: 10.1016/j.chemosphere.2023.139550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Energy crises and environmental degradation are serious in recent years. Inexhaustible solar energy can be used for photocatalytic hydrogen production or CO2 reduction to reduce CO2 emissions. At present, the development of efficient photocatalysts is imminent. MXene as new two-dimensional (2D) layered material, has been used in various fields in recent years. Based on its high conductivity, adjustable band gap structure and sizable specific surface area, the MXene is beneficial to hasten the separation and reduce the combination of photoelectron-hole pairs in photocatalysis. Nevertheless, the re-stacking of layers because of the strong van der Waals force and hydrogen bonding interactions seriously hinder the development of MXene material as photocatalysts. By contrast, the MXene-based heterostructures composed of MXene nanosheets and other materials not only effectively suppress the re-stacking of layers, but also show the superior synergistic effects in photocatalysis. Herein, the recent progress of the MXene-based heterostructures as photocatalysts in energy and environment fields is summarized in this review. Particularly, new synthetic strategies, morphologies, structures, and mechanisms of MXene-based heterostructures are highlighted in hydrogen production, CO2 reduction, and pollutant degradation. In addition, the structure-activity relationship between the synthesis strategy, components, morphology and structure of MXene-based heterostructures, and their photocatalytic properties are elaborated in detail. Finally, a summary and the perspectives on improving the application study of the heterostructures in photocatalysis are presented.
Collapse
Affiliation(s)
- Xinyan Meng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lufei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaoyu Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Mengmeng Zhen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhenzhong Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Sheng-Qi Guo
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
5
|
Guo RT, Zhang ZR, Xia C, Li CF, Pan WG. Recent progress of cocatalysts loaded on carbon nitride for selective photoreduction of CO 2 to CH 4. NANOSCALE 2023; 15:8548-8577. [PMID: 37128998 DOI: 10.1039/d3nr00242j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photocatalytic system driven by solar light is one of the promising strategies for converting CO2 into valuable energy. The reduction of CO2 to CH4 is widely studied since CH4 has a high energy density as the main component of nonrenewable natural gas. Therefore, it is necessary to develop semiconductor materials with high photocatalytic activity and CH4 selectivity. Graphitic carbon nitride (g-C3N4/CN) has attracted widespread attention for photocatalytic CO2 reduction due to its excellent redox ability and visible light response. A hybrid system constructed by loading cocatalysts on g-C3N4 can significantly improve the yield of target products, and serve as a general platform to explore the mechanism of the CO2 reduction reaction. Herein, we briefly introduce the theory of selective CO2 photoreduction and the basic properties of cocatalysts. Then, several typical configurations and modification strategies of cocatalyst/CN systems for promoting CH4 selective production are presented in detail. In particular, we systematically summarize the application of cocatalyst/CN composite photocatalysts in the selective reduction of CO2 to methane, according to the classification of cocatalysts (monometal, bimetal, metal-based compound, and nanocarbon materials). Finally, the challenges and perspectives for developing cocatalyst/g-C3N4 systems with high CH4 selectivity are presented to guide the rational design of catalysts with high performance in the future.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Cheng Xia
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| |
Collapse
|
6
|
Huang X, Mu W, Chang C. Two-dimensional Ti 3C 2 MXene-derived Ti 3C 2-Ti 2C-TiO 2 materials for improved diclofenac sodium adsorption performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52157-52168. [PMID: 36823462 DOI: 10.1007/s11356-023-26003-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This paper aims to prepare an adsorbent based on MXene material for adsorbing diclofenac sodium (DCF). In this paper, Ti3C2-MXene was prepared by etching Ti3AlC2 with hydrofluoric acid (HF). Ti3C2 was subjected to a convenient and simple solvothermal treatment. TiO2 and Ti2C were formed during the solvothermal process. According to the results of FT-IR and XRD, the formation of TiO2 and Ti2C will increase the interlayer spacing of the prepared Ti3C2-12 h, thereby improving the adsorption performance of MXenes. The main factors affecting the adsorbent, the maximum adsorption capacity, and the interaction between the two factors were analyzed by single-factor experiment, orthogonal experiment, and response surface analysis. The maximum DCF adsorption capacities of Ti3C2 and Ti3C2-12 h are 201 mg/g and 395 mg/g, respectively. MXene made from HF can absorb DCF under various pH conditions and maintain a high adsorption rate, which has important applications in environmental protection.
Collapse
Affiliation(s)
- Xinyue Huang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Weina Mu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Chun Chang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
7
|
Otgonbayar Z, Oh WC. MXene-based nanocomposite for the photocatalytic CO2 reduction: Comprehensive review. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Wu Q, Ma H, Wang Y, Chen J, Dai J, Xu X, Wu X. Surface Electron Localization in Cu-MOF-Bonded Double-Heterojunction Cu 2O Induces Highly Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54328-54337. [PMID: 36399665 DOI: 10.1021/acsami.2c15278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Truncated octahedron Cu2O (TOC) has attracted more attention for its suitable band gap and high carrier separation efficiency due to introduction of the facet heterojunction, but its practical drawback is still the instability caused by the irreversible disproportionation reaction (Cu2O → Cu + CuO). Here, we design and fabricate the TOC/Cu-MOF (MOF: metal-organic framework) double-heterojunction structures with different Cu-MOF loadings. The introduced heterojunction between TOC and Cu-MOF not only produces a stable interface Cux+ bonding structure with the electronic states localized within the average collisional diameter of electrons 1.72 nm for TOC/2.1 wt %Cu-MOF as the active sites, but also promotes the surface energy level difference between the (100) and (111) facet heterojunctions. Meanwhile, the bonded Cu-MOF with a narrow bandgap effectively consumes holes by recombination with the photoexcited electrons from Cu-MOF itself. In our experiments, the TOC/Cu-MOF double heterostructure with a loading amount of 2.1 wt % Cu-MOF shows an optimal photocatalytic CO2 reduction performance. The CO evolution rate reaches 23.01 μmol g-1 h-1, which is about 2.01 and 4.47 times larger than those of octahedral and hexahedral Cu2O/Cu-MOF, respectively, and an excellent photostability is shown for four cycles with each cycle lasting for 4 h. Such a double heterostructure provides insight into highly efficient electron transfer and photostability in Cu2O-related composite materials.
Collapse
Affiliation(s)
- Qifan Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| | - Heng Ma
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| | - Yixian Wang
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| | - Jian Chen
- National Laboratory of Solid States Microstructures and Research Institute of Superconductor Electronics, Nanjing University, Nanjing210093, China
| | - Jun Dai
- School of Mathematics & Physics, Jiangsu University Science & Technology, Zhenjiang212003, China
| | - Xiaobing Xu
- College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing211171, China
| | - Xinglong Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| |
Collapse
|
9
|
Wang Z, Yang Z, Kadirova ZC, Guo M, Fang R, He J, Yan Y, Ran J. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Madi M, Tahir M, Zakaria ZY. 2D/2D V2C mediated porous g-C3N4 heterojunction with the role of monolayer/multilayer MAX/MXene structures for stimulating photocatalytic CO2 reduction to fuels. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Fan WK, Tahir M. Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157206. [PMID: 35810906 DOI: 10.1016/j.scitotenv.2022.157206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In efforts to achieve a sustainable development goal, the utilization of CO2 to generate renewable fuels is promising, as it is a sustainable technology that provides affordable and clean energy. To realize the production of renewable green fuels, a proficient and low-cost technology is required. Using photo/thermal catalytic process, the goal of sustainable CO2 hydrogenation can be achieved. There have been several types of catalysts under exploration, however, they are expensive with limited availability. In the current development, green materials such as mineral clays are emerging as cocatalyst/supports for CO2 hydrogenation. Clays are bestowed with various beneficial properties such as a large surface area, high porosity, abundant basic sites, excellent thermal stability and chemical corrosion resistance. Clays are promising materials that can drastically reduce the cost in catalyst preparation, partially fulfil the energy demand and reduce greenhouse gas emission. This review aims to focus on the various types of clays and their applications in the field of photo/thermal CO2 hydrogenation to renewable fuels. Firstly, the classifications of clays are provided, whereby they can be differentiated based on their silicate layers, namely 1:1 and 2:1 type clay and their properties are thoroughly discussed to provide advantages and applications. The applications of various clays such as kaolinite, halloysite, montmorillonite, attapulgite, saponite and volkonskoite for CO2 hydrogenation reactions are systematically discoursed. In addition, various approaches to improve the capability of raw clays as catalyst support are critically discussed, which include thermal treatment, exfoliation, acid-leaching and pillaring approaches. A critical discussion regarding the engineering aspects to further enhance clay-based catalyst for CO2 hydrogenation are further disclosed. In short, clays are freely available materials that can be found in abundance. However, there are many more different types of natural green clays that have not been studied and explored in various energy applications.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
12
|
Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS NANO 2022; 16:13370-13429. [PMID: 36094932 DOI: 10.1021/acsnano.2c04750] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.
Collapse
Affiliation(s)
- G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeevan Kumar Reddy Modigunta
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jishu Rawal
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
13
|
Liu N, Li Q, Wan H, Chang L, Wang H, Fang J, Ding T, Wen Q, Zhou L, Xiao X. High-temperature stability in air of Ti 3C 2T x MXene-based composite with extracted bentonite. Nat Commun 2022; 13:5551. [PMID: 36138027 PMCID: PMC9499972 DOI: 10.1038/s41467-022-33280-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Although Ti3C2Tx MXene is a promising material for many applications such as catalysis, energy storage, electromagnetic interference shielding due to its metallic conductivity and high processability, it’s poor resistance to oxidation at high temperatures makes its application under harsh environments challenging. Here, we report an air-stable Ti3C2Tx based composite with extracted bentonite (EB) nanosheets. In this case, oxygen molecules are shown to be preferentially adsorbed on EB. The saturated adsorption of oxygen on EB further inhibits more oxygen molecules to be adsorbed on the surface of Ti3C2Tx due to the weakened p-d orbital hybridization between adsorbed O2 and Ti3C2Tx, which is induced by the Ti3C2Tx/EB interface coupling. As a result, the composite is capable of tolerating high annealing temperatures (above 400 °C for several hours) both in air or humid environment, indicating highly improved antioxidation properties in harsh condition. The above finding is shown to be independent on the termination ratio of Ti3C2Tx obtained through different synthesis routes. Utilized as terahertz shielding materials, the composite retains its shielding ability after high-temperature treatment even up to 600 °C, while pristine Ti3C2Tx is completely oxidized with no terahertz shielding ability. Joule heating and thermal cycling performance are also demonstrated. A major challenge for the effective use of Ti-based MXenes in applications with harsh environmental conditions is their poor resistance to oxidation. Here, authors report an air-stable Ti3C2Tx composite with extracted bentonite able to endure high-temperature annealing in air by an oxygen adsorption competition mechanism.
Collapse
Affiliation(s)
- Na Liu
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China.,Department of Petroleum, Oil and Lubricants, Army Logistic Academy of PLA, Chongqing, 401331, China
| | - Qiaoqiao Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Hujie Wan
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
| | - Libo Chang
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianhua Fang
- Department of Petroleum, Oil and Lubricants, Army Logistic Academy of PLA, Chongqing, 401331, China
| | - Tianpeng Ding
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
| | - Qiye Wen
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China. .,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China.
| | - Liujiang Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China. .,School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
| | - Xu Xiao
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China. .,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China.
| |
Collapse
|
14
|
Partially oxidized MXenes-derived C-TiO2/Ti3C2 coupled with Fe-C3N4 as a ternary Z-scheme heterojunction: Enhanced photothermal and photo-Fenton performance. J Colloid Interface Sci 2022; 626:639-652. [DOI: 10.1016/j.jcis.2022.06.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
|
15
|
Zhao Y, Chen Y, Guan Z, Ding Y, Lin J, Tian G. Efficient charge transfer in cadmium sulfide quantum dot-decorated hierarchical zinc sulfide-coated tin disulfide cages for carbon dioxide photoreduction. J Colloid Interface Sci 2022; 615:606-616. [DOI: 10.1016/j.jcis.2022.01.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
16
|
Tu W, Liu Y, Chen M, Zhou Y, Xie Z, Ma L, Li L, Yang B. Carbon nitride coupled with Ti3C2-Mxene derived amorphous Ti-peroxo heterojunction for photocatalytic degradation of rhodamine B and tetracycline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Ou S, Zhou M, Chen W, Zhang Y, Liu Y. COF-5/CoAl-LDH Nanocomposite Heterojunction for Enhanced Visible-Light-Driven CO 2 Reduction. CHEMSUSCHEM 2022; 15:e202200184. [PMID: 35187792 DOI: 10.1002/cssc.202200184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic conversion of CO2 into value-added chemical fuels is an attractive route to mitigate global warming and the energy crisis. Reasonable design of optical properties and electronic behavior of the photocatalyst are essential to improve their catalytic activity. Herein, the 1D/2D heterojunction by direct in-situ synthesis of the covalent organic framework (COF)-5 colloid on the surface of CoAl layered double hydroxide (LDH) was used as the prospective photocatalyst for CO2 reduction. COF-5/CoAl-LDH nanocomposite achieved 265.4 μmol g-1 of CO with 94.6 % selectivity over CH4 evolution in 5 h under visible light irradiation, which was 4.8 and 2.3 times higher than those of COF-5 colloid and CoAl-LDH, respectively. The enhanced catalytic activity was derived from the increased visible-light activity and the construction of type II-2 heterojunction, which greatly optimized visible light harvesting and accelerated the efficient separation of the photoinduced holes and electrons. This work paves the way for rational design of heterojunction catalysts in photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Siyong Ou
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Min Zhou
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuyao Zhang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yueli Liu
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
18
|
Sharma SK, Kumar A, Sharma G, Vo DVN, García-Peñas A, Moradi O, Sillanpää M. MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review. CHEMOSPHERE 2022; 291:132923. [PMID: 34813851 DOI: 10.1016/j.chemosphere.2021.132923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 05/22/2023]
Abstract
Extensive research is being done to develop multifunctional advanced new materials for high performance photocatalytic applications in the field of energy production and environmental detoxification, MXenes have emerged as promising materials for enhancing photocatalytic performance owing to their excellent mechanical properties, appropriate Fermi levels, and adjustability of chemical composition. Numerous experimental and theoretical research works implied that the dimensions of MXenes have a significant impact on their performance. For photocatalysis to thrive in the future, we must understand the current state of the art for MXene in different dimensions. Using MXene co-catalysts in widely used in photocatalytic applications such as CO2 reduction, hydrogen production and organic pollutant oxidation, this study focuses on the most recent developments in MXenes based materials, structural modifications, innovations in reaction and material engineering. It has been reported that using 5 mg of CdS-MoS2-MXene researchers were able to generate as high as 9679 μmol/g/h hydrogen under visible light. The MXenes based heterojunction photocatalyst Co3O4/MXene was utilized to degrade 95% bisphenol A micro-pollutant in just 7 min. Numerous novel materials, their preparations and performances have been discussed. Depending upon the nature of MXene-based materials, the synthesis techniques and photocatalytic mechanism of MXenes as co-catalyst are also summarized. Finally, some final thoughts and prospects for developing highly efficient MXene-based photocatalysts are provided which will indeed motivate researchers to design novel hybrid materials based on MXenes for sustainable solutions to energy and pollution issues.
Collapse
Affiliation(s)
- Sunil Kumar Sharma
- School of Advance Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, India, 173229
| | - Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229; School of Science and Technology, Glocal University, Saharanpur, India.
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Alberto García-Peñas
- University Carlos III of Madrid, Av. de la Universidad, 3028911, Leganés, Madrid, Spain
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
19
|
Li J, Wu C, Li J, Dong B, Zhao L, Wang S. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63875-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Alwarappan S, Nesakumar N, Sun D, Hu TY, Li CZ. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens Bioelectron 2022; 205:113943. [PMID: 35219021 DOI: 10.1016/j.bios.2021.113943] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
MXenes are layered two-dimensional (2D) materials discovered in 2011 (Ti3C2X) and are otherwise called 2D transition metal carbides, carbonitrides, and nitrides. These 2D layered materials have been in the limelight for a decade due to their interesting properties such as large surface area, high ion transport, biocompatibility, and low diffusion barrier. Therefore, MXenes are widely preferred by researchers for applications in electronics, sensing, biosensing, electrocatalysis, super-capacitors and fuel cells. There are a number of methods available for the bulk synthesis of MXene-based nanomaterials. In addition, the possibility of structural modification as required and its outstanding surface chemistry offer a fascinating interface for the development of novel biosensors. In this review, we specifically discuss important MXene synthesis routes. Moreover, critical parameters such as surface functionalization that can dictate the mechanical, electronic, magnetic, and optical properties of MXenes are also discussed. Following this, methods available for the surface functionalization and modification strategies of MXenes are also discussed. Furthermore, the emergence of gas, electrochemical, and optical biosensors based on MXenes since its first report is discussed in detail. Finally, future directions of MXenes biosensors for critical applications are discussed.
Collapse
Affiliation(s)
- Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Noel Nesakumar
- Center for Nanotechnology & Advanced Biomaterials CeNTAB, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India
| | - Dali Sun
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd, 101S, Fargo, ND, 58102, USA
| | - Tony Y Hu
- Center For Cellular and Molecular Diagnosis, Department of Biochemistry and Molecular Biology, Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Chen-Zhong Li
- Center For Cellular and Molecular Diagnosis, Department of Biochemistry and Molecular Biology, Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
21
|
She P, Guan B, Sheng J, Qi Y, Qiao G, Rui H, Lu G, Qin JS, Rao H. Bioinspired spike-like double yolk–shell structured TiO2@ZnIn2S4 for efficient photocatalytic CO2 reduction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02079j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A spike-like double yolk–shell structured TiO2@ZnIn2S4 (D-Y-TiO2@ZnIn2S4) photocatalyst was designed, which possesses superior photocatalytic CO2 reduction efficiency.
Collapse
Affiliation(s)
- Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiyao Sheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Guanyu Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hongbang Rui
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
22
|
Yan S, Chen L, Peng F, Fan Y, Yu Y, Liu Y, Cao Y. Interface modification by defect engineering for g-C 3N 4/LaPO 4−x nanorods towards efficient CO 2 photoreduction. NEW J CHEM 2022. [DOI: 10.1039/d2nj03626f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a series of specific surface defects are introduced at the interface of LaPO4/g-C3N4 composites.
Collapse
Affiliation(s)
- Sai Yan
- Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Lei Chen
- Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Fangyu Peng
- Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yuanyuan Fan
- Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yanlong Yu
- Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yue Liu
- College of Material Science Engineer, Liaoning Technical University, Fuxin, 123000, China
| | - Yaan Cao
- Key Laboratory of Weak-light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300457, China
| |
Collapse
|
23
|
2D/2D Schottky heterojunction of in-situ growth FAPbBr 3/Ti 3C 2 composites for enhancing photocatalytic CO 2 reduction. J Colloid Interface Sci 2021; 610:538-545. [PMID: 34838312 DOI: 10.1016/j.jcis.2021.11.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022]
Abstract
Mimicking the natural photosynthesis process to convert carbon dioxide into value-added chemicals is vital to solving both the climate crisis worldwide and the depletion of fossil fuels. Herein, we explore the synthesis of 2D FAPbBr3 nanoplate combined with 2D Ti3C2 nanosheet to form a 2D/2D FAPbBr3/Ti3C2 Schottky heterojunction using facile hot-injection and in-situ growth approaches. The Schottky heterojunction of FAPbBr3/Ti3C2 over large interfacial contact provides abundant channels for transferring photogenerated carriers from FAPbBr3 nanoplate to Ti3C2 nanosheet. The experimental results showed a CO yield of 93.82 μmol·g-1·h-1 with ethyl acetate/deionization water as a sacrificial reagent for FAPbBr3/Ti3C2 composite, which was 1.25-fold enhancement that on pristine FAPbBr3 nanoplates. The large 2D heterointerface can efficiently accelerate the spatial separation and transfer of photogenerated carriers and result in the superior photocatalytic activity and favorable stability of FAPbBr3/Ti3C2 photocatalysts, which are proved by in-situ X-ray photoelectron spectroscopy, photoluminescence, transient absorption spectra, and Mott-Schottky measurement. Thus, this work unveils that 2D/2D Schottky heterostructures would significantly improve the reaction activities of halide perovskite-based photocatalysts.
Collapse
|
24
|
Lai H, Zeng X, Song T, Yin S, Long B, Ali A, Deng GJ. Fast synthesis of porous iron doped CeO 2 with oxygen vacancy for effective CO 2 photoreduction. J Colloid Interface Sci 2021; 608:1792-1801. [PMID: 34742088 DOI: 10.1016/j.jcis.2021.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/10/2023]
Abstract
The activity of photocatalytic CO2 conversion to carbon-containing products is determined by the adsorption and activation of CO2 molecules on the surface of catalyst. Here, iron doped porous CeO2 with oxygen vacancy (PFeCe) was prepared by one-step combustion method. The amount of CO2 adsorbed via using the porous structure has been significantly increased in the case of a relatively small specific surface area and CO2 molecules are more easily captured and undergo a reduction reaction with photoinduced carriers. In addition, oxygen vacancies are formed in the iron doped CeO2 lattice as the active sites for CO2 reduction, which can form strong interactions with CO2 molecules, thereby effectively activating CO2 molecules. The reduction products of CO2 over PFeCe composite are CO and CH4, which is approximately 9.0 and 7.7 folds than that of CeO2. This work offers insights for the construction of efficient ceria-based photocatalysts to further achieve robust solar CO2 conversion.
Collapse
Affiliation(s)
- Haiwei Lai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xiangdong Zeng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Ting Song
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | - Shiheng Yin
- Analytical and Testing Center, South China University of Technology, Guangzhou 510640, PR China
| | - Bei Long
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Atif Ali
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
25
|
Zhao T, Niu Q, Huang G, Chen Q, Gao Y, Bi J, Wu L. Rational construction of Ni(OH) 2 nanoparticles on covalent triazine-based framework for artificial CO 2 reduction. J Colloid Interface Sci 2021; 602:23-31. [PMID: 34118602 DOI: 10.1016/j.jcis.2021.05.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/18/2022]
Abstract
Artificial photoreduction of CO2 to chemical fuel is an intriguing and reliable strategy to tackle the issues of energy crisis and climate change simultaneously. In the present study, we rationally constructed a Ni(OH)2-modified covalent triazine-based framework (CTF-1) composites to serve as cocatalyst ensemble for superior photoreduction of CO2. In particular, the optimal Ni(OH)2-CTF-1 composites (loading ratio at 0.5 wt%) exhibited superior photocatalytic activity, which surpassed the bare CTF-1 by 33 times when irradiated by visible light. The mechanism for the enhancement was systematically investigated based on various instrumental analyses. The origin of the superior activity was attributable to the enhanced CO2 capture, more robust visible-light response, and improved charge carrier separation/transfer. This study offers an innovative pathway for the fabrication of noble-metal-free cocatalysts on CTF semiconductors and deepens the understanding of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Tiansu Zhao
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| | - Qing Niu
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China.
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| | - Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China.
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| |
Collapse
|