1
|
Cui ZH, He Q, Li ZP, Deng Y, Liao XP, Zhang C, Sun J, Ren H, Han L. A hydrogel-based composite facilitates efficient and recyclable tetracycline biodegradation in aquatic environments. ENVIRONMENTAL RESEARCH 2025; 276:121524. [PMID: 40180264 DOI: 10.1016/j.envres.2025.121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Tetracycline antibiotics residues pose significant health risks to individual and public health by their cytotoxicity and promotion on antibiotic resistance spread. Tet(X4) is a newly-identified tetracycline-inactivating enzyme that efficiently eliminates all antibiotics within tetracycline class. To address the limitations of Tet(X4)-based approaches in suboptimal stability and cost-efficiency balance in realistic environments, this study established a hydrogel-based composite to encapsulate the Tet(X4) for efficiently and economically eliminating the tetracycline residues in aqueous environments. Herein, we synthesized a composite comprising carboxymethyl chitosan (CC), agarose (Ag), Tet(X4), Fe3O4, and CaO2. It maintained 73.1 ± 9.4 %, 50.0 ± 2.8 % and 58.9 ± 0.6 % of enzymatic activity with desirable tolerance to UV, and ionic strength. By exploring the properties of composites, we found that 3 % Tet(X4) in a 1.0 g weighted composite with average diameters of 5.0 mm could efficiently degrade tetracycline residues. Additionally, the magnetic components in the composite conferred recyclability to the Tet(X4)-dependent biodegradation for multiple use, maximally reducing the costs. The composite endowed the promising applicability of Tet(X4) to eradicate approximately 85 % the residual tetracyclines in various aqueous environments, including tap water, lakes, pharmaceutical wastewater, and livestock sewage. Mouse experiments showed that the as-prepared composites are totally safe and will not cause metabolic and immune abnormalities. Taken together, this study constructed a feasible platform to render the Tet(X4)-mediated tetracycline removal more stable and recyclable, highlighting encapsulation with the nanocarriers as a promising strategy to facilitate the enzymatic degradation of antibiotic residues with enhanced efficiency, stability and recyclability.
Collapse
Affiliation(s)
- Ze-Hua Cui
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Qian He
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhi-Peng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yao Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Lu Han
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Fu Y, Yi Y, Wang Y, Diao Y, Diao Z, Chen Z. A comprehensive review of modified biochar-based advanced oxidation processes for environmental pollution remediation: efficiency, mechanism, toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125872. [PMID: 40414127 DOI: 10.1016/j.jenvman.2025.125872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/17/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Biochar (BC) has been demonstrated efficacy in activating oxidants to enhance environmental contaminant degradation. However, performance limitations of pristine biochar, including insufficient active sites and low electron transfer efficiency, primarily stemming from feedstock heterogeneity and pyrolytic parameter variations, resulting in suboptimal activation efficiency in practical applications. Recent studies demonstrated that targeted functionalization strategies, such as heteroatom doping, metal loading, and acid/alkali modification, could significantly improving activation performance of biochar, which was critical for advancing biochar-based advanced oxidation processes. In this review, the modification methods of biochar and their applications in activating diverse oxidants for water purification, soil remediation, air pollutant mitigation, and antimicrobial disinfection were summarized. Additionally, the differences in mechanisms among modified biochars for activating different oxidants in pollutant degradation were systematically illustrated. This review indicated that both free radicals and non-free radicals pathway played key roles in pollutant removal, either individually or through synergistic effects. Furthermore, potential challenges in applying modified biochar-based AOPs at a practical scale were also discussed. This review have shown that the presence of natural substances and impurities in these environments can deplete active components, resulting in reduced pollutant degradation efficiencies compared to controlled laboratory conditions. The current review illustrated that the toxicity of modified biochar was related to feedstocks and pyrolysis processes. Meanwhile, the toxicity of degradation intermediates could significantly reduce using modified biochar-based AOPs. Overall, this review provide insights for future research in this field.
Collapse
Affiliation(s)
- Yue Fu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510006, China
| | - Yunqiang Yi
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510006, China.
| | - Yu Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510006, China
| | - Yi Diao
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Zenghui Diao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510006, China
| | - Zhenguo Chen
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou, 510006, China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, China
| |
Collapse
|
3
|
Duan S, Kang X, Yao X, Zhang J, Zhang Q, Yu Q, Yang T, Ge M, He Z, Zhang X, Wang C. Synthesis of copper/carbon nanofibers by electrostatic spinning toward persulfate activation for treatment of antibiotic wastewater. ENVIRONMENTAL TECHNOLOGY 2025; 46:815-826. [PMID: 38940265 DOI: 10.1080/09593330.2024.2369276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Antibiotics in water will cause serious harm to human health and ecosystem. Carbon-based materials and transition metals activated peroxodisulfate (PDS) to produce active species, which can degrade residual antibiotics in water. In this paper, Cu/CNF (carbon nanofibers) composites were first prepared by introducing Cu into CNF using electrostatic spinning technology, which was used to activate PDS to degrade tetracycline (TC). The degradation efficiency of Cu/CNF/PDS was 36.23% higher than that of CNF/PDS. The reason is that introducing Cu can increase the number of surface functional groups and specific surface area of CNF, and then improve the catalytic performance. The functional groups and Cu species are the active sites for catalytic PDS. Moreover, the main ways to degrade TC in the Cu/CNF/PDS system are singlet oxygen (1O2) and electron transfer. Based on the above analysis, we modified CNF with transition metal salts, prepared efficient environmental functional materials, and used them for PDS activation, providing a theoretical basis and technical support for the degradation of antibiotic pollutants and creating new ideas for other research.
Collapse
Affiliation(s)
- Siying Duan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Xiaoxuan Kang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Xinyue Yao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Qingqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Qiang Yu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Tao Yang
- Hebei Jicheng New Material Co., Ltd, Tangshan, People's Republic of China
| | - Ming Ge
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
4
|
Han M, Liu Z, Huang S, Zhang H, Yang H, Liu Y, Zhang K, Zeng Y. Application of Biochar-Based Materials for Effective Pollutant Removal in Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1933. [PMID: 39683321 PMCID: PMC11870060 DOI: 10.3390/nano14231933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
With the growth of the global population and the acceleration of industrialization, the problem of water pollution has become increasingly serious, posing a major threat to the ecosystem and human health. Traditional water treatment technologies make it difficult to cope with complex pollution, so the scientific community is actively exploring new and efficient treatment methods. Biochar (BC), as a low-cost, green carbon-based material, exhibits good adsorption and catalytic properties in water treatment due to its porous structure and abundant active functional groups. However, BC's pure adsorption or catalytic capacity is limited, and researchers have dramatically enhanced its performance through modification means, such as loading metals or heteroatoms. In this paper, we systematically review the recent applications of BC and its modified materials for water treatment in adsorption, Fenton-like, electrocatalytic, photocatalytic, and sonocatalytic systems, and discuss their adsorption/catalytic mechanisms. However, most of the research in this field is at the laboratory simulation stage and still needs much improvement before it can be applied in large-scale wastewater treatment. This review improves the understanding of the pollutant adsorption/catalytic properties and mechanisms of BC-based materials, analyzes the limitations of the current studies, and investigates future directions.
Collapse
Affiliation(s)
- Meiyao Han
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Ziyang Liu
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Shiyue Huang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Huanxing Zhang
- Luoyang Petrochemical Engineering Design Co., Ltd., Luoyang 471003, China;
| | - Huilin Yang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Yuan Liu
- Chengdu Tiantou Industry Co., Ltd., Chengdu 610000, China;
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Yusheng Zeng
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| |
Collapse
|
5
|
Pang K, Fu F, Wang H, Ding S, Fang Y, Liu X. Sustainability-inspired upcycling of plastic waste into porous carbon nanobulks for water decontamination via peroxymonosulfate activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175242. [PMID: 39117214 DOI: 10.1016/j.scitotenv.2024.175242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
"White pollution" is regarded as one of the most serious problems in the natural environment. Thus greener recycling of plastic waste has attracted significant efforts in recent research. In this study, to kill two birds with one stone, a series of porous carbon nanobulks (PCNs) were synthesized from the pyrolysis of plastic waste (polyethylene terephthalate, PET) and inorganic salt (including NaHCO3, Na2CO3, NaCl, and ZnCl2) for sulfadiazine (SDZ) degradation via peroxymonosulfate (PMS) activation. PCNs-1 (co-calcinated from PET and NaHCO3) with a large number of CO and COOH active sites, which were in favor of PMS activation and electron transfer during the catalytic process, had shown the best catalytic activity for SDZ degradation. Significantly, PCNs-1 exhibited excellent universality, adaptability, and stability. The degradation pathways of SDZ were identified by the total content of organic carbon (TOC), and high-resolution mass spectrometry (HR-MS). The possible mechanism was proposed according to the anion effect, quenching experiments, electron paramagnetic resonance (EPR), and electrochemical analysis, indicating that radical (OH, SO4-, O2-) and non-radical (1O2 and e) species were the catalytically active species for SDZ decomposition in the PCNs-1/PMS system. Moreover, Ecological Structure-Activity-Relationship Model (ECOSAR) program and wheat seed cultivation experiments clearly demonstrated that the biotoxicity of SDZ could be effectively reduced by the PCNs-1/PMS system. Here we successfully upcycled plastic waste into high-value materials for efficient water decontamination.
Collapse
Affiliation(s)
- Kun Pang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Fangyu Fu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China; School of Sciences, Great Bay University, Great Bay Institute for Advanced Study, Dongguan 523000, China.
| | - Haoqi Wang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Shun Ding
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yanfen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China.
| |
Collapse
|
6
|
Murtaza G, Ahmed Z, Usman M, Iqbal R, Zulfiqar F, Tariq A, Ditta A. Physicochemical properties and performance of non-woody derived biochars for the sustainable removal of aquatic pollutants: A systematic review. CHEMOSPHERE 2024; 359:142368. [PMID: 38763397 DOI: 10.1016/j.chemosphere.2024.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China; College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Akash Tariq
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
7
|
Zakaria DS, Rozi SKM, Halim HNA, Mohamad S, Zheng GK. New porous amine-functionalized biochar-based desiccated coconut waste as efficient CO 2 adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16309-16327. [PMID: 38315341 DOI: 10.1007/s11356-024-32285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Climate change caused by the greenhouse gases CO2 remains a topic of global concern. To mitigate the excessive levels of anthrophonic CO2 in the atmosphere, CO2 capture methods have been developed and among these, adsorption is an especially promising method. This paper presents a series of amine functionalized biochar obtained from desiccated coconut waste (amine-biochar@DCW) for use as CO2 adsorbent. They are ethylenediamine-functionalized biochar@DCW (EDA-biochar@DCW), diethylenetriamine-functionalized biochar@DCW (DETA-biochar@DCW), triethylenetetramine-functionalized biochar@DCW (TETA-biochar@DCW), tetraethylenepentamine-functionalized biochar@DCW (TEPA-biochar@DCW), and pentaethylenehexamine-functionalized biochar@DCW (PEHA-biochar@DCW). The adsorbents were obtained through amine functionalization of biochar and they are characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The CO2 adsorption study was conducted isothermally and using a thermogravimetric analyzer. From the results of the characterization analyses, a series of amine-biochar@DCW adsorbents had larger specific surface area in the range of 16.2 m2/g-37.1 m2/g as compare to surface area of pristine DCW (1.34 m2/g). Furthermore, the results showed an increase in C and N contents as well as the appearance of NH stretching, NH bending, CN stretching, and CN bending, suggesting the presence of amine on the surface of biochar@DCW. The CO2 adsorption experiment shows that among the amine modified biochar adsorbents, TETA-biochar@DCW has the highest CO2 adsorption capacity (61.78 mg/g) when using a mass ratio (m:m) of biochar@DCW:TETA (1:2). The adsorption kinetics on the TETA-biochar@DCW was best fitted by the pseudo-second model (R2 = 0.9998), suggesting the adsorption process occurs through chemisorption. Additionally, TETA-biochar@DCW was found to have high selectivity toward CO2 gas and good reusability even after five CO2 adsorption-desorption cycles. The results demonstrate the potential of novel CO2 adsorbents based on amine functionalized on desiccated coconut waste biochar.
Collapse
Affiliation(s)
- Dina Sofiea Zakaria
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia
| | - Siti Khalijah Mahmad Rozi
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia.
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Hairul Nazirah Abdul Halim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ghee Kang Zheng
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia
| |
Collapse
|
8
|
Liu J, Xing L, Lan J, Zhou L, Ding Z, Xia J, Wang P, Cai J, Zhu J. A new strategy for enhanced electrochemically activation of persulfate on B and Co co-modified carbon felt in flow-through system for efficient organic pollutants degradation. CHEMOSPHERE 2024; 346:140534. [PMID: 37926166 DOI: 10.1016/j.chemosphere.2023.140534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Electrochemical activation of persulfate (EA-PS) is gradually attracting attention as an emerging method for wastewater treatment. In this study, a novelty flow-through EA-PS system was first attempted for pollutants degradation using boron and cobalt co-doping carbon felt (B, Co-CF) as the cathode. SEM images, XPS and XRD spectra of B, Co-CF were investigated. The optimal doping ration between B and Co was 1:2. Increasing current density, PS concentration and flow rate, decreasing initial pH accelerated the removal of AO7. The mechanism involved in EA-PS were the comprehensive effect of DET, •OH and SO4•-. B, Co-CF cathode for flow-through system was stable with five cycles efficient AO7 decay performance. EA-PS in flow-through system was an efficient method with low cost and efficient pollutants degradation. This work provides a feasible strategy for synergistically enhancing PS activation and promoting the degradation of organic pollutants.
Collapse
Affiliation(s)
- Jiahao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Liping Xing
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiaxin Lan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Ziyi Ding
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jing Xia
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jingju Cai
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
9
|
Lv X, Zhou C, Shen Z, Zhang Y, He C, Du Y, Xiong Z, Huang R, Zhou P, Lai B. Waste leather derived porous carbon boosted Fenton oxidation towards removal of diethyl phthalate: Mechanism and long-lasting performance. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132040. [PMID: 37451102 DOI: 10.1016/j.jhazmat.2023.132040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The acceleration of Fe(III)/Fe(II) conversion in Fenton systems is the critical route to achieve the long-lasting generation of reactive oxygen species towards the oxidation of refractory contaminants. Here, we found that waste leather derived porous carbon materials (LPC), as a simple and readily available metal-free biochar material, can promote the Fe(III)/H2O2 system to generate hydroxyl radicals (•OH) for oxidizing a broad spectrum of contaminants. Results of characterizations, theoretical calculations, and electrochemical tests show that the surface carbonyl groups of LPC can provide electron for direct Fe(III) reduction. More importantly, the graphitic-N on surface of LPC can enhance the reactivity of Fe(III) for accelerating H2O2 induced Fe(III) reduction. The presence of LPC accelerates the Fe(III)/Fe(II) redox cycle in the Fe(III)/H2O2 system, sustainable Fenton chain reactions is thus initiated for long-lasting generation of hydroxyl radicals without adding Fe(II). The continuous flow mode that couples in-situ Fenton-like oxidation and LPC with excellent adsorption catalytic properties, anti-coexisting substances interference and reusability performance enables efficient, green and sustainable degradation of trace organic pollutants. Therefore, the application of metal-free carbon materials in Fenton-like system can solve its rate-limiting problem, reduce the production of iron sludge, achieve green Fenton chemistry, and facilitate the actual engineering application of economic and ecological methods to efficiently remove trace organic contaminants from actual water sources.
Collapse
Affiliation(s)
- Xin Lv
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhichao Shen
- Sichuan Development Environmental Science and Technology Research Institute, Chengdu 610095, China
| | - Yuchen Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Rongfu Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Lee SH, Annamalai S, Shin WS. Engineered ball-milled colloidal activated carbon material for advanced oxidation process of ibuprofen: Influencing factors and insights into the mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121023. [PMID: 36621710 DOI: 10.1016/j.envpol.2023.121023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
This study explores a simple and efficient, physically modified ball-milled activated carbon (ACBM) preparation from granular activated carbon (GAC), which can be demonstrated for groundwater application. The colloidal stability of the ACBM plays a vital role in the activation of peroxymonosulfate (PMS) and the degradation of pollutants. Adsorption kinetics and isotherm studies explain that the ACBM has more active sites and maximum adsorption capacity (qmax = 509 mg g-1) on the surface of the materials than GAC. The 92% of ibuprofen degradation was achieved at 240 min along with 0.1 g L-1 of ACBM, 5 mM of PMS, and 6.3 of initial solution pH. A chemical scavenger and electron spin resonance spectra also confirmed the formation of reactive oxygen species such as radicals (O2•-, HO•, SO4•-) and non-radical (1O2) in the ACBM/PMS system. Three major degradation pathways, hydroxylation, demethylation, and decarboxylation involved in ibuprofen degradation. Nearly 13 degradation by-products were detected during the ACBM/PMS oxidation of ibuprofen. The toxicity analysis of oxidation by-products of ibuprofen was also discussed by computational simulation employing the ecological structure-activity relationships software. The ACBM/PMS system was successfully applied to the natural groundwater system for ibuprofen degradation. Hence, the ACBM/PMS system is an excellent catalyst for real groundwater applications.
Collapse
Affiliation(s)
- Sang Hoon Lee
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sivasankar Annamalai
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
11
|
Badiger SM, Nidheesh PV. Applications of biochar in sulfate radical-based advanced oxidation processes for the removal of pharmaceuticals and personal care products. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1329-1348. [PMID: 37001152 DOI: 10.2166/wst.2023.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, biochar (BC) has been increasingly used as a catalyst for the degradation of 'emerging pollutants' (EPs). Pharmaceuticals and personal care products (PPCPs), which come under 'EPs', can be harmful to the aquatic ecosystem despite being present in very low concentrations (ng/L-μg/L). Advanced oxidation processes (AOPs), which produce sulfate radical (SR-AOPs), show a great potential to degrade PPCPs effectively from wastewater. It is mainly due to the higher stability, long half-lives and better non-selectivity of SO4• - compared with AOPs with •OH generation. Furthermore, research focus is now given on AOPs coupled with BC-supported catalyst to enhance the degradation of PPCPs because of quicker generation of radicals (•OH, SO4•-) by the activation of persulfate (PS) and peroxymonosulfate (PMS). This article sheds light on the catalytic ability of BC after its physical and chemical modifications such as acid/alkali treatment and metal doping. The role of persistent free radicals (PFRs) in the BC for effective removal of PPCPs has been elaborated. Its potential applications in synthetic as well as real wastewater have also been discussed.
Collapse
Affiliation(s)
- Sourabh M Badiger
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Hu J, Yi Q, Xiao Z, Tian F, Shu T, Liu X, Wang Y, Li L, Zhou J. Synthesis of bimetal MOFs for rapid removal of doxorubicin in water by advanced oxidation method. RSC Adv 2022; 12:35666-35675. [PMID: 36545067 PMCID: PMC9748979 DOI: 10.1039/d2ra06623h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin (DOX) has been an emerging environmental pollutant due to its significant genotoxicity to mankind. Advanced oxidation processes are a potential strategy to remove DOX in water solution. To develop a highly efficient catalytic agent to remove DOX, bimetal MOFs were synthesized, with Cu2+ and Co2+ as the central ions and adenine as the organic ligand. This study investigated the degradation of DOX by Co/Cu-MOFs combined with peroxymonosulfate (PMS). It was found that the degradation of DOX by Co/Cu-MOFs can reach 80% in only 10 seconds. This can be explained by the charge transfer from Co(iii) to Co(ii) being accelerated by Cu2+, resulting in the rapid generation of free radicals, which was proved by the EIS Nyquist diagram. Co/Cu-MOFs can be reused by simply washing with water without inactivation. Therefore, Co/Cu-MOFs can be used as an efficient catalytic agent to degrade DOX in environmental water.
Collapse
Affiliation(s)
- Junhao Hu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University430062China
| | - Qiong Yi
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University430062China
| | - Ziyi Xiao
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University430062China
| | - Feng Tian
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University430062China
| | - Tingting Shu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University430062China
| | - Xiaolan Liu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University430062China
| | - Yingxi Wang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University430062China
| | - Ling Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University430062China
| | - Jiangang Zhou
- Faculty of Resources and Environmental Science, Hubei University430062China
| |
Collapse
|
13
|
Zhang M, Huang K, Ding Y, Wang X, Gao Y, Li P, Zhou Y, Guo Z, Zhang Y, Wu D. N, S Co-Doped Carbons Derived from Enteromorpha prolifera by a Molten Salt Approach: Antibiotics Removal Performance and Techno-Economic Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234289. [PMID: 36500911 PMCID: PMC9737878 DOI: 10.3390/nano12234289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/12/2023]
Abstract
N, S co-doped bio-carbons with a hierarchical porous structure and high surface area were prepared using a molten salt method and by adopting Entermorpha prolifera (EP) as a precursor. The structure and composition of the bio-carbons could be manipulated by the salt types adopted in the molten salt assisted pyrolysis. When the carbons were used as an activating agent for peroxydisulfate (PDS) in SMX degradation in the advanced oxidation process (AOP), the removal performance in the case of KCl derived bio-carbon (EPB-K) was significantly enhanced compared with that derived from NaCl (EPB-Na). In addition, the optimized EPB-K also demonstrated a high removal rate of 99.6% in the system that used local running water in the background, which proved its excellent application potential in real water treatment. The degradation mechanism study indicated that the N, S doping sites could enhance the surface affinity with the PDS, which could then facilitate 1O2 generation and the oxidation of the SMX. Moreover, a detailed techno-economic assessment suggested that the price of the salt reaction medium was of great significance as it influenced the cost of the bio-carbons. In addition, although the cost of EPB-K was higher (USD 2.34 kg-1) compared with that of EPB-Na (USD 1.72 kg-1), it was still economically competitive with the commercial active carbons for AOP water treatment.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Business, Henan Normal University, Xinxiang 453007, China
| | - Kexin Huang
- Key Laboratory of Green Chemistry Medias and Reactions, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yi Ding
- School of Business, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Wang
- Key Laboratory of Green Chemistry Medias and Reactions, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yingli Gao
- School of Business, Henan Normal University, Xinxiang 453007, China
| | - Pengfei Li
- School of Business, Henan Normal University, Xinxiang 453007, China
| | - Yi Zhou
- Key Laboratory of Green Chemistry Medias and Reactions, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zheng Guo
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Yi Zhang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Dapeng Wu
- Key Laboratory of Green Chemistry Medias and Reactions, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
14
|
Yang X, Ji Z, Wang K, Pei Y. Synergistic effect of novel Co-modified micro/nano geopolymers in a photo-PDS system. CHEMOSPHERE 2022; 308:136211. [PMID: 36037946 DOI: 10.1016/j.chemosphere.2022.136211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Persulfate activation is an efficient advanced oxidation process for water treatment. However, many catalyst materials make their preparation methods and raw materials very complicated and expensive while pursuing high-efficiency catalytic effects. In this research, a novel Co-modified micro/nano geopolymer (Co-MNG) material was prepared from solid waste using a mechanochemical method. The whole preparation process of Co-MNG is simple and time-saving, and most of its raw materials are solid waste. In addition, it has few adverse effects on the environment during preparation and use and has a good effect on PDS activation. Under dark conditions, 1 mg L-1 of unloaded Co metal MNG material could degrade 20 mg L-1 Rhodamine B solution by 79% in 60 min with 15 mM PDS, but the application of visible light could not enhance its effect. However, after adding 4 wt% of different Co-containing compounds, the prepared Co-MNG materials could improve their degradation effect under the same conditions, and it is more obvious under the condition of applying visible light. Among them, MNG-Co(NO3)2 could completely degrade RhB within 40 min under the application of visible light. ESR (electron spin resonance) tests showed that the MNG-Co(NO3)2 material could generate a variety of active radicals in a photo-PDS system, such as h+, ·OH, ·O2- and SO4-. Mechanistic research experiments showed that both visible light and Co-MNG materials can activate PDS to a certain extent, but when both exist at the same time, the material could effectively couple visible light and Co activation of PDS in a photo-PDS activation system to achieve synergistic degradation of pollutants in water.
Collapse
Affiliation(s)
- Xiaohuan Yang
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Zehua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kemeng Wang
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
15
|
Wang Q, Xiao P. Self-synthesized heterogeneous CuFe2O4-MoS2@BC composite as an activator of peroxymonosulfate for the oxidative degradation of tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Li X, Fan S, Jin C, Gao M, Zhao Y, Guo L, Ji J, She Z. Electrochemical degradation of tetracycline hydrochloride in sulfate solutions on boron-doped diamond electrode: The accumulation and transformation of persulfate. CHEMOSPHERE 2022; 305:135448. [PMID: 35764112 DOI: 10.1016/j.chemosphere.2022.135448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel electrifying mode (divided power-on and power-off stage) was applied in the system of BDD activate sulfate to degrade tetracycline hydrochloride (TCH). The BDD electrode could activate sulfate and H2O to generate sulfate radicals (SO4•-) and hydroxyl radicals (•OH) to remove TCH, and SO4•- could dimerize to form S2O82-. Then, the S2O82- was activated by heat and quinones to generate SO4•- for the continuous degradation of TCH during the power-off stage. In addition, the intermittent time has a significant effect on the degradation of TCH. Factors, affecting the accumulation of S2O82-, were analyzed using a full factorial design, and the accumulation of S2O82- could reach 16.2 mM in 120 min. The results of electron spin resonance and radical quenching test showed that SO4•-, •OH, direct electron transfer (DET), and non-radical in the system could effectively degrade TCH, and SO4•- was dominated. The intermediate products of TCH were analyzed by HPLC-QTOF-MS/MS, and the TCH mainly underwent hydroxylation, demethylation and ring opening reactions to form small molecules, and finally mineralized. The results of the feasibility analysis revealed that some intermediates have high toxicity, but the system could improve the toxicity. The results of energy consumption indicated that the intermittent electrifying mode could make full use of the persulfate generated during the power-on stage and reduce about 30% energy consumption. In conclusion, this work demonstrated that it was economically feasible to degrade TCH in wastewater by activating sulfate with BDD electrodes with an intermittent electrifying mode.
Collapse
Affiliation(s)
- Xiaobao Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shasha Fan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
17
|
Zhou X, Chen X, Han W, Han Y, Guo M, Peng Z, Fan Z, Shi Y, Wan S. Tetracycline Removal by Hercynite-Biochar from the Co-Pyrolysis of Red Mud-Steel Slag-Sludge. NANOMATERIALS 2022; 12:nano12152595. [PMID: 35957024 PMCID: PMC9370334 DOI: 10.3390/nano12152595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/10/2022]
Abstract
The sludge-derived biochar is considered an effective emerging contaminants adsorbent for wastewater treatment. In this paper, red mud and steel slag (RMSS) was used for improving sludge dewaterability and enhancing the sludge-derived biochar adsorption capacity. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and a scanning electron microscope (SEM) were employed to comprehensively characterize the mineral composition, functional group, and morphology of the adsorbent. RMSS was able to improve the sludge dewatering performance by providing a skeleton structure to promote drainage and Fe(III) to decrease the Zeta potential. The dosage of 20 mg/g RMSS was able to reduce the specific resistance to filtration (SRF) and the Zeta potential of sludge from 1.57 × 1013 m/kg and −19.56 mV to 0.79 × 1013 m/kg and −9.10 mV, respectively. The co-pyrolysis of RMSS and sludge (2:8) induced the formation of biochar containing FeAl2O4 (PS80). The PS80 exhibited a large surface area (46.40 m2/g) and high tetracycline (TC) removal capacity (98.87 mg/g) when combined with H2O2 (PS80-H2O2). The adsorption process of TC onto PS80 and PS80-H2O2 was well described by the pseudo-first-order and pseudo-second-order kinetic model, indicating physisorption and chemisorption behavior. The results indicated that co-pyrolysis of RMSS sludge PS80-H2O2 could enhance the biochar adsorption capacity of TC, attributable to the degradation by ·OH generated by the heterogeneous Fenton reaction of FeAl2O4 and H2O2, the release of adsorbed sites, and the improvement of the biochar pore structure. This study proposed a novel method for the use of RMSS to dewater sludge as well as to induce the formation of FeAl2O4 in biochar with effective TC removal by providing a Fe and Al source, achieving a waste-to-resource strategy for the integrated management of industrial solid waste and sewage sludge.
Collapse
Affiliation(s)
- Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Wei Han
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Yi Han
- College of Resources and Environment, Anqing Normal University, Anqing 246011, China;
- Correspondence:
| | - Mengxin Guo
- College of Resources and Environment, Anqing Normal University, Anqing 246011, China;
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Yan Shi
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Sha Wan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| |
Collapse
|
18
|
Wang Y, Chang F, Wei Z, Yang C, Liu DG, Yan T, Pang Q, Chen S. Photocatalytic NO removal by WO 3 samples prepared via a ball milling treatment under different parameters. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yuqing Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Fei Chang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Zhixun Wei
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Cheng Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Deng-guo Liu
- Shanghai Environmental Monitoring Center, Shanghai, P.R. China
| | - Tianyi Yan
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Qingyun Pang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Shengwen Chen
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai, P.R. China
| |
Collapse
|
19
|
Xu C, Yang G, Li J, Zhang S, Fang Y, Peng F, Zhang S, Qiu R. Efficient purification of tetracycline wastewater by activated persulfate with heterogeneous Co-V bimetallic oxides. J Colloid Interface Sci 2022; 619:188-197. [PMID: 35395537 DOI: 10.1016/j.jcis.2022.03.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/26/2022]
Abstract
The persistence and wide dispersion of antibiotics have a severe impact on the ecological environment. Developing an effective method with universal applicability to remove pollutants is pretty necessary. Herein, a bimetallic oxides (Co3V2O8) heterogeneous material was successfully prepared and used to activate the persulfate (PS) for purification of tetracycline (TC) wastewater. By exploring the reaction conditions and influencing factors, the removal rate of 50 mg⋅L-1 TC reached 87.1% by Co3V2O8/PS system, and the reaction rate constant was up to 0.0271 min-1. As a highly efficient catalyst for the activation of PS, Co3V2O8/PS system produces radicals of SO4•-, •OH, •O2- and 1O2 in the reaction process due to the Co(II) and V(IV) exchange electrons with S2O82- and O2. Simultaneously, the internal electron exchange occurs between Co(II)/Co(III) and V(IV)/V(V), which stabilizes the content of Co(II) and V(IV). This work provides a novel activator for PS activation to degrade contaminants and contributes to a better understanding of the PS activation mechanism by transition compound.
Collapse
Affiliation(s)
- Chuanyi Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guanrong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shanqing Zhang
- Centre for Clean Environment and Energy and School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shengsen Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
20
|
Luo X, You Y, Zhong M, Zhao L, Liu Y, Qiu R, Huang Z. Green synthesis of manganese-cobalt-tungsten composite oxides for degradation of doxycycline via efficient activation of peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127803. [PMID: 34862104 DOI: 10.1016/j.jhazmat.2021.127803] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The advanced oxidation process of peroxymonosulfate activated by solid catalyst is one of the main technologies to solve the pollution of antibiotics in water environment.In this work, a series of composites (MCW) containing Mn, Co, and W were synthesized using green ball milling, which does not produce the three wastes (waste gas, waste water and industrial residue). It shows a unique and high catalytic activity for peroxymonosulfate-based degradation of doxycycline (DC) under the pH condition between 4 and 9, and it can be reused five times. MCW composites remove DC using singlet oxygen and superoxide free radicals, as well as a large number of oxygen vacancies for electron storage. The formation rate of free radicals is determined by the conversion rates of Mn3+/Mn2+ and Co3+/Co2+. In addition, there are three ways to degrade DC to form 18 kinds of intermediates, and the toxicity of all the intermediates were predicted by ECOSAR program. The highly active catalysts obtained using a green synthetic route for the activation of peroxymonosulfate show a great potential for decontamination of antibiotics wastewater.
Collapse
Affiliation(s)
- Xuewen Luo
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou 510642, China
| | - Yujie You
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou 510642, China
| | - Mingjun Zhong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou 510642, China
| | - Lin Zhao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou 510642, China
| | - Yingying Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou 510642, China
| | - Zhujian Huang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou 510642, China.
| |
Collapse
|