1
|
Zheng Z, Zhang H, Yang J, Liu X, Chen L, Li W, Mi S, Zhou H, Zheng W, Xue W, Lin D, Ding W, Li S, Huang W, Yang L. Recent advances in structural and functional design of electrospun nanofibers for wound healing. J Mater Chem B 2025; 13:5226-5263. [PMID: 40237139 DOI: 10.1039/d4tb02718c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The global prevalence of acute and chronic wounds has surged, escalating healthcare burdens and necessitating advanced therapeutic strategies for effective wound management. Electrospun nanofibers have emerged as promising biomimetic platforms for tissue engineering and drug delivery, due to their structural resemblance to the native extracellular matrix (ECM), high porosity, and tunable surface-to-volume ratio. Recent advances in structural design have expanded their applications from conventional two-dimensional (2D) wound dressings to multifunctional three-dimensional (3D) architectures, enabling enhanced mechanical adaptability, bioactive molecule loading, and spatiotemporal control over wound microenvironments. These innovations leverage nanofibers' customizable topography and composition to recapitulate critical ECM cues, thereby fostering cell proliferation, angiogenesis, and immunomodulation during tissue regeneration. This review systematically evaluates cutting-edge strategies focusing on optimizing 2D arrangements and the structural design of multilayered and functionally patterned 3D electrospun nanofibers in wound healing applications. We further present the advantages and limitations of various nanofiber structures, along with the key challenges and future directions for advancing electrospun nanofibers specifically designed for enhanced wound healing.
Collapse
Affiliation(s)
- Zesen Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Jiaxin Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenwen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Siqi Mi
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Weihan Zheng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Wanting Xue
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Dongxin Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Wanting Ding
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Shiyu Li
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Wanmolee W, Kraithong W, Phanthasri J, Pipattanaporn P, Samun Y, Youngjan S, Yodsin N, Saengsrichan A, Treetong A, Phawa C, Pakawanit P, Fuangnawakij K, Laurenti D, Geantet C, Sakdaronnarong C, Khemthong P, Sukrong S. Structural properties and sustained antimicrobial activity of thymol-loaded cellulose nanofibers from one-pot synthesis via in situ dynamic microfluidization. Int J Biol Macromol 2025; 306:141712. [PMID: 40043968 DOI: 10.1016/j.ijbiomac.2025.141712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
The physicochemical properties of cellulose nanofibers (CNFs) are significantly influenced by their production methods and surface modifications. This study presents an eco-friendly approach for synthesizing CNFs impregnated with thymol via a single-step in-situ dynamic high-pressure microfluidization process. Optimal conditions for preserving the intrinsic structure and desirable properties of CNFs were explored using various ethanol-water ratios with thymol. The physicochemical properties and characteristics of CNFs were analyzed using advanced techniques. Thymol-impregnated CNFs at an ethanol-to-water ratio of 10:90 (E10W90) demonstrated a sustained cumulative release of up to 27.5 % over 50 h and complete inhibition of bacterial growth within 3 h against S. aureus and E. coli. Density functional theory analysis indicated that thymol adsorption onto the CNF surface is facilitated by hydrogen bonding. This investigation proposes a novel, energy-efficient method for thymol impregnation, achieving prolonged antimicrobial activity without complex surface modifications.
Collapse
Affiliation(s)
- Wanwitoo Wanmolee
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand; Center of Eco-Materials and Cleaner Technology, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Wasawat Kraithong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pornnapa Pipattanaporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Yodsagon Samun
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 103300, Thailand
| | - Saran Youngjan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nuttapon Yodsin
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Aphinan Saengsrichan
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chaiyasit Phawa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Phakkhananan Pakawanit
- Synchrotron Research and Applications Division, Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Kajornsak Fuangnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Dorothée Laurenti
- Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256, CNRS-Université Claude Bernard Lyon1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Christophe Geantet
- Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256, CNRS-Université Claude Bernard Lyon1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 103300, Thailand.
| |
Collapse
|
3
|
Zhang ZW, Zhao T, Yang MY, Xia WY, Ben HX, Rejinold NS, Zhang J, Choy JH, Long YZ. Durable fibrous nanohybrid sunscreen films with in-situ fabricated enteromorpha polysaccharides for enhanced UV protection. Int J Biol Macromol 2025; 308:142488. [PMID: 40154693 DOI: 10.1016/j.ijbiomac.2025.142488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Enteromorpha, a coastal green algae species, contains polysaccharides with excellent water solubility, biocompatibility, and antioxidant properties, making them ideal for skincare applications as natural antioxidant additives. This study introduces a modified electrospinning technique to fabricate fibrous nanohybrid sunscreen films incorporating Enteromorpha polysaccharides (EPPs) integrated with polyvinyl butyral (PVB) and titanium oxide (TiO2). The resulting film harnesses EPPs' antioxidant capabilities to protect skin from free radicals generated by TiO2 photocatalysis, while the PVB matrix and electrospun fibers provide water resistance and breathability. The nanohybrid film demonstrated remarkable photostability, maintaining its UV-blocking efficiency even after exposure to 365 nm UV radiation. Additionally, water immersion reduced its UV-blocking rate by only 2 %, confirming its strong water stability. Microscopic analysis showed no residual traces on porcine skin, effectively addressing concerns of pore-clogging and skin irritation often associated with traditional sunscreens.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China
| | - Tao Zhao
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China; College of Textiles and Clothing, Qingdao University, Qingdao 266071, China.
| | - Ming-Yang Yang
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China
| | - Wen-Ying Xia
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Hao-Xi Ben
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China; College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - N Sanoj Rejinold
- Department of Chemistry, College of Science and Technology, Dankook University, 31116, Republic of Korea
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), College of Medicine, Dankook University, 31116, Republic of Korea.
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Amirian R, Mohammadi Pour P, Maleki H, Fakhri S, Asgary S, Farzaei MH, Echeverría J. Evaluating the anti-neuropathic effects of the thymol-loaded nanofibrous scaffold in a rat model of spinal cord injury. Front Pharmacol 2025; 16:1507397. [PMID: 40255564 PMCID: PMC12006068 DOI: 10.3389/fphar.2025.1507397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/20/2025] [Indexed: 04/22/2025] Open
Abstract
Background Spinal cord injury (SCI) is a debilitating condition characterized by partial or complete loss of motor and sensory function caused by mechanical trauma to the spinal cord. Novel therapeutic approaches are continuously explored to enhance spinal cord regeneration and functional recovery. Purpose In this study, we investigated the efficacy of the poly(vinyl alcohol) and chitosan (PVA/CS) scaffold loaded with different thymol concentrations (5, 10, and 15 wt%) in a rat compression model for SCI treatment compare to other (e.g., thymol and scaffold) control groups. Results and discussion The thymol-loaded scaffold exhibited a smooth surface and a three-dimensional nanofibrous structure with nanoscale diameter. The conducted analyses verified the successful incorporation of thymol into the scaffold and its high water absorption, porosity, and wettability attributes. Behavioral assessment of functional recovery showed improving sensory and locomotor impairment. Furthermore, histopathological examinations indicated the regenerative potential of the thymol-loaded nanofiber scaffold, by neuronal survival. Conclusion Therefore, these findings suggest that the thymol-loaded nanofibrous scaffolds have promising pharmacological activities for alleviating neuropathic pain and addressing complications induced by SCI.
Collapse
Affiliation(s)
- Roshanak Amirian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
Dragan ES, Platon IV, Nicolescu A, Dinu MV. Structural, mechanical, antioxidant and antibacterial properties of double cross-linked chitosan cryogels as hosts for thymol. Int J Biol Macromol 2025; 304:140968. [PMID: 39952521 DOI: 10.1016/j.ijbiomac.2025.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The practical applications of essential oils (EOs) are limited by their hydrophobicity, volatility and instability. To overcome these drawbacks, the incorporation of EOs into porous materials is recommended. Chitosan (CS)-based composite cryogels as hosts for thymol as a volatile model terpenoid were developed using a double cross-linking of CS with glutaraldehyde (GA) and monochlorotriazinyl-β-cyclodextrin (MCT-β-CD), either in one-pot synthesis or through sequential cross-linking, first with GA and then with MCT-β-CD, resulting in CSCAV composites. Cross-linking with GA occurred under cryogelation conditions, while cross-linking with MCT-β-CD took place by heating at 60-80 °C. The composite cryogels were characterized by FTIR, 13C NMR, SEM, EDX, swelling kinetics, and uniaxial compressive tests. The mechanical, antioxidant, and antibacterial properties of composites were optimized by adjusting the concentrations of CS and GA, the initial CS to MCT-β-CD ratio, and the temperature regime. The novel CS-based biocomposites demonstrated sustained compression over 74 %, characteristic of porous materials obtained through cryogelation process. The antioxidant activity of the CSCAV composites revealed almost all composites exhibited over 85 % 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. The thymol-loaded composites displayed strong antibacterial effectiveness (up to 100 %) towards both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, with greater inhibition activity observed against S. aureus.
Collapse
Affiliation(s)
- Ecaterina Stela Dragan
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Functional Polymers, Grigore Ghica Voda Alley 41 A, 700487, Iasi, Romania.
| | - Ioana Victoria Platon
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Functional Polymers, Grigore Ghica Voda Alley 41 A, 700487, Iasi, Romania
| | - Alina Nicolescu
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Functional Polymers, Grigore Ghica Voda Alley 41 A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Functional Polymers, Grigore Ghica Voda Alley 41 A, 700487, Iasi, Romania.
| |
Collapse
|
6
|
Huang K, Tan R, Wu H, Si Y, Lei L, Lan H, Kan CW, Fang W, Zhang S, Zhang K, Hu J. Cocooning Wound for Healing. NANO LETTERS 2025. [PMID: 40117652 DOI: 10.1021/acs.nanolett.5c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Wound healing is highly sensitive to environmental conditions. Under solar radiation, elevated wound temperatures and UV-rays can induce oxidative stress, disrupt the wound environment, provoke inflammation, and even cause thermal injury. Lower wound temperatures may hinder angiogenesis and immune function, thus delaying recovery. Inspired by silkworm cocooning for thermal comfort during metamorphosis, we developed the wound cocoon (W-cocoon) using a portable high-speed electro-blow spinning (EBS) device. The W-cocoon integrates radiative cooling and thermal insulation properties, providing both cooling (3.9 °C) under sunlight and warming (1.9 °C) indoors. Based on animal studies, the W-cocoon promotes wound recovery in indoor scenarios, while under solar radiation, its high reflectivity and UV-blocking ratio mitigate the negative effects of radiation, thus optimizing wound healing. Additionally, the W-cocoon exhibits superhydrophobic and hemophobic properties, which endow the dressing with antifouling capabilities and reduce pain during dressing changes.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| | - Renjie Tan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| | - Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| | - Hanyue Lan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| | - Chi-Wai Kan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong, S.A.R 999077, China
| | - Wenjie Fang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| | - Ke Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, S.A.R 999077, China
| |
Collapse
|
7
|
Kou J, Li Y, Zhou C, Wang X, Ni J, Lin Y, Ge H, Zheng D, Chen G, Sun X, Tan Q. Electrospinning in promoting chronic wound healing: materials, process, and applications. Front Bioeng Biotechnol 2025; 13:1550553. [PMID: 40114848 PMCID: PMC11922904 DOI: 10.3389/fbioe.2025.1550553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
In the field of wound treatment, chronic wounds pose a significant burden on the medical system, affecting millions of patients annually. Current treatment methods often fall short in promoting effective wound healing, highlighting the need for innovative approaches. Electrospinning, a technique that has garnered increasing attention in recent years, shows promise in wound care due to its unique characteristics and advantages. Recent studies have explored the use of electrospun nanofibers in wound healing, demonstrating their efficacy in promoting cell growth and tissue regeneration. Researchers have investigated various materials for electrospinning, including polymers, ceramics, carbon nanotubes (CNTs), and metals. Hydrogel, as a biomaterial that has been widely studied in recent years, has the characteristics of a cell matrix. When combined with electrospinning, it can be used to develop wound dressings with multiple functions. This article is a review of the application of electrospinning technology in the field of wound treatment. It introduces the current research status in the areas of wound pathophysiology, electrospinning preparation technology, and dressing development, hoping to provide references and directions for future research.
Collapse
Affiliation(s)
- Jiaxi Kou
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yaodong Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chen Zhou
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiyu Wang
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jian Ni
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Huaqiang Ge
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dongfeng Zheng
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Guopu Chen
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xitai Sun
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
8
|
Li J, Meng H, Guo W, Zhou L, Wu S, Gao G, Liu Q, You D, Qu W. In-Situ Electrospinning Dressings Loaded with Kaempferol for Reducing MMP9 to Promote Diabetic Ulcer Healing. Int J Nanomedicine 2025; 20:1101-1117. [PMID: 39895983 PMCID: PMC11786600 DOI: 10.2147/ijn.s501370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Background Diabetic foot ulcers (DFUs) are often associated with persistent inflammatory response, impaired macrophage polarization, and slow vascular regeneration. Existing treatments cannot be adapted to wounds and do not achieve the desired therapeutic effects. The high porosity of biomaterials induces more M2 macrophages, while the natural compound kaempferol inhibits the expression of matrix metalloproteinase 9 (MMP9) and thus inhibits the associated inflammatory and immunological responses. Methods portable electrospinning dressings (PEDs) were prepared from the spinning solution using a portable electrospinning device. The material properties of PEDs were examined by scanning electron microscope, contact angle tester and WVTR-C3. Then, the in vitro biocompatibility of the dressings was evaluated using NIH3T3 cells. The in vivo wound healing efficacy of the dressings was analyzed in the diabetic wound model rats. Histological and immunofluorescence staining were performed to determine the status of epithelization, collagen deposition, MMP9 expression, macrophage polarization, inflammation response and angiogenesis. Results Material science experiments have shown that the dressing has optimal fiber micromorphology and good water vapor transport properties (WVTR: 4.88 kg m-2 24h-1); in vivo, diabetic wound experiments have shown that the high porosity and pharmacological effects of PED4 can mutually promote the rapid healing of diabetic wounds (healed 95.9% on day 15), facilitate the transformation of macrophages from M1-type to M2-type and regulate the expression of MMP9. Conclusion Portable electrospinning dressings equipped with kaempferol not only better fit irregular wounds, but also promote wound healing through MMP9 and macrophage polarization. Thus, PEDs show great promise for advancing research of personalized diabetic wound healing.
Collapse
Affiliation(s)
- Jianwen Li
- Gastroenteric Medicine and Digestive Endoscopy Center, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, 130041, People’s Republic of China
| | - Hongqi Meng
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Wenlai Guo
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Lubin Zhou
- Polymeric and Soft Materials Laboratory, Advanced Institute of Materials Science, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, People’s Republic of China
| | - Siyu Wu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, Advanced Institute of Materials Science, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, People’s Republic of China
| | - Quanzhe Liu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Di You
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130012, People’s Republic of China
| | - Wenrui Qu
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, 130041, People’s Republic of China
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| |
Collapse
|
9
|
Zhong H, Zhang Z, Wang M, Fang Y, Liu K, Yin J, Wu J, Du J. Bioactive electrospun polylactic acid/chlorogenic acid-modified chitosan bilayer sponge for acute infection wound healing and rapid coagulation. Biomater Sci 2025; 13:697-710. [PMID: 39704054 DOI: 10.1039/d4bm01388c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Acute severe trauma is often associated with rapid blood loss and a high risk of infection. Based on these concerns, this study successfully constructed a multifunctional dual-layer bioactive sponge PCCT with rapid hemostatic and infection-preventing ability. Its external surface is an electrospun poly(lactic acid) (PLA) nanofiber thin film layer, which ensures its high air permeability and effectively protects against external bacterial invasion. In vitro results showed that the film is effectively resistant to invasion by typical Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. The inner sponge layer was formed by chlorogenic acid (CGA) grafted with chitosan (CS) and loaded with tranexamic acid (TA). The abundant cationic groups on the sponge interacted with negatively charged erythrocytes and achieved rapid hemostasis at the wound site under the action of TA. In addition, the high porosity and bioactivity of the CS-CGA sponge scaffold endowed the hydrogel with good water absorption, antibacterial properties and anti-inflammatory activity, which effectively accelerated the healing of acute infected wounds in rats and demonstrated favorable biosafety.
Collapse
Affiliation(s)
- Huiling Zhong
- Medical Research center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Zhen Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| | - Mohong Wang
- Equipment department, The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen 518000, China
| | - Yifei Fang
- Medical Research center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Ke Liu
- Medical Research center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jun Wu
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China.
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Jianhang Du
- Medical Research center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
10
|
Xu W, Sun K, Hou S, Chen A. Research progress of advanced polymer composite antibacterial materials based on electrospinning. Eur Polym J 2025; 222:113623. [DOI: 10.1016/j.eurpolymj.2024.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Nur MG, Rahman M, Dip TM, Hossain MH, Hossain NB, Baratchi S, Padhye R, Houshyar S. Recent advances in bioactive wound dressings. Wound Repair Regen 2025; 33:e13233. [PMID: 39543919 DOI: 10.1111/wrr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Traditional wound dressings, despite their widespread use, face limitations, such as poor infection control and insufficient healing promotion. To address these challenges, bioactive materials have emerged as a promising solution in wound care. This comprehensive review explores the latest developments in wound healing technologies, starting with an overview of the importance of effective wound management, emphasising the need for advanced bioactive wound dressings. The review further explores various bioactive materials, defining their characteristics. It covers a wide range of natural and synthetic biopolymers used to develop bioactive wound dressings. Next, the paper discusses the incorporation of bioactive agents into wound dressings, including antimicrobial and anti-inflammatory agents, alongside regenerative components like growth factors, platelet-rich plasma, platelet-rich fibrin and stem cells. The review also covers fabrication techniques for bioactive wound dressings, highlighting techniques like electrospinning, which facilitated the production of nanofibre-based dressings with controlled porosity, the sol-gel method for developing bioactive glass-based dressings, and 3D bioprinting for customised, patient-specific dressings. The review concludes by addressing the challenges and future perspectives in bioactive wound dressing development. It includes regulatory considerations, clinical efficacy, patient care protocol integration and wound healing progress monitoring. Furthermore, the review considers emerging trends such as smart materials, sensors and personalised medicine approaches, offering insights into the future direction of bioactive wound dressing research.
Collapse
Affiliation(s)
- Md Golam Nur
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Textiles, Ministry of Textiles and Jute, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh
| | - Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Md Hasibul Hossain
- Department of Textile Engineering, International Standard University, Dhaka, Bangladesh
| | - Nusrat Binta Hossain
- TJX Australia Pty Limited, Preston, Victoria, Australia
- Department of Environmental Science & Management, North South University, Dhaka, Bangladesh
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Dai X, Nie W, Shen H, Machens HG, Böker K, Taheri S, Lehmann W, Shen Y, Schilling AF. Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair. Regen Biomater 2024; 12:rbae139. [PMID: 39803356 PMCID: PMC11723536 DOI: 10.1093/rb/rbae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors. The design of 'smart' systems provides not merely physical support, but also microenvironmental cues that can guide regenerative tissue repair. Electrospun nanofibrous matrices are regarded as a highly promising tool in this area, as they can serve as both an extracellular matrix (ECM)-mimicking scaffold and a vehicle for the delivery of bioactive proteins. Their highly porous architecture and high surface-to-volume ratio facilitate the loading of drugs and mass transfer. By employing a judicious selection of materials and processing techniques, there is considerable flexibility in efficiently customizing nanofiber architecture and incorporating bioactive proteins. This article presents a review of the strategies employed for the structural modification and protein delivery of electrospun nanofibrous materials, with a focus on the objective of achieving a tailored tissue response. The article goes on to discuss the challenges currently facing the field and to suggest future research directions.
Collapse
Affiliation(s)
- Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Nie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27103, USA
| | - Hua Shen
- Department of Plastic and Reconstructive Surgery, Shanghai First People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, Faculty of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Kai Böker
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| |
Collapse
|
13
|
Chen S, Xie Y, Ma K, Wei Z, Ran X, Fu X, Zhang C, Zhao C. Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioact Mater 2024; 42:478-518. [PMID: 39308550 PMCID: PMC11415839 DOI: 10.1016/j.bioactmat.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Electrospun nanofibrous membranes (eNFMs) have been extensively developed for bio-applications due to their structural and compositional similarity to the natural extracellular matrix. However, the emergence of antibiotic resistance in bacterial infections significantly impedes the further development and applications of eNFMs. The development of antibacterial nanomaterials substantially nourishes the engineering design of antibacterial eNFMs for combating bacterial infections without relying on antibiotics. Herein, a comprehensive review of diverse fabrication techniques for incorporating antibacterial nanomaterials into eNFMs is presented, encompassing an exhaustive introduction to various nanomaterials and their bactericidal mechanisms. Furthermore, the latest achievements and breakthroughs in the application of these antibacterial eNFMs in tissue regenerative therapy, mainly focusing on skin, bone, periodontal and tendon tissues regeneration and repair, are systematically summarized and discussed. In particular, for the treatment of skin infection wounds, we highlight the antibiotic-free antibacterial therapy strategies of antibacterial eNFMs, including (i) single model therapies such as metal ion therapy, chemodynamic therapy, photothermal therapy, and photodynamic therapy; and (ii) multi-model therapies involving arbitrary combinations of these single models. Additionally, the limitations, challenges and future opportunities of antibacterial eNFMs in biomedical applications are also discussed. We anticipate that this comprehensive review will provide novel insights for the design and utilization of antibacterial eNFMs in future research.
Collapse
Affiliation(s)
- Shengqiu Chen
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xingwu Ran
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Endocrinology and Metabolism, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Raje K, Tanaka S, Fujita S. Biocompatible Native Hyaluronan Nanofibers Fabricated via Aqueous PEO-Assisted Electrospinning and Heat-Quench Process. ACS OMEGA 2024; 9:40010-40018. [PMID: 39346818 PMCID: PMC11425832 DOI: 10.1021/acsomega.4c05851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Hyaluronan (HA) is widely used in cosmetic and biomedical applications due to its excellent biocompatibility and potential to promote wound healing. Nanofibrous HA, mimicking the extracellular matrix (ECM), is considered promising for therapeutic and cosmetic applications. However, the electrospinning process of HA often necessitates cytotoxic solvents and chemical modifications, compromising its biocompatibility and advantageous properties. In this study, poly(ethylene oxide) (PEO) was added to an aqueous solution of natural HA to improve its spinnability, enabling HA to be electrospun into fibers. The HA was rendered water-insoluble by treatment with an acidic solution, and the amorphized PEO, achieved by heat-quenching, was removed through water washing. This method distinguishes it from previous reports of fibers blended with PEO or other water-soluble polymers. Consequently, the resulting HA gel fibers demonstrated suitability for mesenchymal stem cell adhesion due to the exposure of HA on the fiber surface. Additionally, HA fibers were successfully applied directly onto the skin using a hand-held electrospinning device, indicating the potential for point-of-care and home use applications.
Collapse
Affiliation(s)
- Komal Raje
- Department of Frontier Fiber Technology and Sciences, University of Fukui, Fukui 910-8507, Japan
| | - Shoya Tanaka
- Department of Frontier Fiber Technology and Sciences, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Sciences, University of Fukui, Fukui 910-8507, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
15
|
Huang K, Si Y, Guo C, Hu J. Recent advances of electrospun strategies in topical products encompassing skincare and dermatological treatments. Adv Colloid Interface Sci 2024; 331:103236. [PMID: 38917594 DOI: 10.1016/j.cis.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
As the potential applications of electrospinning in healthcare continue to be explored, along with advancements in industrial-scale solutions and the emergence of portable electrospinning devices, some researchers have explored electrospinning technology in topical products, including its application in skincare, such as facial masks, beauty patches, sunscreen, and dermatological treatments for conditions like atopic dermatitis, psoriasis, acne, skin cancer, etc. In this review, we first outline the fundamental principles of electrospinning and provide an overview of existing solutions for large-scale production and the components and functionalities of portable spinning devices. Based on the essential functionalities required for skincare products and the mechanisms and treatment methods for the aforementioned dermatological diseases, we summarize the potential advantages of electrospinning technology in these areas, including encapsulation, sustained release, large surface area, and biocompatibility, among others. Furthermore, considering the further commercialization and clinical development of electrospinning technology, we offer our insights on current challenges and future perspectives in these areas, including issues such as ingredients, functionality, residue concerns, environmental impact, and efficiency issues.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Chunxia Guo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China.
| |
Collapse
|
16
|
Fan Z, Ran Q, Li Y, Xu X, Zheng L, Liu X, Jia K. Surface segregation of rigid polyarylene ether amidoxime on polyurethane nanofiber into hierarchical membranes as substrate of flexible SERS nanosensor for sulfamethoxazole detection. Talanta 2024; 276:126166. [PMID: 38714011 DOI: 10.1016/j.talanta.2024.126166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Electrospun polymeric nanofibrous membranes are emerging as the promising substrates for preparation of flexible SERS nanosensors due to their intrinsic nanoscale surface roughness, easy scalability as well as rich surface reactivity. Although the nanofiber membranes prepared from high performance thermoplastics exhibit good mechanical stability, the SERS nanosensors based on these substrates normally have lower signal-to-noise ratio because of the interference from background Raman signals of aromatic moieties. Herein, we synthesized an optically transparent polyurethane (PU) and rigid polyarylene ether amidoxime (PEA), which were electrospun into core-shell nanofibers membranes with a "beads-on-web" morphology. Furthermore, the PU-PEA membranes were coated with ultra-thin silver layer and thermally annealed to prepare the flexible SERS nanosensor without any background noises. In addition, the Raman enhancement of SERS nanosensor can be readily improved by tuning of PU-PEA composition, silver thickness as well as thermal annealing temperature. Finally, the optimized SERS nanosensor enables label-free detection of sulfamethoxazole as low as 0.1 nM with a good reproducibility and detection performance in real water sample. Meanwhile, the optimized SERS nanosensor shows long term anti-biofouling capacity. Thanks to its facile fabrication, competitive analytical performance and resistance to biofouling, the current work basically open new way for design of flexible SERS nanosensors for biomedical applications.
Collapse
Affiliation(s)
- Zilin Fan
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Qimeng Ran
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Yuanyuan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Xiaoling Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Li Zheng
- Institute of Life Science, eBond Pharmaceutical Technology Ltd., Chengdu, China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China
| | - Kun Jia
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China.
| |
Collapse
|
17
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
18
|
Luo T, Farooq A, Weng W, Lu S, Luo G, Zhang H, Li J, Zhou X, Wu X, Huang L, Chen L, Wu H. Progress in the Preparation and Application of Breathable Membranes. Polymers (Basel) 2024; 16:1686. [PMID: 38932036 PMCID: PMC11207707 DOI: 10.3390/polym16121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Breathable membranes with micropores enable the transfer of gas molecules while blocking liquids and solids, and have a wide range of applications in medical, industrial, environmental, and energy fields. Breathability is highly influenced by the nature of a material, pore size, and pore structure. Preparation methods and the incorporation of functional materials are responsible for the variety of physical properties and applications of breathable membranes. In this review, the preparation methods of breathable membranes, including blown film extrusion, cast film extrusion, phase separation, and electrospinning, are discussed. According to the antibacterial, hydrophobic, thermal insulation, conductive, and adsorption properties, the application of breathable membranes in the fields of electronics, medicine, textiles, packaging, energy, and the environment are summarized. Perspectives on the development trends and challenges of breathable membranes are discussed.
Collapse
Affiliation(s)
- Tingshuai Luo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Ambar Farooq
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Wenwei Weng
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Shengchang Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Gai Luo
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Hui Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Jianguo Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Xiaxing Zhou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Xiaobiao Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| |
Collapse
|
19
|
Yuan J, Wang S, Yang J, Schneider KH, Xie M, Chen Y, Zheng Z, Wang X, Zhao Z, Yu J, Li G, Kaplan DL. Recent advances in harnessing biological macromolecules for wound management: A review. Int J Biol Macromol 2024; 266:130989. [PMID: 38508560 DOI: 10.1016/j.ijbiomac.2024.130989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Wound dressings (WDs) are an essential component of wound management and serve as an artificial barrier to isolate the injured site from the external environment, thereby helping to prevent exogenous infections and supporting healing. However, maintaining a moist wound environment, providing protection from infection, good biocompatibility, and allowing for gas exchange, remain a challenge in device design. Functional wound dressings (FWDs) prepared from hybrid biological macromolecule-based materials can enhance efficacy of these systems for skin wound management. This review aims to provide an overview of the state-of-the-art FWDs within the field of wound management, with a specific focus on hybrid biomaterials, techniques, and applications developed over the past five years. In addition, we highlight the incorporation of biological macromolecules in WDs, the emergence of smart WDs, and discuss the existing challenges and future prospects for the development of advanced WDs.
Collapse
Affiliation(s)
- Jingxuan Yuan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Shuo Wang
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China
| | - Jie Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Karl H Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 23 Spitalgasse, Austria
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yukchoi Rd, Hung Hom, Kowloon, Hong Kong.
| | - Jia Yu
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| |
Collapse
|
20
|
Park H, Patil TV, Dutta SD, Lee J, Ganguly K, Randhawa A, Kim H, Lim KT. Extracellular Matrix-Bioinspired Anisotropic Topographical Cues of Electrospun Nanofibers: A Strategy of Wound Healing through Macrophage Polarization. Adv Healthc Mater 2024; 13:e2304114. [PMID: 38295299 DOI: 10.1002/adhm.202304114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The skin serves as the body's outermost barrier and is the largest organ, providing protection not only to the body but also to various internal organs. Owing to continuous exposure to various external factors, it is susceptible to damage that can range from simple to severe, including serious types of wounds such as burns or chronic wounds. Macrophages play a crucial role in the entire wound-healing process and contribute significantly to skin regeneration. Initially, M1 macrophages infiltrate to phagocytose bacteria, debris, and dead cells in fresh wounds. As tissue repair is activated, M2 macrophages are promoted, reducing inflammation and facilitating restoration of the dermis and epidermis to regenerate the tissue. This suggests that extracellular matrix (ECM) promotes cell adhesion, proliferation, migrationand macrophage polarization. Among the numerous strategies, electrospinning is a versatile technique for obtaining ECM-mimicking structures with anisotropic and isotropic topologies of micro/nanofibers. Various electrospun biomaterials influence macrophage polarization based on their isotropic or anisotropic topologies. Moreover, these fibers possess a high surface-area-to-volume ratio, promoting the effective exchange of vital nutrients and oxygen, which are crucial for cell viability and tissue regeneration. Micro/nanofibers with diverse physical and chemical properties can be tailored to polarize macrophages toward skin regeneration and wound healing, depending on specific requirements. This review describes the significance of micro/nanostructures for activating macrophages and promoting wound healing.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
21
|
Stramarkou M, Tzegiannakis I, Christoforidi E, Krokida M. Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications. Polymers (Basel) 2024; 16:514. [PMID: 38399892 PMCID: PMC10893451 DOI: 10.3390/polym16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Textile production is a major component of the global industry, with sales of over USD 450 billion and estimations of an 84% increase in their demand in the next 20 years. In recent decades, protective and smart textiles have played important roles in the social economy and attracted widespread popularity thanks to their wide spectrum of applications with properties, such as antimicrobial, water-repellent, UV, chemical, and thermal protection. Towards the sustainable manufacturing of smart textiles, biodegradable, recycled, and bio-based plastics are used as alternative raw materials for fabric and yarn production using a wide variety of techniques. While conventional techniques present several drawbacks, nanofibers produced through electrospinning have superior structural properties. Electrospinning is an innovative method for fiber production based on the use of electrostatic force to create charged threads of polymer solutions. Electrospinning shows great potential since it provides control of the size, porosity, and mechanical resistance of the fibers. This review summarizes the advances in the rapidly evolving field of the production of nanofibers for application in smart and protective textiles using electrospinning and environmentally friendly polymers as raw materials, and provides research directions for optimized smart fibers in the future.
Collapse
Affiliation(s)
- Marina Stramarkou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece; (I.T.); (E.C.); (M.K.)
| | | | | | | |
Collapse
|
22
|
Momeni P, Nourisefat M, Farzaneh A, Shahrousvand M, Abdi MH. The engineering, drug release, and in vitro evaluations of the PLLA/HPC/ Calendula Officinalis electrospun nanofibers optimized by Response Surface Methodology. Heliyon 2024; 10:e23218. [PMID: 38205286 PMCID: PMC10777380 DOI: 10.1016/j.heliyon.2023.e23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
A system based on poly(l-lactic acid) (PLLA) and hydroxypropyl cellulose (HPC) was considered in this study to achieve electrospun mats with outstanding properties and applicability in biomedical engineering. A novel binary solvent system of chloroform/N,N-dimethylformamide (CF/DMF:70/30) was utilized to minimize the probable phase separation between the polymeric components. Moreover, Response Surface Methodology (RSM) was employed to model/optimize the process. Finally, to scrutinize the ability of the complex in terms of drug delivery, Calendula Officinalis (Marigold) extract was added to the solution of the optimal sample (Opt.PH), and then the set was electrospun (PHM). As a result, the presence of Marigold led to higher values of fiber diameter (262 ± 34 nm), pore size (483 ± 102 nm), and surface porosity (81.0 ± 7.3 %). As this drug could also prohibit the micro-scale phase separation, the PHM touched superior tensile strength and Young modulus of 11.3 ± 1.1 and 91.2 ± 4.2 MPa, respectively. Additionally, the cumulative release data demonstrated non-Fickian diffusion with the Korsmeyer-Peppas exponent and diffusion coefficient of n = 0.69 and D = 2.073 × 10-14 cm2/s, respectively. At the end stage, both the Opt.PH and PHM mats manifested satisfactory results regarding the hydrophilicity and cell viability/proliferation assessments, reflecting their high potential to be used in regenerative medicine applications.
Collapse
Affiliation(s)
- Pegah Momeni
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Maryam Nourisefat
- Department of polymer engineering and color technology, Amirkabir University of Technology, Tehran, Iran
| | - Arman Farzaneh
- Department of polymer engineering and color technology, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, P.O. Box: 43841-119, Guilan, Iran
| | - Mohammad Hossein Abdi
- School of Chemical and polymer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Shen W, Wang Y, Li Y, Cui Z, Yang Y, Shi H, Xu C, Yin T. 3-Diethylaminopropyl isothiocyanate modified glycol chitosan for constructing mild-acid sensitive electrospinning antibacterial nanofiber membrane. Carbohydr Polym 2024; 324:121468. [PMID: 37985078 DOI: 10.1016/j.carbpol.2023.121468] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Bacterial infections would cause pathological inflammation and even generate chronic wound. Herein, a ciprofloxacin (Cip)-loaded mild acid-responsive electrospinning nanofiber membrane (NFM) containing 3-diethylaminopropyl isothiocyanate material grafted glycol chitosan (GC-DEAP) was fabricated to prevent bacterial infection against hemostatic and inflammatory phases of wounds. The presence of Cip and GC-DEAP in the objective NFM (PCL/GC-DEAP/Cip) was confirmed through XRD and FTIR. Meanwhile, PCL/GC-DEAP/Cip NFM exhibited high mechanical profiles, suitable water absorption and water vapour transmission ratio. The non-protonated amphiphilic GC-DEAP under pH 7.4 facilitated the formation of uniform and smooth nanofibers with polycaprolactone (PCL) and Cip. However, the GC-DEAP was demonstrated to sharply respond to the mild-acid environment of the wound and effectively be protonated, and thus improved the swelling ability of NFM and triggered burst release of Cip. Due to the combination between protonated GC-DEAP and Cip, PCL/GC-DEAP/Cip NFM achieved attractive antibacterial activity in the mild-acid environment in vitro, and induced more efficient prevention of wound infection and faster wound healing compared with the commercial chitosan dressing. The designed NFM is expected to be a potential smart wound dressing against hemostatic and inflammatory phases with mild-acid specifically strengthened antibacterial features and satisfactory biocompatibility.
Collapse
Affiliation(s)
- Weiyang Shen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yongxin Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yali Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zongyao Cui
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yitong Yang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Honglu Shi
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chenfeng Xu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
24
|
Ferreira CAM, Guerreiro SFC, Padrão T, Alves NMF, Dias JR. Antimicrobial Nanofibers to Fight Multidrug-Resistant Bacteria. NANOTECHNOLOGY BASED STRATEGIES FOR COMBATING ANTIMICROBIAL RESISTANCE 2024:533-579. [DOI: 10.1007/978-981-97-2023-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Wang S, Feng Y, Jia X, Ma X, Chen W, Yang L, Li J. Cotton fiber-based dressings with wireless electrical stimulation and antibacterial activity for wound repair. Int J Biol Macromol 2024; 256:128496. [PMID: 38035956 DOI: 10.1016/j.ijbiomac.2023.128496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Although cotton dressing is one of the most commonly used wound management materials, it lacks antimicrobial and healing-promoting activity. This work developed a multilayer electroactive composite cotton dressing (Ag/Zn@Cotton/Paraffin) with exudate-activated electrical stimulation and antibacterial activity by the green and sustainable magnetron-sputtering and spraying methods. The inner hydrophilic layer of the cotton dressing was magnetron sputtered with silver/zinc galvanic couple arrays (Ag/Zn), which can be activated by wound exudate, generating an electrical stimulation (ES) into the wound. The Ag/Zn@Cotton showed efficient antibacterial activities against S. aureus and E. coli. Meanwhile, the paraffin-sprayed outer surface showed excellent antibacterial adhesion rates for S. aureus (99.82 %) and E. coli (97.92 %). The in vitro cell experiments showed that the ES generated by Ag/Zn@Cotton/Paraffin increased the migration of fibroblasts, and the in vivo mouse model indicated that the Ag/Zn@Cotton/Paraffin could enhance wound healing via re-epithelialization, inflammatory inhibition, collagen deposition, and angiogenesis. MTT method and live/dead staining showed that Ag/Zn@Cotton/Paraffin had no significant cytotoxic effects. This work may shed some light on designing and fabricating multi-functional electroactive composited dressings based on traditional biomedical textiles.
Collapse
Affiliation(s)
- Shuang Wang
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yujie Feng
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, China
| | - Xihui Jia
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xiaoran Ma
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Weichao Chen
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Liguo Yang
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jiwei Li
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, China.
| |
Collapse
|
26
|
Ke Q, Ma K, Zhang Y, Meng Q, Huang X, Kou X. Antibacterial aroma compounds as property modifiers for electrospun biopolymer nanofibers of proteins and polysaccharides: A review. Int J Biol Macromol 2023; 253:126563. [PMID: 37657584 DOI: 10.1016/j.ijbiomac.2023.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kangning Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
27
|
Zhao Y, Guo P, Li D, Liu M, Zhang J, Yuan K, Zheng H, Liu L. Preparation and evaluation of oxidized-dextran based on antibacterial hydrogel for synergistic photodynamic therapy. Int J Biol Macromol 2023; 253:127648. [PMID: 37890748 DOI: 10.1016/j.ijbiomac.2023.127648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Skin trauma is a widespread, extremely susceptible health issue that affects people all over the world. In this study, an innovative antibacterial hydrogel (ODAA hydrogel) with photosensitizer and antibiotics was developed. Oxidized dextran (ODEX) was used as a carrier to prepare a pH-responsive hydrogel by loading the antibiotic amikacin (AMK) and the photosensitizer hexyl 5-aminolevulinate (HAL) via imine bonds. The ODAA hydrogel has a uniformly distributed cavity structure. The cumulative release rates of HAL and AMK in a simulated inflammatory environment at pH 5.0 were approximately 62.3 % and 71.9 % during 15 days. These results demonstrate the ODAA hydrogel's ability to deliver antibiotics on demand, where the antibiotic content is reduced within the effective range. Regarding the in vitro antibacterial behavior, the combination of HAL and AMK synergistically destroyed the majority of Gram-positive and Gram-negative bacteria through several pathways with broad-spectrum antibacterial effects. ODAA hydrogel has been shown to be biocompatible, nearly non-cytotoxic, and capable of promoting wound healing. It is anticipated that the simultaneous targeted delivery of multiple drugs to lesions in the same carrier at ideal dose ratios for particular therapeutic combinations will produce the most synergistic effects.
Collapse
Affiliation(s)
- Yuting Zhao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Peiyong Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Mengjie Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Junhao Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Kai Yuan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Liang Liu
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhehot 010010, China.
| |
Collapse
|
28
|
Zhang Y, Li Y, Tan Z. Development of Adjustable High- to Low-Adhesive Superhydrophobicity Using Aligned Electrospun Fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15986-15996. [PMID: 37922462 DOI: 10.1021/acs.langmuir.3c02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Superhydrophobic surfaces based on electrospun fibrous structures exhibit advantages of additive manufacturing and enable the passage of gases. Compared to randomly deposited fibers, directionally aligned fibers improve the control of surface wetting by a specified fiber orientation and predictable liquid-fiber contact interface. In this article, we create superhydrophobicity with adjustable adhesion based on the understanding of droplet wetting behavior on directionally aligned fibers. Directionally aligned polystyrene fibers with different diameters and interfiber distances (l) are produced using electrospinning with a rotating fin collector. The wetting behavior of droplets on the surfaces dressed by aligned fibers is characterized, and a thermodynamic model of wetting behavior is established to guide the experimental studies. As a result, high-adhesive superhydrophobicity is achieved on weak hydrophobic substrate surfaces dressed by aligned polystyrene fibers with a diameter of 1.8 μm and l between 5 and 130 μm. Water droplets (2 μL) exhibit a maximum contact angle of 156° and adhere to the fiber-dressed surfaces by tilting upside down. Low-adhesive superhydrophobicity is achieved by introducing an additional layer of aligned fibers to increase the transition energy barrier. On the dual-layer structure with an upper-layer l of 9 μm, droplets show a contact angle of 155° and can readily roll off the surface. Moreover, increasing the upper-layer l to 15 μm reserves the surface to high-adhesive superhydrophobicity.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yifu Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Zhongchao Tan
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Eastern Institute of Technology, Ningbo, Zhejiang 315201, China
| |
Collapse
|
29
|
Liang W, Ni N, Huang Y, Lin C. An Advanced Review: Polyurethane-Related Dressings for Skin Wound Repair. Polymers (Basel) 2023; 15:4301. [PMID: 37959982 PMCID: PMC10649939 DOI: 10.3390/polym15214301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The inability of wounds to heal effectively through normal repair has become a burden that seriously affects socio-economic development and human health. The therapy of acute and chronic skin wounds still poses great clinical difficulty due to the lack of suitable functional wound dressings. It has been found that dressings made of polyurethane exhibit excellent and diverse biological properties, but lack the functionality of clinical needs, and most dressings are unable to dynamically adapt to microenvironmental changes during the healing process at different stages of chronic wounds. Therefore, the development of multifunctional polyurethane composite materials has become a hot topic of research. This review describes the changes in physicochemical and biological properties caused by the incorporation of different polymers and fillers into polyurethane dressings and describes their applications in wound repair and regeneration. We listed several polymers, mainly including natural-based polymers (e.g., collagen, chitosan, and hyaluronic acid), synthetic-based polymers (e.g., polyethylene glycol, polyvinyl alcohol, and polyacrylamide), and some other active ingredients (e.g., LL37 peptide, platelet lysate, and exosomes). In addition to an introduction to the design and application of polyurethane-related dressings, we discuss the conversion and use of advanced functional dressings for applications, as well as future directions for development, providing reference for the development and new applications of novel polyurethane dressings.
Collapse
Affiliation(s)
| | | | | | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (W.L.); (N.N.); (Y.H.)
| |
Collapse
|
30
|
Wang D, Du L, Sun Z, Liu F, Zhang D, Wang D. Characterisation, slow-release, and antibacterial properties of carboxymethyl chitosan/inulin hydrogel film loaded with novel antilisterial durancin GL. Carbohydr Polym 2023; 318:121143. [PMID: 37479449 DOI: 10.1016/j.carbpol.2023.121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
This paper reports the development of a hydrogel film with antibacterial activity and controlled release characteristics. Carboxymethyl chitosan (CMCS) is grafted onto durancin GL and inulin via a mediated reaction between N-hydroxysuccinimide and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride. Rheology tests, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and lap shear tests confirmed the formation of a stable chemical cross-linking and excellent adhesion hydrogel with 4 % CMCS and 8 % inulin. The CMCS/inulin hydrogel film loaded with durancin GL appears transparent and uniform. FTIR spectroscopy results reveal the interaction mode among CMCS, inulin, durancin GL, and the hydrogel film structure. Cross-linking improved thermal stability and water-vapour barrier performance. The hydrophobicity of CMCS/inulin @Durancin GL increased under a durancin GL concentration of 0.036 g/30 mL, and the release of active substances is prolonged. In-vitro antibacterial capacity and salmon preservation experiments show that the addition of durancin GL enhanced the antibacterial activity of the hydrogel film. Therefore, CMCS/inulin@Durancin GL hydrogel films can be used as fresh-keeping packaging materials in practical applications.
Collapse
Affiliation(s)
- Debao Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
31
|
Yang J, Xu L. Electrospun Nanofiber Membranes with Various Structures for Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6021. [PMID: 37687713 PMCID: PMC10488510 DOI: 10.3390/ma16176021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Electrospun nanofiber membranes (NFMs) have high porosity and a large specific surface area, which provide a suitable environment for the complex and dynamic wound healing process and a large number of sites for carrying wound healing factors. Further, the design of the nanofiber structure can imitate the structure of the human dermis, similar to the natural extracellular matrix, which better promotes the hemostasis, anti-inflammatory and healing of wounds. Therefore, it has been widely studied in the field of wound dressing. This review article overviews the development of electrospinning technology and the application of electrospun nanofibers in wound dressings. It begins with an introduction to the history, working principles, and transformation of electrospinning, with a focus on the selection of electrospun nanofiber materials, incorporation of functional therapeutic factors, and structural design of nanofibers and nanofiber membranes. Moreover, the wide application of electrospun NFMs containing therapeutic factors in wound healing is classified based on their special functions, such as hemostasis, antibacterial and cell proliferation promotion. This article also highlights the structural design of electrospun nanofibers in wound dressing, including porous structures, bead structures, core-shell structures, ordered structures, and multilayer nanofiber membrane structures. Finally, their advantages and limitations are discussed, and the challenges faced in their application for wound dressings are analyzed to promote further research in this field.
Collapse
Affiliation(s)
- Jiahao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Re-Duction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
32
|
Zamora-Ledezma C, Hernández AB, López-González I, Elango J, Paindépice J, Alexis F, González-Sánchez M, Morales-Flórez V, Mowbray DJ, Meseguer-Olmo L. Fabrication, Physical-Chemical and Biological Characterization of Retinol-Loaded Poly(vinyl Alcohol) Electrospun Fiber Mats for Wound Healing Applications. Polymers (Basel) 2023; 15:2705. [PMID: 37376351 PMCID: PMC10302737 DOI: 10.3390/polym15122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, there exists a huge interest in producing innovative, high-performance, biofunctional, and cost-efficient electrospun biomaterials based on the association of biocompatible polymers with bioactive molecules. Such materials are well-known to be promising candidates for three-dimensional biomimetic systems for wound healing applications because they can mimic the native skin microenvironment; however, many open questions such as the interaction mechanism between the skin and the wound dressing material remain unclear. Recently, several biomolecules were intended for use in combination with poly(vinyl alcohol) (PVA) fiber mats to improve their biological response; nevertheless, retinol, an important biomolecule, has not been combined yet with PVA to produce tailored and biofunctional fiber mats. Based on the abovementioned concept, the present work reported the fabrication of retinol-loaded PVA electrospun fiber mats (RPFM) with a variable content of retinol (0 ≤ Ret ≤ 25 wt.%), and their physical-chemical and biological characterization. SEM results showed that fiber mats exhibited diameters distribution ranging from 150 to 225 nm and their mechanical properties were affected with the increasing of retinol concentrations. In addition, fiber mats were able to release up to 87% of the retinol depending on both the time and the initial content of retinol. The cell culture results using primary mesenchymal stem cell cultures proved the biocompatibility of RPFM as confirmed by their effects on cytotoxicity (low level) and proliferation (high rate) in a dose-dependent manner. Moreover, the wound healing assay suggested that the optimal RPFM with retinol content of 6.25 wt.% (RPFM-1) enhanced the cell migratory activity without altering its morphology. Accordingly, it is demonstrated that the fabricated RPFM with retinol content below the threshold 0 ≤ Ret ≤ 6.25 wt.% would be an appropriate system for skin regenerative application.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM—Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Ana Belén Hernández
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| | - Ivan López-González
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| | - Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain;
| | - Janèle Paindépice
- École Polytechnique Universitaire D’ingénieurs de Montpellier (POLYTECH), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France;
| | - Frank Alexis
- Departmento de Ingenería Química, Colegio de Ciencias y Ingenierias, Universidad San Francisco de Quito (Ecuador), Campus Cumbayá, Diego de Robles s/n, Quito 170901, Ecuador;
| | - Manuela González-Sánchez
- Department of Physics of Condensed Matter, University of Seville (Spain), Av. Reina Mercedes, s/n, 41012 Seville, Spain; (M.G.-S.); (V.M.-F.)
| | - Víctor Morales-Flórez
- Department of Physics of Condensed Matter, University of Seville (Spain), Av. Reina Mercedes, s/n, 41012 Seville, Spain; (M.G.-S.); (V.M.-F.)
| | - Duncan John Mowbray
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador;
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| |
Collapse
|
33
|
Sasson E, Agazani O, Malka E, Reches M, Margel S. Engineered Cross-Linked Silane with Urea Polymer Thin Durable Coatings onto Polymeric Films for Controlled Antiviral Release of Activated Chlorine and Essential Oils. J Funct Biomater 2023; 14:270. [PMID: 37233380 PMCID: PMC10218995 DOI: 10.3390/jfb14050270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
In March 2020, the World Health Organization announced a pandemic attributed to SARS-CoV-2, a novel beta-coronavirus, which spread widely from China. As a result, the need for antiviral surfaces has increased significantly. Here, the preparation and characterization of new antiviral coatings on polycarbonate (PC) for controlled release of activated chlorine (Cl+) and thymol separately and combined are described. Thin coatings were prepared by polymerization of 1-[3-(trimethoxysilyl)propyl] urea (TMSPU) in ethanol/water basic solution by modified Stöber polymerization, followed by spreading the formed dispersion onto surface-oxidized PC film using a Mayer rod with appropriate thickness. Activated Cl-releasing coating was prepared by chlorination of the PC/SiO2-urea film with NaOCl through the urea amide groups to form a Cl-amine derivatized coating. Thymol releasing coating was prepared by linking thymol to TMSPU or its polymer via hydrogen bonds between thymol hydroxyl and urea amide groups. The activity towards T4 bacteriophage and canine coronavirus (CCV) was measured. PC/SiO2-urea-thymol enhanced bacteriophage persistence, while PC/SiO2-urea-Cl reduced its amount by 84%. Temperature-dependent release is presented. Surprisingly, the combination of thymol and chlorine had an improved antiviral activity, reducing the amount of both viruses by four orders of magnitude, indicating synergistic activity. For CCV, coating with only thymol was inactive, while SiO2-urea-Cl reduced it below a detectable level.
Collapse
Affiliation(s)
- Elisheva Sasson
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) and Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.)
| | - Omer Agazani
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eyal Malka
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) and Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.)
| | - Meital Reches
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shlomo Margel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) and Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.)
| |
Collapse
|
34
|
Chen M, Shao R, Wang Q, Gao Y, Ma Y, Guan R, Yang T. Eu doped Zn-MOF nanofiber fluorescent membrane and its multifunctional detection of nitroaromatic compounds and Fe3+. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
35
|
Zhong G, Qiu M, Zhang J, Jiang F, Yue X, Huang C, Zhao S, Zeng R, Zhang C, Qu Y. Fabrication and characterization of PVA@PLA electrospinning nanofibers embedded with Bletilla striata polysaccharide and Rosmarinic acid to promote wound healing. Int J Biol Macromol 2023; 234:123693. [PMID: 36806778 DOI: 10.1016/j.ijbiomac.2023.123693] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
In this study, a novel nanofiber material with Polylactic acid (PLA), natural plant polysaccharides-Bletilla striata polysaccharide (BSP) and Rosmarinic acid (RA) as the raw materials to facilitate wound healing was well prepared through coaxial electrospinning. The morphology of RA-BSP-PVA@PLA nanofibers was characterized through scanning electron microscopy (SEM), and the successful formation of core-shell structure was verified under confocal laser microscopy (CLSM) and Fourier transform infrared spectroscopy (FTIR). RA-BSP-PVA@PLA exhibited suitable air permeability for wound healing, as indicated by the result of the water vapor permeability (WVTR) study. The results of tension test results indicated the RA-BSP-PVA@PLA nanofiber exhibited excellent flexibility and better accommodates wounds. Moreover, the biocompatibility of RA-BSP-PVA@PLA was examined through MTT assay. Lastly, RA-BSP-PVA@PLA nanofibers can induce wound tissue growth, as verified by the rat dorsal skin wound models and tissue sections. Furthermore, RA-BSP-PVA@PLA can facilitate the proliferation and transformation of early wound macrophages, and down-regulate MPO+ expression of on the wound, thus facilitating wound healing, as confirmed by the result of immunohistochemical. Thus, RA-BSP-PVA@PLA nanofibers show great potential as wound dressings in wound healing.
Collapse
Affiliation(s)
- Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
36
|
Liu S, Wu G, Wang W, Wang H, Gao Y, Yang X. In Situ Electrospinning of "Dry-Wet" Conversion Nanofiber Dressings for Wound Healing. Mar Drugs 2023; 21:md21040241. [PMID: 37103380 PMCID: PMC10144117 DOI: 10.3390/md21040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Rapid wound dressings provide an excellent solution strategy for the treatment of wounds in emergency situations. In this study, aqueous solvent-based PVA/SF/SA/GelMA nanofiber dressings fabricated by a handheld electrospinning device could deposit quickly and directly on the wound, perfectly fitting wounds with various sizes. Using an aqueous solvent overcame the disadvantage of using the current organic solvents as the medium for rapid wound dressings. The porous dressings had excellent air permeability to ensure smooth gas exchange at the wound site. The distribution range of the tensile strength of the dressings was 9-12 Kpa, and the tensile strain was between 60-80%, providing sufficient mechanical support during wound healing. The dressings could absorb 4-8 times their own weight in solution and could rapidly absorb wound exudates from wet wounds. The nanofibers formed ionic crosslinked hydrogel after absorbing exudates, maintaining the moist condition. It formed a hydrogel-nanofiber composite structure with un-gelled nanofibers and combined the photocrosslinking network to maintain a stable structure at the wound location. The in vitro cell culture assay indicated that the dressings had excellent cell cytocompatibility, and the addition of SF contributed to cell proliferation and wound healing. The in situ deposited nanofiber dressings had excellent potential in the urgent treatment of emergency wounds.
Collapse
Affiliation(s)
- Shanfei Liu
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guilin Wu
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wen Wang
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Heng Wang
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yingjun Gao
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xuhong Yang
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
37
|
Li J, Yin J, Wee MGV, Chinnappan A, Ramakrishna S. A Self-Powered Piezoelectric Nanofibrous Membrane as Wearable Tactile Sensor for Human Body Motion Monitoring and Recognition. ADVANCED FIBER MATERIALS 2023; 5:1-14. [PMID: 37361108 PMCID: PMC10088646 DOI: 10.1007/s42765-023-00282-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/16/2023] [Indexed: 06/28/2023]
Abstract
Wearable sensors have drawn vast interest for their convenience to be worn on body to monitor and track body movements or exercise activities in real time. However, wearable electronics rely on powering systems to function. Herein, a self-powered, porous, flexible, hydrophobic and breathable nanofibrous membrane based on electrospun polyvinylidene fluoride (PVDF) nanofiber has been developed as a tactile sensor with low-cost and simple fabrication for human body motion detection and recognition. Specifically, effects of multi-walled carbon nanotubes (CNT) and barium titanate (BTO) as additives to the fiber morphology as well as mechanical and dielectric properties of the piezoelectric nanofiber membrane were investigated. The fabricated BTO@PVDF piezoelectric nanogenerator (PENG) exhibits the high β-phase content and best overall electrical performances, thus selected for the flexible sensing device assembly. Meanwhile, the nanofibrous membrane demonstrated robust tactile sensing performance that the device exhibits durability over 12,000 loading test cycles, holds a fast response time of 82.7 ms, responds to a wide pressure range of 0-5 bar and shows a high relative sensitivity, especially in the small force range of 11.6 V/bar upon pressure applied perpendicular to the surface. Furthermore, when attached on human body, its unique fibrous and flexible structure offers the tactile sensor to present as a health care monitor in a self-powered manner by translating motions of different movements to electrical signals with various patterns or sequences. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00282-8.
Collapse
Affiliation(s)
- Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
| | - Jing Yin
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Mei Gui Vanessa Wee
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, 119077 Singapore
| | - Amutha Chinnappan
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
| |
Collapse
|
38
|
Hama R, Reinhardt JW, Ulziibayar A, Watanabe T, Kelly J, Shinoka T. Recent Tissue Engineering Approaches to Mimicking the Extracellular Matrix Structure for Skin Regeneration. Biomimetics (Basel) 2023; 8:biomimetics8010130. [PMID: 36975360 PMCID: PMC10046023 DOI: 10.3390/biomimetics8010130] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Inducing tissue regeneration in many skin defects, such as large traumatic wounds, burns, other physicochemical wounds, bedsores, and chronic diabetic ulcers, has become an important clinical issue in recent years. Cultured cell sheets and scaffolds containing growth factors are already in use but have yet to restore normal skin tissue structure and function. Many tissue engineering materials that focus on the regeneration process of living tissues have been developed for the more versatile and rapid initiation of treatment. Since the discovery that cells recognize the chemical-physical properties of their surrounding environment, there has been a great deal of work on mimicking the composition of the extracellular matrix (ECM) and its three-dimensional network structure. Approaches have used ECM constituent proteins as well as morphological processing methods, such as fiber sheets, sponges, and meshes. This review summarizes material design strategies in tissue engineering fields, ranging from the morphology of existing dressings and ECM structures to cellular-level microstructure mimicry, and explores directions for future approaches to precision skin tissue regeneration.
Collapse
Affiliation(s)
- Rikako Hama
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei 184-8588, Japan
| | - James W Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - John Kelly
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
- Department of Surgery, Cardiovascular Tissue Engineering Program, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
40
|
Wang Z, Hu W, Wang W, Xiao Y, Chen Y, Wang X. Antibacterial Electrospun Nanofibrous Materials for Wound Healing. ADVANCED FIBER MATERIALS 2023; 5:107-129. [DOI: 10.1007/s42765-022-00223-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 08/25/2024]
|
41
|
Carboxymethyl chitosan/sodium alginate hydrogels with polydopamine coatings as promising dressings for eliminating biofilm and multidrug-resistant bacteria induced wound healing. Int J Biol Macromol 2023; 225:923-937. [PMID: 36427613 DOI: 10.1016/j.ijbiomac.2022.11.156] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Microorganisms induced wound infection and the accompanying excessive inflammatory response is the daunting problems in wound treatment. Due to the lack of corresponding biological functions, traditional wound dressings cannot effectively protect the wound and are prone to induce local infection, excessive inflammation, and vascular damage, resulting in prolonged unhealing. Here, a mussel-inspired strategy was adopted to prepare a multifunctional hydrogel created by H2O2/CuSO4-induced rapid polydopamine (PDA) deposition on carboxymethyl chitosan (CMC)/sodium alginate (Alg) based hydrogel, termed as CAC/PDA/Cu(H2O2). The prepared CAC/PDA/Cu(H2O2) hydrogel features excellent biocompatibility, adequate mechanical properties, and good degradability. Moreover, the CAC/PDA/Cu(H2O2) hydrogel can not only realize antibacterial, and anti-inflammatory effects, but also promote angiogenesis to accelerate wound healing in vitro thanks to the composite PDA/Cu(H2O2) coatings. Significantly, CAC/PDA/Cu(H2O2) hydrogel illustrates excellent therapeutic effects in Methicillin-resistant Staphylococcus aureus (MRSA) induced-rat infection models, which can efficiently eliminate MRSA, dramatically reduce inflammatory expression, promote angiogenesis, and ultimately shorten the wound healing time. CAC/PDA/Cu(H2O2) hydrogel exhibited the best wound healing rate on days 7 (80.63 ± 2.44 %), 11 (92.45 ± 2.26 %), and 14 (97.86 ± 0.66 %). Thus, the multifunctional hydrogel provides a facile and efficient approach to wound management and represents promising potential in the therapy for wound healing.
Collapse
|
42
|
Xiang X, Chen D, Li N, Xu Q, Li H, He J, Lu J. PVDF/PLA electrospun fiber membrane impregnated with metal nanoparticles for emulsion separation, surface antimicrobial, and antifouling activities. SCIENCE CHINA. TECHNOLOGICAL SCIENCES 2023; 66:1461-1470. [PMID: 37153371 PMCID: PMC10127986 DOI: 10.1007/s11431-022-2325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/30/2023] [Indexed: 05/09/2023]
Abstract
Although many superwetting materials have been designed for the treatment of oil-containing wastewater, separation strategies for oil-in-water systems containing bacteria have rarely been reported. Herein, poly(vinylidene difluoride)- and poly(lactic acid)-blended fibrous membranes loaded with silver and copper oxide nanoparticles were successfully prepared by a two-step method of electrostatic spinning and liquid-phase synthesis. The product membrane showed excellent super-oleophilic properties in air and hydrophobicity under oil. It could separate water-in-oil emulsion systems containing surfactants with an efficiency above 90%. More importantly, the nanoparticle-loaded fibers were characterized by material degradability and slowly released ions. The fibers exhibited excellent antibacterial activities against both gram-positive and -negative bacteria. This work provides a feasible strategy for water-in-oil emulsion separation and bacterial treatment of wastewater.
Collapse
Affiliation(s)
- Xin Xiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - DongYun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - NaJun Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - QingFeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - JingHui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - JianMei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| |
Collapse
|
43
|
Gong X, Yin X, Wang F, Liu X, Yu J, Zhang S, Ding B. Electrospun Nanofibrous Membranes: A Versatile Medium for Waterproof and Breathable Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205067. [PMID: 36403221 DOI: 10.1002/smll.202205067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Waterproof and breathable membranes that prevent liquid water penetration, while allowing air and moisture transmission, have attracted significant attention for various applications. Electrospun nanofiber materials with adjustable pore structures, easily tunable wettability, and good pore connectivity, have shown significant potential for constructing waterproof and breathable membranes. Herein, a systematic overview of the recent progress in the design, fabrication, and application of waterproof and breathable nanofibrous membranes is provided. The various strategies for fabricating the membranes mainly including one-step electrospinning and post-treatment of nanofibers are given as a starting point for the discussion. The different design concepts and structural characteristics of each type of waterproof and breathable membrane are comprehensively analyzed. Then, some representative applications of the membranes are highlighted, involving personal protection, desalination, medical dressing, and electronics. Finally, the challenges and future perspectives associated with waterproof and breathable nanofibrous membranes are presented.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Fei Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| |
Collapse
|
44
|
Zang L, Cheng Q, Bai S, Wang K, Yuan X. Electrospun membranes of carboxylated poly(ester urethane)urea/gelatin encapsulating pterostilbene for adaptive and antioxidative purposes. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022:1-24. [PMID: 36541432 DOI: 10.1080/09205063.2022.2161296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress caused by the harsh microenvironment after implantation of an artificial graft with mismatching mechanical properties usually triggers inflammation responses, which have adverse impacts on tissue regeneration. For coping with these problems, in this work, bioactive fibrous scaffolds were developed from specially synthesized carboxylated poly(ester urethane)urea (PEUU) and gelatin (Gel) by encapsulating pterostilbene (Pte) for the first time. The prepared electrospun membranes exhibited self-adaptable mechanical properties with high elasticity owing to the bonded electrospun fibers, cross-linking network between PEUU and Gel, and the inherent flexibility of the PEUU polymer in the fibrous matrix. The PEUU/Gel/Pte electrospun membrane containing 7% Pte could promote in vitro proliferation of human umbilical vein endothelial cells, and regulate vascular smooth muscle cells with excellent antioxidant properties via free radical scavenging. In vivo results in a rat subcutaneous implantation model further demonstrated the positive effect of the specially prepared PEUU/Gel/Pte scaffold on both normal cell growth and anti-inflammatory by promoting cellularization and polarizing macrophages toward the M2 phenotype. These PEUU/Gel/Pte electrospun membranes with adaptability benefit to tissue regeneration by modulating inflammation responses, especially applications in vascular regeneration.
Collapse
Affiliation(s)
- Leilei Zang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shan Bai
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| |
Collapse
|
45
|
Fluorine-Free Hydrophobic Modification and Waterproof Breathable Properties of Electrospun Polyacrylonitrile Nanofibrous Membranes. Polymers (Basel) 2022; 14:polym14235295. [PMID: 36501689 PMCID: PMC9735966 DOI: 10.3390/polym14235295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Waterproof breathable functional membranes have broad application prospects in the field of outdoors textiles. The fluorine-containing microporous membranes of the mainstream functional products easily cause harm to the environment, and thus, the fluorine-free environmental nanofibrous membranes are an important development direction for functional membranes. In this subject, the electrospun polyacrylonitrile nanofibrous membranes were first hydrophobically modified by amino functional modified polysiloxane (AMP), followed by in situ cross-linking modified with 4, 4'-methyl diphenylene diisocyanate (MDI). The fluorine-free modification by AMP altered the surface of the membranes from hydrophilic to hydrophobic, and greatly improved the waterproof properties with the hydrostatic pressure reaching to 87.6 kPa. In addition, the formation of bonding points and the in situ preparation of polyuria through the reaction between the isocyanate in MDI and the amino group in AMP, could improve the mechanical properties effectively. When using AMP with the concentration of 1 wt% and MDI with the concentration of 2 wt%, the relatively good comprehensive performance was obtained with good water resistance (93.8 kPa), modest vapor permeability (4.7 kg m-2 d-1) and air permeability (12.7 mm/s). Based on these testing data, the modified nanofibrous membranes had excellent waterproof and breathable properties, which has future potential in outdoor sports apparel.
Collapse
|
46
|
Lu X, Li X, Yu J, Ding B. Nanofibrous hemostatic materials: Structural design, fabrication methods, and hemostatic mechanisms. Acta Biomater 2022; 154:49-62. [PMID: 36265792 DOI: 10.1016/j.actbio.2022.10.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
Development of rapid and effective hemostatic materials has always been the focus of research in the healthcare field. Nanofibrous materials which recapitulate the delicate nano-topography feature of fibrin fibers produced during natural hemostatic process, offer large length-to-diameter ratio and surface area, tunable porous structure, and precise control in architecture, showing great potential for staunching bleeding. Here we present a comprehensive review of advances in nanofibrous hemostatic materials, focusing on the following three important parts: structural design, fabrication methods, and hemostatic mechanisms. This review begins with an introduction to the physiological hemostatic mechanism and current commercial hemostatic agents. Then, it focuses on recent progress in electrospun nanofibrous hemostatic materials in terms of composition and structure control, surface modification, and in-situ deposition. The article emphasizes the development of three-dimensional (3D) electrospun nanofibrous materials and their emerging evolution for improving hemostatic function. Next, it discusses the fabrication of self-assembling peptide or protein-mimetic peptide nanofibers, co-assembling supramolecular nanofibers, as well as other nanofibrous hemostatic agents. Further, the article highlights the external and intracavitary hemostatic management based on various nanofiber aggregates. In the end, this review concludes with the current challenges and future perspectives of nanofibrous hemostatic materials. STATEMENT OF SIGNIFICANCE: This article reviews recent advances in nanofibrous hemostatic materials including fabrication methods, composition and structural control, performance improvement, and hemostatic mechanisms. A variety of methods including electrospinning, self-assembly, grinding and refining, template synthesis, and chemical vapor deposition, have been developed to prepare nanofibrous materials. These methods provide robustness in control of the nanofiber architecture in the forms of hydrogels, two-dimensional (2D) membranes, 3D sponges, or composites, showing promising potential in the external and intracavitary hemostasis and wound healing applications. This review will be of great interest to the broad readers in the field of hemostatic materials and multifunctional biomaterials.
Collapse
Affiliation(s)
- Xuyan Lu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
47
|
Cross-linked gluten/zein nanofibers via Maillard reaction with the loading of star anise essential oil/β-cyclodextrin inclusions for food-active packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
da Mata GC, Morais MS, de Oliveira WP, Aguiar ML. Composition Effects on the Morphology of PVA/Chitosan Electrospun Nanofibers. Polymers (Basel) 2022; 14:polym14224856. [PMID: 36432987 PMCID: PMC9698655 DOI: 10.3390/polym14224856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Since the SARS-CoV-2 pandemic, the interest in applying nanofibers t air filtration and personal protective equipment has grown significantly. Due to their morphological and structural properties, nanofibers have potential applications for air filtration in masks and air filters. However, most nanofiber membrane materials used for these purposes are generally non-degradable materials, which can contribute to the disposal of plastic waste into the environment. Hence, this work aims to produce polyvinyl alcohol (PVA) and chitosan (CS) biodegradable nanofibers with controlled morphology and structure via electrospinning. An experimental design was used to investigate the effects of the PVA|CS ratio and concentration on the properties of the electrospinning compositions and electrospun nanofiber mat. The electrospinning parameters were constant for all experiments: Voltage of 20 kV, a feed rate of 0.5 mL·h−1, and a distance of 10 cm between the needle and a drum collector. CS proved to be an efficient adjuvant to the PVA’s electrospinning, obtaining a wide range of nanofiber diameters. Furthermore, 6.0% PVA and 1% CS were the best compositions after optimization with the response surface methodology, with a mean fiber diameter of 204 nm. The addition of biocide agents using the optimized condition was also investigated, using surfactants, citric acid, and pure and encapsulated essential oils of Lippia sidoides. Pure oil improved the material without enlarging the nanofiber sizes compared to the other additives. The nanofiber membranes produced have the potential to be used in air filtration or wound-dressing applications where biocidal activity is needed.
Collapse
Affiliation(s)
- Gustavo Cardoso da Mata
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, SP310, São Carlos 13565-905, SP, Brazil
| | - Maria Sirlene Morais
- Faculty of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Av. do Café s/no, Bairro Monte Alegre, Ribeirão Preto 14040-903, SP, Brazil
| | - Wanderley Pereira de Oliveira
- Faculty of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Av. do Café s/no, Bairro Monte Alegre, Ribeirão Preto 14040-903, SP, Brazil
| | - Mônica Lopes Aguiar
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, SP310, São Carlos 13565-905, SP, Brazil
- Correspondence:
| |
Collapse
|
49
|
Martins LM, Fraga GN, Pellá MCG, Pinto FAC, de Souza F, Neto JC, Rossin ARS, Caetano J, Dragunski DC. Poly(1-vinylpyrrolidone-co-vinyl-acetate)-based electrospun dissolvable nanofibrous film for quercetin administration. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
PVA/PEO/PVA-g-APEG nanofiber membranes with cytocompatibility and anti-cell adhesion for biomedical applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|