1
|
Liu L, Liu S, Meng Q, Chen B, Zhang J, Zhang X, Lin Z, Zou Z. Evaluating Beauveria bassiana Strains for Insect Pest Control and Endophytic Colonization in Wheat. INSECTS 2025; 16:287. [PMID: 40266821 PMCID: PMC11943200 DOI: 10.3390/insects16030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Certain entomopathogenic fungi, such as Beauveria bassiana, are highly pathogenic to arthropod pests and are able to colonize plant tissues, thereby enhancing both plant growth and disease resistance. This study assessed three B. bassiana strains (CBM1, CBM2, and CBM3) for their pathogenicity toward insect larvae and colonization potential in wheat. The insecticidal activity of the fungi against the larvae of the major lepidopteran pests Helicoverpa armigera, Spodoptera frugiperda, Mythimna separata, and Plutella xylostella was determined. The fungi were then applied to wheat plants using seed immersion and soil drench methods; their colonization rates were compared, and the impacts of fungal colonization on wheat growth and survival were evaluated. The results demonstrated that all three strains were effective in reducing insect damage, with B. bassiana CBM1 exhibiting the highest pathogenicity followed by CBM3 and CBM2. B. bassiana CBM1 was particularly effective, with a significantly higher colonization rate achieved through soil drenching compared to seed immersion. The soil inoculation of B. bassiana resulted in increased plant height at 30 days after sowing (DAS) and root length at 15 DAS compared to the control group. B. bassiana CBM1-colonized wheat increased the mortality of fall armyworm. This research has enriched the biological control microbial resource pool and highlights the potential of B. bassiana in integrated pest management strategies.
Collapse
Affiliation(s)
- Lulu Liu
- Institutes of Life Science and Green Development, School of Life Science, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiming Liu
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Forestry College, Beihua University, Jilin 132013, China
- Institute of Forestry Engineering, Guangxi Eco-Engineering Vocational and Technical College, Liuzhou 545004, China
| | - Qingfan Meng
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Forestry College, Beihua University, Jilin 132013, China
| | - Bing Chen
- Institutes of Life Science and Green Development, School of Life Science, Hebei University, Baoding 071002, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Xue Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Zhou Y, Lin Z, Han Y, Gan L, Cheng Y, Chen Z. Unveiling a novel mechanism: Reduction of graphene oxide by Lysinibacillus sp. through secretion of l-ascorbic acid. CHEMOSPHERE 2024; 369:143813. [PMID: 39603357 DOI: 10.1016/j.chemosphere.2024.143813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
The graphene oxide (GO) reduction by microorganisms has garnered considerable interest, yet the specific mechanisms underlying the bacteria secretion of reducing substances for GO reduction remain unclear. This study aims to learn that bacterial extracellular components can reduce graphene oxide through direct (contacting GO) and indirect (not contacting GO) reduction experiments. The subsequent investigation focused on identifying the specific substances secreted by bacteria capable of GO reduction. The results of non-targeted metabolomics revealed differential expression of cacid (L-AA) demonstrates a significant up-regulation. The further experiment involved the supplementation of L-AA in the reduction system of Lysinibacillus sp. with GO, demonstrating enhanced reduction efficacy, with the ID/IG ratio of reduced graphene oxide (rGO) increasing to 1.073 after 4 d of reduction with 0.5 g L-1 L-AA. Therefore, the mediation of GO reduction by L-AA secreted by Lysinibacillus sp. is proposed as a viable mechanism, offering novel insights into microbial GO reduction.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Ziyi Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Yonghe Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Li Gan
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| | - Ying Cheng
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
3
|
Gao Y, Wang X, Fan C. Advances in graphene-based 2D materials for tendon, nerve, bone/cartilage regeneration and biomedicine. iScience 2024; 27:110214. [PMID: 39040049 PMCID: PMC11261022 DOI: 10.1016/j.isci.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Two-dimensional (2D) materials, especially graphene-based materials, have important implications for tissue regeneration and biomedicine due to their large surface area, transport properties, ease of functionalization, biocompatibility, and adsorption capacity. Despite remarkable progress in the field of tissue regeneration and biomedicine, there are still problems such as unclear long-term stability, lack of in vivo experimental data, and detection accuracy. This paper reviews recent applications of graphene-based materials in tissue regeneration and biomedicine and discusses current issues and prospects for the development of graphene-based materials with respect to promoting the regeneration of tendons, neuronal cells, bone, chondrocytes, blood vessels, and skin, as well as applications in sensing, detection, anti-microbial activity, and targeted drug delivery.
Collapse
Affiliation(s)
- Yuxin Gao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Orthopaedics, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Orthopaedics, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
4
|
Buitrago Sanchez SN, Salla JDS, Cesconeto LP, Rocha GLD, Virmond E, Moreira RDFPM. Synthesis of multi-layer graphene oxide from HCl-treated coke and Brazilian coals by sulfuric acid thermal exfoliation and ozone oxidation. Heliyon 2024; 10:e30546. [PMID: 38726133 PMCID: PMC11079322 DOI: 10.1016/j.heliyon.2024.e30546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
This study involved the synthesis and characterization of graphene oxide (GO) from mineral coke and bituminous coal. HCl treated and non-HCl treated ultrafine powder obtained from both precursors were treated with H2SO4, followed by thermal treatment, and oxidation with ozone and ultra-sonication for GO production. The synthesized materials were characterized using Fourier transform infrared spectroscopy (FTIR), zeta potential (ZP), particle size distribution (PSD), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results confirmed the exfoliation of the material primarily at the edges of its structure and the formation of multilayer graphene oxide (GO) from mineral coke and bituminous coal. Furthermore, it was found that carbonaceous materials with graphitic morphology are easier to exfoliate and oxidize, leading to the production of higher quality graphene oxide. Therefore, the GO synthesized from mineral coke exhibited the best quality in this study. The methodology used proposes an innovative approach, offering a faster, more economical, and environmentally friendly synthesis compared to the traditional Hummers' method, thereby adding value to other raw materials that can be utilized in this process, such as Brazilian coke and coal.
Collapse
Affiliation(s)
- Sergio Nicolas Buitrago Sanchez
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Julia da Silveira Salla
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Laura Piacentini Cesconeto
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Gabriel Lincoln da Rocha
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Elaine Virmond
- Department of Energy and Sustainability, Federal University of Santa Catarina, Campus Universitário – Araranguá, 88905-120, Araranguá, SC, Brazil
| | - Regina de Fatima Peralta Muniz Moreira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
5
|
Sengupta J, Hussain CM. Point-of-care devices engaging green graphene: an eco-conscious and sustainable paradigm. NANOSCALE 2024; 16:6900-6914. [PMID: 38511341 DOI: 10.1039/d3nr06367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The healthcare landscape has experienced a profound and irreversible transformation, primarily driven by the emergence of nanomaterial-assisted point-of-care (POC) devices. The inclusion of nanomaterials in POC devices has revolutionized healthcare by enabling rapid, on-site diagnostics with minimal infrastructure requirements. Among the materials poised to lead this technological revolution, green graphene emerges as a compelling contender. It possesses a unique combination of exceptional material properties and environmentally conscious attributes. These attributes include its substantial surface area, unparalleled electrical conductivity, and inherent biocompatibility. This article embarks on an exploration of POC devices incorporating green graphene. It meticulously dissects the intricacies of their design, performance characteristics, and diverse applications. Throughout the exposition, the transformative impact of green graphene on the advancement of POC diagnostics takes centre stage. It underscores the material's potential to drive sustainable and effective healthcare solutions, marking a significant milestone in the evolution of healthcare technology.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata-700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, New Jersey, USA.
| |
Collapse
|
6
|
Islam AN, Saha P, Hossain ME, Habib MA, Karim KMR, Mahiuddin M. Green Coffee Bean Extract Assisted Facile Synthesis of Reduced Graphene Oxide and Its Dye Removal Activity. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300247. [PMID: 38223893 PMCID: PMC10784199 DOI: 10.1002/gch2.202300247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/20/2023] [Indexed: 01/16/2024]
Abstract
To discharge the colored effluents from industries there needs to be effective and affordable treatment options. Adsorption using reduced graphene oxide (rGO) as an adsorbent is a prominent one. In this study, green coffee bean extract (GCBE) is utilized as a safe reducing agent for the reduction of graphene oxide (GO) to synthesize rGO. The formation of rGO is confirmed by a new peak in the UV-vis spectra at 275 nm and a diffraction peak in the XRD patterns at 22°. The effective formation of rGO is further substantiated by a change in the GO peak's properties in the FTIR, EDX, and Raman spectra and a weight loss change in TGA. The SEM and TEM analyses demonstrate the effective production of the nano-sheets of rGO having exfoliated and segregated in a few layers. Furthermore, the obtained rGO exhibited outstanding efficacy in wastewater cleanup, effectively adsorbing MB as a prototype organic dye. The kinetics and isotherm study suggested that the adsorption leads by the chemisorption and monolayer formation on the homogeneous surface of rGO. The maximum adsorption capacity is found to be 89.3 mg g-1. This process offers a fresh opportunity for the economical and safe production of rGO for wastewater treatment.
Collapse
Affiliation(s)
| | - Prianka Saha
- Chemistry DisciplineKhulna UniversityKhulna9208Bangladesh
| | | | | | | | - Md. Mahiuddin
- Chemistry DisciplineKhulna UniversityKhulna9208Bangladesh
| |
Collapse
|
7
|
Obayomi KS, Lau SY, Danquah MK, Zhang J, Chiong T, Takeo M, Jeevanandam J. Novel Concepts for Graphene-Based Nanomaterials Synthesis for Phenol Removal from Palm Oil Mill Effluent (POME). MATERIALS (BASEL, SWITZERLAND) 2023; 16:4379. [PMID: 37374562 DOI: 10.3390/ma16124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
In recent years, the global population has increased significantly, resulting in elevated levels of pollution in waterways. Organic pollutants are a major source of water pollution in various parts of the world, with phenolic compounds being the most common hazardous pollutant. These compounds are released from industrial effluents, such as palm oil milling effluent (POME), and cause several environmental issues. Adsorption is known to be an efficient method for mitigating water contaminants, with the ability to eliminate phenolic contaminants even at low concentrations. Carbon-based materials have been reported to be effective composite adsorbents for phenol removal due to their excellent surface features and impressive sorption capability. However, the development of novel sorbents with higher specific sorption capabilities and faster contaminant removal rates is necessary. Graphene possesses exceptionally attractive chemical, thermal, mechanical, and optical properties, including higher chemical stability, thermal conductivity, current density, optical transmittance, and surface area. The unique features of graphene and its derivatives have gained significant attention in the application of sorbents for water decontamination. Recently, the emergence of graphene-based adsorbents with large surface areas and active surfaces has been proposed as a potential alternative to conventional sorbents. The aim of this article is to discuss novel synthesis approaches for producing graphene-based nanomaterials for the adsorptive uptake of organic pollutants from water, with a special focus on phenols associated with POME. Furthermore, this article explores adsorptive properties, experimental parameters for nanomaterial synthesis, isotherms and kinetic models, mechanisms of nanomaterial formation, and the ability of graphene-based materials as adsorbents of specific contaminants.
Collapse
Affiliation(s)
- Kehinde Shola Obayomi
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Tung Chiong
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan
| | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
8
|
Deb M, Redkar N, Manohar CS, Jagtap AS, Saxena S, Shukla S. Bacillussp. based nano-bio hybrids for efficient water remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121490. [PMID: 36965681 DOI: 10.1016/j.envpol.2023.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Macroalgae are a diverse group of primary producers that offer indispensable ecosystem services towards bacterial colonization and proliferation in aquatic biomes. Macroalgae/bacteria interactions are complex in natural biomes and contribute mutually to their growth and biotechnological outcomes. Most findings on macroalgae-associated bacteria and their secreted enzymes have largely been limited to nutraceutical applications. Here, in this study, we demonstrate and investigate the growth of Bacillus sp. (macroalgae-associated bacteria) with the substitution of its associated macroalgae (Gracilaria corticata) on graphene oxide (GO). The findings indicated that the presence of wrinkles of GO nanosheets resulted in cell proliferation and adherence without causing mechanical damage to the cell membrane. Furthermore, the assembly of GO-marine bacteria was explored for organic pollutant treatment using methylene blue (MB) as a model dye. The degradation results suggest the breakdown of MB into non-toxic byproducts as suggested by the phytotoxicity assay.
Collapse
Affiliation(s)
- Madhurima Deb
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Neha Redkar
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Cathrine Sumathi Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Ashok Shivaji Jagtap
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Sumit Saxena
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India; Water Innovation Centre: Technology, Research & Education (WICTRE), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobha Shukla
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India; Water Innovation Centre: Technology, Research & Education (WICTRE), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
9
|
Vu Ho XA, Dao MU, Le TH, Chuong Nguyen TH, Nguyen Dinh MT, Nguyen QM, Tran TM, Huyen Nguyen TT, Ho TT, Nguyen HP, Nguyen CC. Development of Electro-Reduced AgNPs/MnO 2/rGO Composite toward a Robust Sensor for the Simultaneous Determination of Piroxicam and Ofloxacin. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Xuan Anh Vu Ho
- Hue University of Sciences, Hue University, Thua Thien Hue, Hue 530000, Vietnam
| | - My Uyen Dao
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Danang 550000, Vietnam
| | - Trung Hieu Le
- Hue University of Sciences, Hue University, Thua Thien Hue, Hue 530000, Vietnam
| | - Thi Hong Chuong Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Danang 550000, Vietnam
| | - Minh Tuan Nguyen Dinh
- The University of Da Nang, University of Science and Technology, 54, Nguyen Luong Bang, Danang City 550000, Viet Nam
| | - Quang Man Nguyen
- University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Thanh Minh Tran
- Hue University of Sciences, Hue University, Thua Thien Hue, Hue 530000, Vietnam
| | - Thi Thanh Huyen Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Danang 550000, Vietnam
| | - Thanh-Tam Ho
- Faculty of Natural Sciences, Duy Tan University, Danang 550000, Vietnam
- Institute for Global Health Innovations, Duy Tan University, Danang 550000, Vietnam
| | - Hai Phong Nguyen
- Hue University of Sciences, Hue University, Thua Thien Hue, Hue 530000, Vietnam
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Danang 550000, Vietnam
| |
Collapse
|
10
|
Yan Q, Lin X, Chen Z, Chen Z. Biosynthesis of bionanomaterials using Bacillus cereus for the recovery of rare earth elements from mine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117098. [PMID: 36563444 DOI: 10.1016/j.jenvman.2022.117098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The growing demand for rare earth elements (REEs) increasingly requires secondary resources such as mine wastewater containing high concentrations of REEs, to be used as a source of REEs. The current challenge is how to efficiently recover REEs from this feed source. In this paper, a functional bionanomaterial (FeNPs-EPS) was biosynthesized using Bacillus cereus as a possible means of recovering REEs. This composite was composed of both synthesized iron nanoparticles (FeNPs) and extracellular polymeric substances (EPS). Synthesis of the FeNPs-EPS composite via a one-step biosynthesis was confirmed by materials characterization. The peak in the material's UV-Vis spectra at 511 nm demonstrates the formation of FeNPs-EPS, where 3D-EEM showed that FeNPs-EPS was wrapped predominantly with tryptophan protein-like and humic acid-like substances. In addition, while FTIR indicated that the functional groups present in EPS where virtually identical to those observed in FeNPs-EPS, XPS demonstrated that Fe and O were the major elemental present as both FeO and Fe2O3. Zeta potential measurements indicated that FeNPs-EPS had good stability under different pH conditions, where BET analysis supported multilayer adsorption. Finally, on exposure to high concentrations of Eu(III) and Tb(III) in mine wastewater, the synthesized FeNPs-EPS demonstrated strong potential to remove two cations from the wastewater and hence a potentially practical way to efficiently recover REEs from such waste streams.
Collapse
Affiliation(s)
- Qiuting Yan
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Xiaoyu Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Zhibiao Chen
- School of Geography, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
11
|
Naemi S, Meshkini A. Phytosynthesis of graphene oxide encapsulated selenium nanoparticles using Crocus Sativus petals’ extract and evaluation of their bioactivity. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
12
|
Zhang Q, Xue C, Owens G, Chen Z. Preparation of bionanomaterial based on green reduced graphene immobilized Ochrobactrum sp. FJ1: optimization, characterization and its application. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Zhou Y, Xue C, Gan L, Owens G, Chen Z. Simultaneous removal of triclosan and Cd(Ⅱ) by bio-reduced graphene oxide and its mechanism. CHEMOSPHERE 2023; 311:137021. [PMID: 36326514 DOI: 10.1016/j.chemosphere.2022.137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The co-existence of contaminants such as triclosan (TCS) and Cadmium in wastewater is a major public health problem because of their persistence and toxicity. In this study, bio-reduced graphene oxide (B-rGO) synthesized by Lysinibacillus sp. Simultaneously remove TCS and Cd(II), with adsorption capacities of 81.91 and 23.32 mg g-1, for TCS and Cd (Ⅱ), respectively. This was significantly higher than that previously reported for commercially available reduced graphene oxide (C-rGO), which was only 31.94 and 2.01 mg g-1, for TCS and Cd (Ⅱ), respectively. Fourier transform infrared spectroscopy (FTIR) showed that rGO surface-bound extracellular polymeric substances (EPS) played a key role in the observed enhanced contaminant removal, which was verified by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). In addition, the absorption of both Cd(II) and TCS on B-rGO was confirmed by XPS and high-performance liquid chromatography (HPLC-UV). The adsorption kinetics of both TCS and Cd(II) fitted well to the pseudo-second-order model, while the adsorption isotherms of Cd(II) followed the Langmuir model, and triclosan the Freundlich model. A mechanism of simultaneous removal of TCS was proposed based on π-π interactions and hydrogen bonding, while Cd(II) was removed by a combination of electrostatic and chelation/complexation. Finally, the adsorption of TCS and Cd(II) by B-rGO in real wastewater was shown to be 76.67 and 16.53 mg g-1, respectively, demonstrating that B-rGO has the potential for practical simultaneous removal of TCS and Cd(II) from wastewater.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Fujian Key Laboratory of Pollution Control and Resource Reuse; School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Chao Xue
- Fujian Key Laboratory of Pollution Control and Resource Reuse; School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Li Gan
- Fujian Key Laboratory of Pollution Control and Resource Reuse; School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse; School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
14
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
15
|
Sengupta J, Hussain CM. Prospective pathways of green graphene-based lab-on-chip devices: the pursuit toward sustainability. Mikrochim Acta 2022; 189:177. [PMID: 35381890 PMCID: PMC8982660 DOI: 10.1007/s00604-022-05286-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
At present, analytical lab-on-chip devices find their usage in different facets of chemical analysis, biological analysis, point of care analysis, biosensors, etc. In addition, graphene has already established itself as an essential component of advanced lab-on-chip devices. Graphene-based lab-on-chip devices have achieved appreciable admiration because of their peerless performance in comparison to others. However, to accomplish a sustainable future, a device must undergo “green screening” to check its environmental compatibility. Thus, extensive research is carried out globally to make the graphene-based lab-on-chip green, though it is yet to be achieved. Nevertheless, as a ray of hope, there are few existing strategies that can be stitched together for feasible fabrication of environment-friendly green graphene-based analytical lab-on-chip, and those prospective pathways are reviewed in this paper.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata - 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
16
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
17
|
Barra A, Nunes C, Ruiz-Hitzky E, Ferreira P. Green Carbon Nanostructures for Functional Composite Materials. Int J Mol Sci 2022; 23:ijms23031848. [PMID: 35163770 PMCID: PMC8836917 DOI: 10.3390/ijms23031848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Carbon nanostructures are widely used as fillers to tailor the mechanical, thermal, barrier, and electrical properties of polymeric matrices employed for a wide range of applications. Reduced graphene oxide (rGO), a carbon nanostructure from the graphene derivatives family, has been incorporated in composite materials due to its remarkable electrical conductivity, mechanical strength capacity, and low cost. Graphene oxide (GO) is typically synthesized by the improved Hummers’ method and then chemically reduced to obtain rGO. However, the chemical reduction commonly uses toxic reducing agents, such as hydrazine, being environmentally unfriendly and limiting the final application of composites. Therefore, green chemical reducing agents and synthesis methods of carbon nanostructures should be employed. This paper reviews the state of the art regarding the green chemical reduction of graphene oxide reported in the last 3 years. Moreover, alternative graphitic nanostructures, such as carbons derived from biomass and carbon nanostructures supported on clays, are pointed as eco-friendly and sustainable carbonaceous additives to engineering polymer properties in composites. Finally, the application of these carbon nanostructures in polymer composites is briefly overviewed.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Cláudia Nunes
- Department of Materials and Ceramic Engineering, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: (C.N.); (P.F.); Tel.: +351-234-370200 (P.F.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: (C.N.); (P.F.); Tel.: +351-234-370200 (P.F.)
| |
Collapse
|
18
|
Luo S, Kan X. A nanozyme-catalysis-based ratiometric electrochemical sensor for general detection of Cd 2+. Analyst 2022; 147:5437-5444. [DOI: 10.1039/d2an01480g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AuPt–rGO showed good peroxidase-like activity for the oxidation of OPD to DAP (a novel internal reference) and achieved sensitive and reliable detection of Cd2+ based on a ratiometric strategy.
Collapse
Affiliation(s)
- Shan Luo
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| |
Collapse
|