1
|
Lu H, Zhang L, Jiang J, Song J, Zhou Z, Wu W, Cheng Z, Yan T, Hu H, Zhao T, Xu Z, Luo S, Li H, Zhang J, Lawrie CH. Pressure Induced Molecular-Arrangement and Charge-Density Perturbance in Doped Polymer for Intelligent Motion and Vocal Recognitions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500077. [PMID: 40200687 DOI: 10.1002/adma.202500077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Conjugated polymers (CPs) show great potential for pressure detection due to the amorphous polymer packing, but a lack of clarity regarding sensing mechanisms hampers the development of further applications. Herein, a sacrificial template-full solution method with both rough surface and high conductivity is described that can be applied to sandwich-structured resistive pressure sensors. Transient absorption measurements demonstrate the significant increase of carrier lifetime (from 1.44 to 2.54 ns) induced by pressure, which directly evidenced the superior sensing mechanism of sidechain doped conjugated polymer. This sensor displayed low-pressure detection limit of 0.7 Pa as well as a rapid response time of 18.8 ms, enabling multi-mode motion analysis including wrist pulse, swallowing, finger bending, grabbing, and typing. Additionally, an intelligent vocal recognition system with convolutional neural networks is used which can achieve >96% classification accuracy across diverse vocal profiles. This general approach is anticipated and enables a new direction for the development of pressure sensors.
Collapse
Affiliation(s)
- Huimin Lu
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, China
| | - Lei Zhang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, China
| | - Jingyan Jiang
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jian Song
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, China
| | - Zhongchao Zhou
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, China
| | - Wujian Wu
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ziqian Cheng
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, China
| | - Tengfei Yan
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Hong Hu
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, China
| | - Tingting Zhao
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Zhen Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, China
| | - Siyi Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hui Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jianhua Zhang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Charles H Lawrie
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, China
- Biogipuzkoa Health Research Institute, San Sebastian, 20014, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
2
|
Zhu H, Dong D, Wei Y, Lu H, Zhong Y, Wei M, Lai X, Li H, Zeng X. Self-Healing, Degradable, and Biobased Polyurethane Elastomer for High-Performance Piezoresistive Pressure Sensors with a Hump-like Microstructure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5603-5613. [PMID: 39971615 DOI: 10.1021/acs.langmuir.4c05344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Flexible sensors are widely applied in the fields of electronic skins and wearable devices, yet it is still a big challenge to effectively prolong the lifespan of the damaged sensors and reduce environmental pollution caused by discarded sensors after updating and upgrading. Herein, we proposed a self-healing, degradable, and biobased polyurethane elastomer for high-performance flexible pressure sensors. The elastomer synthesized using fatty diamine as a chain extender possessed a high tensile strength of 13.25 MPa and an elongation at break of 830%, and the self-healing efficiency reached up to 109.2%. Additionally, the elastomer could be fully degraded within 7 days in a 1 mol L-1 NaOH solution with the assistance of ethanol. The elastomer-based pressure sensor with a hump-like microstructure was fabricated with reduced graphene oxide as the conductive material via a simple template method. The sensor showed a high sensitivity of 9.448 kPa-1, a large sensing range of 0-300 kPa, a short response/recovery time of 40/80 ms, and a good sensing stability of 14,000 cycles. Moreover, the sensor was utilized to monitor different human motions, including muscle contraction, joint bending, swallowing, voice recognition, and pulse beat. Importantly, even after being severely damaged, the sensor was able to recover its function in detecting human motions. The findings of this research provide a strategy for the sustainable development of environmentally friendly and functional elastomers and flexible sensors.
Collapse
Affiliation(s)
- Hongtao Zhu
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Die Dong
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Ye Wei
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Han Lu
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Yunchang Zhong
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Ming Wei
- Guangzhou ULink International School, Guangzhou 511458, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Wang Y, Zhang Q, Zhang Z. Dual-Mode Textile Sensor Based on PEDOT:PSS/SWCNTs Composites for Pressure-Temperature Detection. MICROMACHINES 2025; 16:92. [PMID: 39858747 PMCID: PMC11767976 DOI: 10.3390/mi16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
As an innovative branch of electronics, intelligent electronic textiles (e-textiles) have broad prospects in applications such as e-skin, human-computer interaction, and smart homes. However, it is still a challenge to distinguish multiple stimuli in the same e-textile. Herein, we propose a dual-parameter smart e-textile that can detect human pulse and body temperature in real time, with high performance and no signal interference. The doping of SWCNTs in PEDOT:PSS improves the electrical conductivity and Seebeck coefficient of the prepared composites, which results in excellent pressure and temperature-sensing properties of the PEDOT:PSS/SWCNTs/CS@PET-textile (PSCP) sensor. The dual-mode sensor has high sensitivity (32.4 kPa-1), fast response time (~21 ms), and excellent durability (>2000 times) in pressure detection. Concurrently, this sensor maintains a high Seebeck coefficient of 25 μV/K in the 0-120 K temperature range with a tremendous linear relationship. Based on impressive dual-mode sensing characteristics and independent temperature-difference- and pressure-sensing mechanisms, smart e-textile sensors realize the real-time simultaneous monitoring of weak pulse signals and human body temperature, showing great potential in medical healthcare. In addition, the potential energy is excited by the temperature gradient between the human skin and the environment, which provides a novel idea for wearable self-powered devices.
Collapse
Affiliation(s)
- Ying Wang
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Qingchao Zhang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China;
| | - Zhidong Zhang
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| |
Collapse
|
4
|
Li R, Hu J, Li Y, Huang Y, Wang L, Huang M, Wang Z, Chen J, Fan Y, Chen L. Graphene-Based, Flexible, Wearable Piezoresistive Sensors with High Sensitivity for Tiny Pressure Detection. SENSORS (BASEL, SWITZERLAND) 2025; 25:423. [PMID: 39860793 PMCID: PMC11768648 DOI: 10.3390/s25020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties. The microstructure has insulating polystyrene (PS) microspheres sandwiched between a graphene oxide (GO) film and a metallic nanocopper-graphene oxide (n-Cu/GO) film. The piezoresistive performance of the sensor can be modulated by controlling the size of the PS microspheres and doping degree of the copper nanoparticles. The sensor demonstrates a high sensitivity of 232.5 kPa-1 in a low-pressure range of 0 to 0.2 kPa, with a fast response of 45 ms and a recovery time of 36 ms, while also exhibiting excellent stability. The piezoresistive performance converts subtle laryngeal articulatory vibration into a stable, regular electrical signal; in addition, there is excellent real-time monitoring capability of human joint movements. This work provides a new idea for the development of wearable electronic devices, healthcare, and other fields.
Collapse
Affiliation(s)
- Rui Li
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (R.L.)
| | - Jiahao Hu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yalong Li
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yi Huang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (R.L.)
| | - Lin Wang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (R.L.)
| | - Mohan Huang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (R.L.)
| | - Zhikun Wang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (R.L.)
| | - Junlang Chen
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (R.L.)
| | - Yan Fan
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (R.L.)
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Cui L, Hu C, Wang W, Zheng J, Zhu Z, Liu B. An adhesive, stretchable, and freeze-resistant conductive hydrogel strain sensor for handwriting recognition and depth motion monitoring. J Colloid Interface Sci 2025; 677:273-281. [PMID: 39094488 DOI: 10.1016/j.jcis.2024.07.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Wearable electronics based on conductive hydrogels (CHs) offer remarkable flexibility, conductivity, and versatility. However, the flexibility, adhesiveness, and conductivity of traditional CHs deteriorate when they freeze, thereby limiting their utility in challenging environments. In this work, we introduce a PHEA-NaSS/G hydrogel that can be conveniently fabricated into a freeze-resistant conductive hydrogel by weakening the hydrogen bonds between water molecules. This is achieved through the synergistic interaction between the charged polar end group (-SO3-) and the glycerol-water binary solvent system. The conductive hydrogel is simultaneously endowed with tunable mechanical properties and conductive pathways by the modulation caused by varying material compositions. Due to the uniform interconnectivity of the network structure resulting from strong intermolecular interactions and the enhancement effect of charged polar end-groups, the resulting hydrogel exhibits 174 kPa tensile strength, 2105 % tensile strain, and excellent sensing ability (GF = 2.86, response time: 121 ms), and the sensor is well suited for repeatable and stable monitoring of human motion. Additionally, using the Full Convolutional Network (FCN) algorithm, the sensor can be used to recognize English letter handwriting with an accuracy of 96.4 %. This hydrogel strain sensor provides a simple method for creating multi-functional electronic devices, with significant potential in the fields of multifunctional electronics such as soft robotics, health monitoring, and human-computer interaction.
Collapse
Affiliation(s)
- Liangliang Cui
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile & Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jian Zheng
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
6
|
Li P, Zhang Y, Li C, Chen X, Gou X, Zhou Y, Yang J, Xie L. From materials to structures: a holistic examination of achieving linearity in flexible pressure sensors. NANOTECHNOLOGY 2024; 36:042002. [PMID: 39413806 DOI: 10.1088/1361-6528/ad8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
As a pivotal category in the realm of electronics skins, flexible pressure sensors have become a focal point due to their diverse applications such as robotics, aerospace industries, and wearable devices. With the growing demands for measurement accuracy, data reliability, and electrical system compatibility, enhancing sensor's linearity has become increasingly critical. Analysis shows that the nonlinearity of flexible sensors primarily originates from mechanical nonlinearity due to the nolinear deformation of polymers and electrical nonlinearity caused by changes in parameters such as resistance. These nonlinearities can be mitigated through geometric design, material design or combination of both. This work reviews linear design strategies for sensors from the perspectives of structure and materials, covering the following main points: (a) an overview of the fundamental working mechanisms for various sensors; (b) a comprehensive explanation of different linear design strategies and the underlying reasons; (c) a detailed review of existing work employing these strategies and the achieved effects. Additionally, this work delves into diverse applications of linear flexible pressure sensors, spanning robotics, safety, electronic skin, and health monitoring. Finally, existing constraints and future research prospects are outlined to pave the way for the further development of high-performance flexible pressure sensors.
Collapse
Affiliation(s)
- Pei Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Chunbao Li
- Department of Orthopedics, The No.4 Medical Centre, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Xian Chen
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xin Gou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Yong Zhou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Jun Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Lei Xie
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
7
|
Xu D, Bai N, Wang W, Wu X, Liu K, Liu M, Ping M, Zhou L, Jiang P, Zhao Y, Lu Y, Gao L. 3D Network Spacer-Embedded Flexible Iontronic Pressure Sensor Array with High Sensitivity over a Broad Sensing Range. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58780-58790. [PMID: 39413772 DOI: 10.1021/acsami.4c09659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Microstructure construction is a common strategy for enhancing the sensitivity of flexible pressure sensors, but it typically requires complex manufacturing techniques. In this study, we develop a flexible iontronic pressure sensor (FIPS) by embedding an isolated three-dimensional network spacer (3DNS) between an ionic gel and a flexible Ti3C2Tx MXene electrode, thereby avoiding complex microstructure construction techniques. By leveraging substantial deformation of the 3DNS and the high capacitance density resulting from the electrical double layer effect, the sensor exhibits high sensitivity (87.4 kPa-1) over a broad high-pressure range (400-1000 kPa) while maintaining linearity (R2 = 0.998). Additionally, the FIPS demonstrates a rapid response time of 46 ms, a low limit of detection at 50 Pa, and excellent stability over 10 000 cycles under a high pressure of 600 kPa. As practical demonstrations, the FIPS can effectively monitor human motion such as elbow bending and assist a robotic gripper in accurately sensing gripping tasks. Moreover, a real-time, adaptive 7 × 7 sensing array system is built and can recognize both numeric and alphabetic characters. Our design philosophy can be extended for fabricating pressure sensors with high sensing performance without involving complex techniques, facilitating the applications of flexible sensors in human motion monitoring, robotic tactile sensing, and human-machine interaction.
Collapse
Affiliation(s)
- Dandan Xu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
| | - Ningning Bai
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
| | - Xinyang Wu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Ke Liu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Min Liu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Mingda Ping
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Linxuan Zhou
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Peishuo Jiang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Yang Lu
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, 999077, Hong Kong Special Administrative Region, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
8
|
Wang J, Xiong Z, Wu L, Chen J, Zhu Y. Highly sensitive and wide-range iontronic pressure sensors with a wheat awn-like hierarchical structure. J Colloid Interface Sci 2024; 669:190-197. [PMID: 38713957 DOI: 10.1016/j.jcis.2024.04.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Flexible pressure sensors with high sensitivity and wide sensing range are highly desired in e-skins and wearable electronics. However, there is always a trade-off between high sensitivity and broad sensing range for most flexible pressure sensors. Herein, an artificial wheat awn-like hierarchical structure is designed onto the dielectric layer of the iontronic pressure sensor, realizing both high sensitivity and broad working range. The sensor is constructed by sandwiching a wheat awn-like polyvinyl alcohol/H3PO4 dielectric layer between two transparent electrodes of silver nanowires/thermoplastic polyurethane/ionic liquid. The obtained sensor exhibits a high precision of 1 Pa, a high sensitivity of 47.65 kPa-1 (1-200 Pa), a wide measurement range from 1 Pa to 238 kPa, short response/recovery time of 13 ms/12 ms, outstanding stability over 6000 cycles, as well as good transparency. Considering these excellent properties, the sensor shows promising potential in health monitoring, human-computer interaction, wearable electronics, etc.
Collapse
Affiliation(s)
- Jing Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Zihan Xiong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Lijun Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Jianwen Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Yutian Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Kim S, Kim DY. Enhanced Sensitivity of a Resistive Pressure Sensor Based on a PEDOT:PSS Thin Film on PDMS with a Random-Height Micropyramid Structure. MICROMACHINES 2024; 15:1110. [PMID: 39337770 PMCID: PMC11434580 DOI: 10.3390/mi15091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
The use of flexible pressure sensors has become increasingly widespread in a variety of applications, including wearable electronics and electronic skin. These sensors need to exhibit high sensitivity, wide detection limits, a fast response time, a linear response, and mechanical stability. In this study, we demonstrate a resistive pressure sensor based on randomly arranged micropyramid polydimethylsiloxane (PDMS) with a conductive poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) thin film with a sensitivity of 391 kPa-1, a response time of 52.91 ms, a recovery time of 4.38 ms, and a limit of detection (LOD) of 0.35 kPa. Electrodes are then connected to a pair of the proposed resistive pressure sensors that face each other to fabricate a pressure sensing device. We examine various characteristics of the fabricated device, including the changes observed when applying loads ranging from 0 to 2.58 kPa. The proposed sensor exhibits high sensitivity and a rapid response time.
Collapse
Affiliation(s)
- Sungyong Kim
- Department of Electrical and Computer Engineering, College of Engineering, Inha University, Incheon 22212, Korea
| | - Dae Yu Kim
- Department of Electrical and Computer Engineering, College of Engineering, Inha University, Incheon 22212, Korea
- Center for Sensor Systems, Inha University, Incheon 22212, Republic of Korea
- Inha Research Institute for Aerospace Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
10
|
Yang M, Wang Z, Jia Q, Xiong J, Wang H. Bio-Skin-Inspired Flexible Pressure Sensor Based on Carbonized Cotton Fabric for Human Activity Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4321. [PMID: 39001101 PMCID: PMC11243851 DOI: 10.3390/s24134321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
With the development of technology, people's demand for pressure sensors with high sensitivity and a wide working range is increasing. An effective way to achieve this goal is simulating human skin. Herein, we propose a facile, low-cost, and reproducible method for preparing a skin-like multi-layer flexible pressure sensor (MFPS) device with high sensitivity (5.51 kPa-1 from 0 to 30 kPa) and wide working pressure range (0-200 kPa) by assembling carbonized fabrics and micro-wrinkle-structured Ag@rGO electrodes layer by layer. In addition, the highly imitated skin structure also provides the device with an extremely short response time (60/90 ms) and stable durability (over 3000 cycles). Importantly, we integrated multiple sensor devices into gloves to monitor finger movements and behaviors. In summary, the skin-like MFPS device has significant potential for real-time monitoring of human activities in the field of flexible wearable electronics and human-machine interaction.
Collapse
Affiliation(s)
- Min Yang
- Division of Oncology, Department of Paediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhiwei Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qihan Jia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Junjie Xiong
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Zhang Z, Li K, Li Y, Zhang Q, Wang H, Hou C. Dual-Function Wearable Hydrogel Optical Fiber for Monitoring Posture and Sweat pH. ACS Sens 2024; 9:3413-3422. [PMID: 38887933 DOI: 10.1021/acssensors.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, wearable devices have been widely used for human health monitoring. Such monitoring predominantly relies on the principles of optics and electronics. However, electronic detection is susceptible to electromagnetic interference, and traditional optical fiber detection is limited in functionality and unable to simultaneously detect both physical and chemical signals. Hence, a wearable, embedded asymmetric color-blocked optical fiber sensor based on a hydrogel has been developed. Its sensing principle is grounded in the total internal reflection within the optical fiber. The method for posture sensing involves changes in the light path due to fiber bending with color blocks providing wavelength-selective modulation by absorption changes. Sweat pH sensing is facilitated by variations in fluorescence intensity triggered by sweat-induced conformational changes in Rhodamine B. With just one fiber, it achieves both physical and chemical signal detection. Fabricated using a molding technique, this fiber boasts excellent biocompatibility and can accurately discern single and multiple bending points, with a recognition range of 0-90° for a single segment, a detection limit of 0.02 mm-1 and a sweat pH sensing linear regression R2 of 0.993, alongside great light propagation properties (-0.6 dB·cm-1). With its extensive capabilities, it holds promise for applications in medical monitoring.
Collapse
Affiliation(s)
- Zhihui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
12
|
Zhang S, Yang C, Qi Z, Wang Y, Cheng E, Zhao L, Hu N. Laser patterned graphene pressure sensor with adjustable sensitivity in an ultrawide response range. NANOTECHNOLOGY 2024; 35:365503. [PMID: 38861977 DOI: 10.1088/1361-6528/ad5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Flexible pressure sensors have attracted wide attention because of their applications in wearable electronic, human-computer interface, and healthcare. However, it is still a challenge to design a pressure sensor with adjustable sensitivity in an ultrawide response range to satisfy the requirements of different application scenarios. Here, a laser patterned graphene pressure sensor (LPGPS) is proposed with adjustable sensitivity in an ultrawide response range based on the pre-stretched kirigami structure. Due to the out-of-plane deformation of the pre-stretched kirigami structure, the sensitivity can be easily tuned by simply modifying the pre-stretched level. As a result, it exhibits a maximum sensitivity of 0.243 kPa-1, an ultrawide range up to 1600 kPa, a low detection limit (6 Pa), a short response time (42 ms), and excellent stability with high pressure of 1200 kPa over 500 cycles. Benefiting from its high sensitivity and ultrawide response range, the proposed sensor can be applied to detect physiological and kinematic signals under different pressure intensities. Additionally, taking advantage of laser programmable patterning, it can be easily configured into an array to determine the pressure distribution. Therefore, LPGPS with adjustable sensitivity in an ultrawide response range has potential application in wearable electronic devices.
Collapse
Affiliation(s)
- Siyuan Zhang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Chao Yang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Zhengpan Qi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Yao Wang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - E Cheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Libin Zhao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
- Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Tianjin 300401, People's Republic of China
| | - Ning Hu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
- Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Tianjin 300401, People's Republic of China
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300401, People's Republic of China
| |
Collapse
|
13
|
Liu J, Zhang X, Liu J, Liu X, Zhang C. 3D Printing of Anisotropic Piezoresistive Pressure Sensors for Directional Force Perception. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309607. [PMID: 38477389 PMCID: PMC11199969 DOI: 10.1002/advs.202309607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Indexed: 03/14/2024]
Abstract
Anisotropic pressure sensors are gaining increasing attention for next-generation wearable electronics and intelligent infrastructure owing to their sensitivity in identifying different directional forces. 3D printing technologies have unparalleled advantages in the design of anisotropic pressure sensors with customized 3D structures for realizing tunable anisotropy. 3D printing has demonstrated few successes in utilizing piezoelectric nanocomposites for anisotropic recognition. However, 3D-printed anisotropic piezoresistive pressure sensors (PPSs) remain unexplored despite their convenience in saving the poling process. This study pioneers the development of an aqueous printable ink containing waterborne polyurethane elastomer. An anisotropic PPS featuring tailorable flexibility in macroscopic 3D structures and microscopic pore morphologies is created by adopting direct ink writing 3D printing technology. Consequently, the desired directional force perception is achieved by programming the printing schemes. Notably, the printed PPS demonstrated excellent deformability, with a relative sensitivity of 1.22 (kPa*wt. %)-1 over a substantial pressure range (2.8 to 8.1 kPa), approximately fivefold than that of a state-of-the-art carbon-based PPS. This study underscores the versatility of 3D printing in customizing highly sensitive anisotropic pressure sensors for advanced sensing applications that are difficult to achieve using conventional measures.
Collapse
Affiliation(s)
- Jingfeng Liu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Xuan Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Jintao Liu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| |
Collapse
|
14
|
Li W, Liu X, Wang Y, Peng L, Jin X, Jiang Z, Guo Z, Chen J, Wang W. Research on high sensitivity piezoresistive sensor based on structural design. DISCOVER NANO 2024; 19:88. [PMID: 38753219 PMCID: PMC11098999 DOI: 10.1186/s11671-024-03971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/08/2024] [Indexed: 05/19/2024]
Abstract
With the popularity of smart terminals, wearable electronic devices have shown great market prospects, especially high-sensitivity pressure sensors, which can monitor micro-stimuli and high-precision dynamic external stimuli, and will have an important impact on future functional development. Compressible flexible sensors have attracted wide attention due to their simple sensing mechanism and the advantages of light weight and convenience. Sensors with high sensitivity are very sensitive to pressure and can detect resistance/current changes under pressure, which has been widely studied. On this basis, this review focuses on analyzing the performance impact of device structure design strategies on high sensitivity pressure sensors. The design of structures can be divided into interface microstructures and three-dimensional framework structures. The preparation methods of various structures are introduced in detail, and the current research status and future development challenges are summarized.
Collapse
Affiliation(s)
- Wei Li
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang Province, People's Republic of China
| | - Xing Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yifan Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Lu Peng
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Xin Jin
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Zhaohui Jiang
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang Province, People's Republic of China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing, People's Republic of China
| | - Zengge Guo
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jie Chen
- PLA Naval Medical Center, Shang Hai, People's Republic of China
| | - Wenyu Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
15
|
Hou X, Chen J, Chen Z, Yu D, Zhu S, Liu T, Chen L. Flexible Aerogel Materials: A Review on Revolutionary Flexibility Strategies and the Multifunctional Applications. ACS NANO 2024; 18:11525-11559. [PMID: 38655632 DOI: 10.1021/acsnano.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The design and preparation of flexible aerogel materials with high deformability and versatility have become an emerging research topic in the aerogel fields, as the brittle nature of traditional aerogels severely affects their safety and reliability in use. Herein, we review the preparation methods and properties of flexible aerogels and summarize the various controlling and design methods of aerogels to overcome the fragility caused by high porosity and nanoporous network structure. The mechanical flexibility of aerogels can be revolutionarily improved by monomer regulation, nanofiber assembly, structural design and controlling, and constructing of aerogel composites, which can greatly broaden the multifunctionality and practical application prospects. The design and construction criterion of aerogel flexibility is summarized: constructing a flexible and deformable microstructure in an aerogel matrix. Besides, the derived multifunctional applications in the fields of flexible thermal insulation (flexible thermal protection at extreme temperatures), flexible wearable electronics (flexible sensors, flexible electrodes, electromagnetic shielding, and wave absorption), and environmental protection (oil/water separation and air filtration) are summarized. Furthermore, the future development prospects and challenges of flexible aerogel materials are also summarized. This review will provide a comprehensive research basis and guidance for the structural design, fabrication methods, and potential applications of flexible aerogels.
Collapse
Affiliation(s)
- Xianbo Hou
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Jia Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Zhilin Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Dongqin Yu
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Shaowei Zhu
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Tao Liu
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Liming Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
16
|
Xu C, Chen J, Zhu Z, Liu M, Lan R, Chen X, Tang W, Zhang Y, Li H. Flexible Pressure Sensors in Human-Machine Interface Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306655. [PMID: 38009791 DOI: 10.1002/smll.202306655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Flexible sensors are highly flexible, malleable, and capable of adapting todifferent shapes, surfaces, and environments, which opens a wide range ofpotential applications in the field of human-machine interface (HMI). Inparticular, flexible pressure sensors as a crucial member of the flexiblesensor family, are widely used in wearable devices, health monitoringinstruments, robots and other fields because they can achieve accuratemeasurement and convert the pressure into electrical signals. The mostintuitive feeling that flexible sensors bring to people is the change ofhuman-machine interface interaction, from the previous rigid interaction suchas keyboard and mouse to flexible interaction such as smart gloves, more inline with people's natural control habits. Many advanced flexible pressuresensors have emerged through extensive research and development, and to adaptto various fields of application. Researchers have been seeking to enhanceperformance of flexible pressure sensors through improving materials, sensingmechanisms, fabrication methods, and microstructures. This paper reviews the flexible pressure sensors in HMI in recent years, mainlyincluding the following aspects: current cutting-edge flexible pressuresensors; sensing mechanisms, substrate materials and active materials; sensorfabrication, performances, and their optimization methods; the flexiblepressure sensors for various HMI applications and their prospects.
Collapse
Affiliation(s)
- Chengsheng Xu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jing Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Zhengfang Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Moran Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Ronghua Lan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xiaohong Chen
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Wei Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yan Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Hui Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
17
|
Li B, Zheng X, Kim S, Wang X, Jiang F, Li R, Joo SW, Cong C, Li X. Fully printed non-contact touch sensors based on GCN/PDMS composites: enabling over-the-bottom detection, 3D recognition, and wireless transmission. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2311635. [PMID: 38361533 PMCID: PMC10868416 DOI: 10.1080/14686996.2024.2311635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
The rapid advancement in intelligent bionics has elevated electronic skin to a pivotal component in bionic robots, enabling swift responses to diverse external stimuli. Combining wearable touch sensors with IoT technology lays the groundwork for achieving the versatile functionality of electronic skin. However, most current touch sensors rely on capacitive layer deformations induced by pressure, leading to changes in capacitance values. Unfortunately, sensors of this kind often face limitations in practical applications due to their uniform sensing capabilities. This study presents a novel approach by incorporating graphitic carbon nitride (GCN) into polydimethylsiloxane (PDMS) at a low concentration. Surprisingly, this blend of materials with higher dielectric constants yields composite films with lower dielectric constants, contrary to expectations. Unlike traditional capacitive sensors, our non-contact touch sensors exploit electric field interference between the object and the sensor's edge, with enhanced effects from the low dielectric constant GCN/PDMS film. Consequently, we have fabricated touch sensor grids using an array configuration of dispensing printing techniques, facilitating fast response and ultra-low-limit contact detection with finger-to-device distances ranging from 5 to 100 mm. These sensors exhibit excellent resolution in recognizing 3D object shapes and accurately detecting positional motion. Moreover, they enable real-time monitoring of array data with signal transmission over a 4G network. In summary, our proposed approach for fabricating low dielectric constant thin films, as employed in non-contact touch sensors, opens new avenues for advancing electronic skin technology.
Collapse
Affiliation(s)
- Bingxiang Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, China
| | - Xianbin Zheng
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, China
| | - SeHyun Kim
- School of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - Xuhao Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, China
| | - Fuhao Jiang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, China
| | - Rong Li
- Technology Research and Development Department, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd ., Taian, China
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Chenhao Cong
- School of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Wang J, Chu J, Song J, Li Z. The application of impantable sensors in the musculoskeletal system: a review. Front Bioeng Biotechnol 2024; 12:1270237. [PMID: 38328442 PMCID: PMC10847584 DOI: 10.3389/fbioe.2024.1270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
As the population ages and the incidence of traumatic events rises, there is a growing trend toward the implantation of devices to replace damaged or degenerated tissues in the body. In orthopedic applications, some implants are equipped with sensors to measure internal data and monitor the status of the implant. In recent years, several multi-functional implants have been developed that the clinician can externally control using a smart device. Experts anticipate that these versatile implants could pave the way for the next-generation of technological advancements. This paper provides an introduction to implantable sensors and is structured into three parts. The first section categorizes existing implantable sensors based on their working principles and provides detailed illustrations with examples. The second section introduces the most common materials used in implantable sensors, divided into rigid and flexible materials according to their properties. The third section is the focal point of this article, with implantable orthopedic sensors being classified as joint, spine, or fracture, based on different practical scenarios. The aim of this review is to introduce various implantable orthopedic sensors, compare their different characteristics, and outline the future direction of their development and application.
Collapse
Affiliation(s)
- Jinzuo Wang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| | - Jian Chu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jinhui Song
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
19
|
Zhang H, Chen X, Liu Y, Yang C, Liu W, Qi M, Zhang D. PDMS Film-Based Flexible Pressure Sensor Array with Surface Protruding Structure for Human Motion Detection and Wrist Posture Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2554-2563. [PMID: 38166372 DOI: 10.1021/acsami.3c14036] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Flexible pressure sensors have been widely concerned because of their great application potential in the fields of electronic skin, human-computer interaction, health detection, and so on. In this paper, a flexible pressure sensor is designed, with polydimethylsiloxane (PDMS) films with protruding structure as elastic substrate and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS)/cellulose nanocrystals (CNC) as conductive-sensitive material. The flexible pressure sensor has a wide linear detection range (0-100 kPa), outstanding sensitivity (2.32 kPa-1), and stability of more than 2000 cycles. The sensor has been proven to be able to detect a wide range of human movements (finger bending, elbow bending, etc.) and small movements (breathing, pulse, etc.). In addition, the pressure sensor array can detect the pressure distribution and judge the shape of the object. A smart wristband equipped with four flexible pressure sensors is designed. Among them, the k-nearest neighbor (KNN) algorithm is used to classify sensor data to achieve high accuracy (99.52%) recognition of seven kinds of wrist posture. This work provides a new opportunity to fabricate simple, flexible pressure sensors with potential applications in the next-generation electronic skin, health detection, and intelligent robotics.
Collapse
Affiliation(s)
- Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoya Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Liu
- China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122, China
| | - Chunqing Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenzhe Liu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingyu Qi
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
20
|
Cui X, Miao C, Lu S, Liu X, Yang Y, Sun J. Strain Sensors Made of MXene, CNTs, and TPU/PSF Asymmetric Structure Films with Large Tensile Recovery and Applied in Human Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59655-59670. [PMID: 38085975 DOI: 10.1021/acsami.3c11328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Designing flexible wearable sensors with a wide sensing range, high sensitivity, and high stability is a vulnerable research direction with a futuristic field to study. In this paper, Ti3C2Tx MXene/carbon nanotube (CNT)/thermoplastic polyurethane (TPU)/polysulfone (PSF) composite films with excellent sensor performance were obtained by self-assembly of conductive fillers in TPU/PSF porous films with an asymmetric structure through vacuum filtration, and the porous films were prepared by the phase inversion method. The composite films consist of the upper part with finger-like "cavities" filled by MXene/CNTs, which reduces the microcracks in the conductive network during the tensile process, and the lower part has smaller apertures of a relatively dense resin cortex assisting the recovery process. The exclusive layer structure of the MXene/CNTs/TPU/PSF film sensor, with a thickness of 46.95 μm, contains 0.0339 mg/cm2 single-walled carbon nanotubes (SWNTs) and 0.348 mg/cm2 MXene only, providing functional range (0-80.7%), high sensitivity (up to 1265.18), and excellent stability and durability (stable sensing under 2300 fatigue tests, viable to the initial resistance), endurably cycled under large strains with serious damage to the conductive network. Finally, the MXene/CNTs/TPU/PSF film sensor is usable for monitoring pulse, swallow, tiptoe, and various joint bends in real time and distributing effective electrical signals. This paper implies that the MXene/CNTs/TPU/PSF film sensor has broad prospects in pragmatic applications.
Collapse
Affiliation(s)
- Xiaoyu Cui
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Chengjing Miao
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Shaowei Lu
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Xingmin Liu
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Yuxuan Yang
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Jingchao Sun
- School of Science, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
21
|
Wang G, Zheng M, Liu Z, Wang M. Anisotropic Piezoresistive Sensors Made with Magnetically Induced Vertically Aligned Carbon Nanotubes/Polydimethylsiloxane. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878539 DOI: 10.1021/acsami.3c09104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A piezoresistive material consisting of internal vertically aligned carbon nanotubes acting in concert with an external microdome structure is prepared to obtain a flexible piezoresistive sensor with high anisotropy. Here, we first obtained flexible piezoresistive composites (VCP) with anisotropic properties by inducing the vertical alignment of multiwalled carbon nanotubes in the pressure direction under a weak magnetic field of 0.6 T. Then, the composite with a microdome structure on the surface (m-VCP) was fabricated by a mold with a microstructure to further increase the anisotropy of the composite. The m-VCP microstructure was docked with VCP and placed between two layers of copper foil. With the synergistic effect of vertically aligned carbon nanotubes and the microdome structure, the sensitivity of the flexible sensor in the pressure direction was dramatically increased. In the low-strain range (0-6%), the sensitivity of m-VCP (GF = 9.208) is improved by 49% compared to m-CP and by 86% compared to VCP. The sensor has high anisotropy in the piezoresistive direction and retains good fatigue resistance under fatigue testing for 2000 cycles. This means that the sensor can be used in emerging fields such as human health monitoring, wearable electronics, and intelligent human-computer interaction.
Collapse
Affiliation(s)
- Gongdong Wang
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
- Zhiyuan Research Institute, Hangzhou 310012, China
| | - Mingyang Zheng
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Zhendong Liu
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Meng Wang
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
22
|
Liu H, Zhang Q, Yang N, Jiang X, Wang F, Yan X, Zhang X, Zhao Y, Cheng T. Ti 3C 2T x MXene Paper-Based Wearable and Degradable Pressure Sensor for Human Motion Detection and Encrypted Information Transmission. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44554-44562. [PMID: 37695309 DOI: 10.1021/acsami.3c09176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Paper-based flexible sensors are of great significance for promoting the development of green wearable electronic devices due to their good degradability and low cost. In this work, a paper-based wearable pressure sensor with a sandwich structure is proposed, which is assembled from a sensing layer printed with Ti3C2Tx MXene ink, an interdigitated electrode printed in the same simple and economical way, and two polyethylene terephthalate films. The demonstrated paper-based pressure sensor exhibits excellent sensitivity in a wide pressure sensing range, as well as cyclic stability at a certain pressure. The sensor can be attached to the human body's surface to monitor various pressure-related physical activities. Using a self-designed mobile phone APP, the special pressure signals collected from the sensor can be transmitted and translated, and an intelligent and encrypted information transmission system can be established. Since only ordinary printing paper and Ti3C2Tx MXene ink are used, the pressure sensor is easy to prepare, economical, and environmentally friendly, and it can be degraded by stirring in water without generating electronic waste. It can be foreseen that the proposed sensor shows bright application potential in the sustainable development of healthcare and human-computer interaction fields.
Collapse
Affiliation(s)
- Hailian Liu
- State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Qi Zhang
- State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Ning Yang
- State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xuezheng Jiang
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fang Wang
- State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xin Yan
- State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xuenan Zhang
- State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yong Zhao
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Tonglei Cheng
- State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| |
Collapse
|
23
|
Luo J, Liu F, Yin A, Qi X, Liu J, Ren Z, Zhou S, Wang Y, Ye Y, Ma Q, Zhu J, Li K, Zhang C, Zhao W, Yu S, Wei J. Highly sensitive, wide-pressure and low-frequency characterized pressure sensor based on piezoresistive-piezoelectric coupling effects in porous wood. Carbohydr Polym 2023; 315:120983. [PMID: 37230620 DOI: 10.1016/j.carbpol.2023.120983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Lightweight and highly compressible materials have received considerable attention in flexible pressure sensing devices. In this study, a series of porous woods (PWs) are produced by chemical removal of lignin and hemicellulose from natural wood by tuning treatment time from 0 to 15 h and extra oxidation through H2O2. The prepared PWs with apparent densities varying from 95.9 to 46.16 mg/cm3 tend to form a wave-shaped interwoven structure with improved compressibility (up to 91.89 % strain under 100 kPa). The sensor assembled from PW with treatment time of 12 h (PW-12) exhibits the optimal piezoresistive-piezoelectric coupling sensing properties. For the piezoresistive properties, it has high stress sensitivity of 15.14 kPa-1, covering a wide linear working pressure range of 0.06-100 kPa. For its piezoelectric potential, PW-12 shows a sensitivity of 0.443 V·kPa-1 with ultralow frequency detection as low as 0.0028 Hz, and good cyclability over 60,000 cycles under 0.41 Hz. The nature-derived all-wood pressure sensor shows obvious superiority in the flexibility for power supply requirement. More importantly, it presents fully decoupled signals without cross-talks in the dual-sensing functionality. Sensor like this is capable of monitoring various dynamic human motions, making it an extremely promising candidate for the next generation artificial intelligence products.
Collapse
Affiliation(s)
- Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Feihua Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ao Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiang Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhongqi Ren
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuxin Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Ye
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qingzhi Ma
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Junjun Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kang Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chen Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Weiwei Zhao
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
24
|
Xu S, Xu Z, Li D, Cui T, Li X, Yang Y, Liu H, Ren T. Recent Advances in Flexible Piezoresistive Arrays: Materials, Design, and Applications. Polymers (Basel) 2023; 15:2699. [PMID: 37376345 DOI: 10.3390/polym15122699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Spatial distribution perception has become an important trend for flexible pressure sensors, which endows wearable health devices, bionic robots, and human-machine interactive interfaces (HMI) with more precise tactile perception capabilities. Flexible pressure sensor arrays can monitor and extract abundant health information to assist in medical detection and diagnosis. Bionic robots and HMI with higher tactile perception abilities will maximize the freedom of human hands. Flexible arrays based on piezoresistive mechanisms have been extensively researched due to the high performance of pressure-sensing properties and simple readout principles. This review summarizes multiple considerations in the design of flexible piezoresistive arrays and recent advances in their development. First, frequently used piezoresistive materials and microstructures are introduced in which various strategies to improve sensor performance are presented. Second, pressure sensor arrays with spatial distribution perception capability are discussed emphatically. Crosstalk is a particular concern for sensor arrays, where mechanical and electrical sources of crosstalk issues and the corresponding solutions are highlighted. Third, several processing methods are also introduced, classified as printing, field-assisted and laser-assisted fabrication. Next, the representative application works of flexible piezoresistive arrays are provided, including human-interactive systems, healthcare devices, and some other scenarios. Finally, outlooks on the development of piezoresistive arrays are given.
Collapse
Affiliation(s)
- Shuoyan Xu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Zigan Xu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Ding Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianrui Cui
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xin Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Houfang Liu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Wang Z, Xiao C, Roy M, Yuan Z, Zhao L, Liu Y, Guo X, Lu P. Bioinspired skin towards next-generation rehabilitation medicine. Front Bioeng Biotechnol 2023; 11:1196174. [PMID: 37229496 PMCID: PMC10203386 DOI: 10.3389/fbioe.2023.1196174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The rapid progress of interdisciplinary researches from materials science, biotechnologies, biomedical engineering, and medicine, have resulted in the emerging of bioinspired skins for various fantasticating applications. Bioinspired skin is highly promising in the application of rehabilitation medicine owing to their advantages, including personalization, excellent biocompatibility, multi-functionality, easy maintainability and wearability, and mass production. Therefore, this review presents the recent progress of bioinspired skin towards next-generation rehabilitation medicine. The classification is first briefly introduced. Then, various applications of bioinspired skins in the field of rehabilitation medicine at home and abroad are discussed in detail. Last, we provide the challenges we are facing now, and propose the next research directions.
Collapse
Affiliation(s)
- Zhenghui Wang
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chen Xiao
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Mridul Roy
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhiyao Yuan
- SanQuan College of Xinxiang Medical University, Xinxiang, China
| | - Lingyu Zhao
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xuejun Guo
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ping Lu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
26
|
Guo WT, Tang XG, Tang Z, Sun QJ. Recent Advances in Polymer Composites for Flexible Pressure Sensors. Polymers (Basel) 2023; 15:polym15092176. [PMID: 37177322 PMCID: PMC10180924 DOI: 10.3390/polym15092176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Pressure sensors show significant potential applications in health monitoring, bio-sensing, electronic skin, and tactile perception. Consequently, tremendous research interest has been devoted to the development of high-performance pressure sensors. In this paper, recent progress on the polymer composite-based flexible pressure sensor is reviewed. The parameters of pressure sensors, including sensitivity, linear response range, detection limit, response speed, and reliability, are first introduced. Secondly, representative types of pressure sensors and relevant working principles are introduced and discussed. After that, the applications in human physiology monitoring, health monitoring, artificial skin, and self-powered smart system are listed and discussed in detail. Finally, the remaining challenges and outlook of polymer composite-based flexible sensors are summarized at the end of this review paper. This work should have some impact on the development of high-performance flexible pressure sensors.
Collapse
Affiliation(s)
- Wen-Tao Guo
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin-Gui Tang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhua Tang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Lai QT, Zhao XH, Sun QJ, Tang Z, Tang XG, Roy VAL. Emerging MXene-Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300283. [PMID: 36965088 DOI: 10.1002/smll.202300283] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human-machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors. As a class of 2D inorganic compounds in materials science, MXene has excellent electrical, mechanical, and biological compatibility. MXene-based composites have proven to be promising candidates for flexible tactile sensors due to their excellent stretchability and metallic conductivity. Therefore, great efforts have been devoted to the development of MXene-based composites for flexible sensor applications. In this paper, the controllable preparation and characterization of MXene are introduced. Then, the recent progresses on fabrication strategies, operating mechanisms, and device performance of MXene composite-based flexible tactile sensors, including flexible piezoresistive sensors, capacitive sensors, piezoelectric sensors, triboelectric sensors are reviewed. After that, the applications of MXene material-based flexible electronics in human motion monitoring, healthcare, prosthetics, and artificial intelligence are discussed. Finally, the challenges and perspectives for MXene-based tactile sensors are summarized.
Collapse
Affiliation(s)
- Qin-Teng Lai
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Xin-Hua Zhao
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, P. R. China
| | - Qi-Jun Sun
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Zhenhua Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Vellaisamy A L Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, 999077, P. R. China
| |
Collapse
|
28
|
Zhao X, Zhao S, Zhang X, Su Z. Recent progress in flexible pressure sensors based on multiple microstructures: from design to application. NANOSCALE 2023; 15:5111-5138. [PMID: 36852534 DOI: 10.1039/d2nr06084a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible pressure sensors (FPSs) have been widely studied in the fields of wearable medical monitoring and human-machine interaction due to their high flexibility, light weight, sensitivity, and easy integration. To better meet these application requirements, key sensing properties such as sensitivity, linear sensing range, pressure detection limits, response/recovery time, and durability need to be effectively improved. Therefore, researchers have extensively and profoundly researched and innovated on the structure of sensors, and various microstructures have been designed and applied to effectively improve the sensing performance of sensors. Compared with single microstructures, multiple microstructures (MMSs) (including hierarchical, multi-layered and hybrid microstructures) can improve the sensing performance of sensors to a greater extent. This paper reviews the recent research progress in the design and application of FPSs with MMSs and systematically summarizes the types, sensing mechanisms, and preparation methods of MMSs. In addition, we summarize the applications of FPSs with MMSs in the fields of human motion detection, health monitoring, and human-computer interaction. Finally, we provide an outlook on the prospects and challenges for the development of FPSs.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
29
|
Li W, Fan Q, Chai C, Chu Y, Hao J. Ti3C2-MXene Ionogel with Long-Term Stability and High Sensitivity for Wearable Piezoresistive Sensors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
30
|
Chen S, Huang W. A review related to MXene preparation and its sensor arrays of electronic skins. Analyst 2023; 148:435-453. [PMID: 36468668 DOI: 10.1039/d2an01143c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MXenes have been flourishing over the last decade as a high-performance 2D material, which combines the advantages of high electrical conductivity, photothermal conversion, and easy dispersion. They have been used to create soft, highly conductive, self-healing, and tactile-simulating electronic skins (E-skins). However, these E-skins remain generally limited to one or two functions with a complex preparation process. Next-generation E-skins necessitate not only large-scale fabrication using simple and fast methods but also the integration of multiple sensing functions and signal analysis components in order to provide functionality that was not unattainable in the past. Starting with the synthesis of pure MXenes, we walk through the steps of designing MXene sensors, integrating electronic skin arrays, and determining the function of MXene-based electronic skins. We also summarise the problems with existing MXene-based E-skins and possible futuristic directions.
Collapse
Affiliation(s)
- Sha Chen
- Chengdu Techman Software Co., Ltd, Chengdu, China
| | - Wu Huang
- Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Huang CY, Yang G, Huang P, Hu JM, Tang ZH, Li YQ, Fu SY. Flexible Pressure Sensor with an Excellent Linear Response in a Broad Detection Range for Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3476-3485. [PMID: 36621816 DOI: 10.1021/acsami.2c19465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pressure sensing is highly demanding in wearable devices, robotics, and artificial intelligence, whereas it is still a big challenge to develop a pressure sensor with an excellent linear response in a broad detection range. Herein, a flexible and porous carbon nanotube (CNT)/carbon black (CB)/carbonyl iron powder (CIP)/silicone composite is proposed by a simple strategy of mixing, curing, and washing. Due to the porous structure induced by the sacrifice of sugar particles, an excellent linear response (R2 = 0.999) is achieved for the composite sensor by manipulating the contributions of contact resistance and tunnel resistance to the sensing performance via the alternation of CB and CNT contents. Moreover, the porous structure donates the composite sensor a low compressive modulus at a low pressure level, while the CIPs introduced lead to a high compressive modulus at a high pressure level with the assistance of an external magnetic field. As a result, the sensor produced has a wide linear response range of 80 Pa to 220 kPa, much wider than most of the linear response pressure sensors reported previously. The wide detection range is demonstrated by cyclic pressure tests in the frequency range of 0.1-5 Hz, durability tests, and monitoring human or robot motions including breathing, walking, lifting, and boxing, etc. Taking the advantages of low cost, high sensitivity, and excellent linear response in a wide pressure range, the current composite sensor is promising for precise monitoring of human motions and delicate controlling of robots.
Collapse
Affiliation(s)
- Cheng-Yi Huang
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Gang Yang
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Pei Huang
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Jin-Ming Hu
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Zhen-Hua Tang
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Yuan-Qing Li
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Shao-Yun Fu
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
32
|
Chen X, Zhang D, Luan H, Yang C, Yan W, Liu W. Flexible Pressure Sensors Based on Molybdenum Disulfide/Hydroxyethyl Cellulose/Polyurethane Sponge for Motion Detection and Speech Recognition Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2043-2053. [PMID: 36571453 DOI: 10.1021/acsami.2c16730] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible pressure sensors with excellent performance have broad application potential in wearable devices, motion monitoring, and human-computer interaction. In this paper, a flexible pressure sensor with a porous structure is proposed by coating molybdenum disulfide (MoS2) and hydroxyethyl cellulose (HEC) on a polyurethane (PU) sponge skeleton. The obtained sensor has excellent sensitivity (0.746 kPa-1), a wide detection range (250 kPa), fast response (120 ms), and outstanding repeatability over 2000 cycles. It is proven that the sensor can realize human motion detection and distinguish the touch of varying strength. In addition, a pressure sensing array was fabricated to reflect the pressure distribution and recognize the writing of Arabic numerals. Finally, the sensor performs speech detection through throat muscle movements, and high-accuracy (97.14%) speech recognition for seven words was achieved by a machine learning algorithm based on the support vector machine (SVM). This work provides an opportunity to fabricate simple flexible pressure sensors with potential applications in next-generation electronic skin, health detection, and intelligent robotics.
Collapse
Affiliation(s)
- Xiaoya Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huixin Luan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunqing Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Weiyu Yan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenzhe Liu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
33
|
Cai Y, Liu L, Meng X, Wang J, Zhang C, Li J, Lu Z, Duan JA. A broad range and piezoresistive flexible pressure sensor based on carbon nanotube network dip-coated porous elastomer sponge. RSC Adv 2022; 12:34117-34125. [PMID: 36545001 PMCID: PMC9706374 DOI: 10.1039/d2ra06487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Flexible pressure sensors have provided an attractive option for potential applications in wearable fields like human motion monitoring or human-machine interfaces. For the development of flexible pressure sensors, achieving high performance or multifunctions are popular research tendencies in recent years, such as improving their sensitivity, working range, or stability. Sponge materials with porous structures have been demonstrated that they are one of the potential substrates for developing novel and excellent flexible pressure sensors. However, for sponge-based pressure sensors, it is still a great challenge to realize a wide range of pressures from Pa level to hundreds kPa level. And how to achieve mechanical robustness remains unsolved. Here, we develop a flexible pressure sensor based on multicarbon nanotubes (MWCNTs) network-coated porous elastomer sponge with a broad range and robust features for use in wearable applications. Specifically, polyurethane (PU) sponge is used as the substrate matrix while dip-coated PU/MWCNTs composites as a conductive layer, achieving a highly bonding effect between the substrate and the conductive material, hence a great mechanical robust advantage is obtained and the working range also is improved. The pressure sensor show range of up to 350 kPa, while the minimum detection threshold is as low as 150 Pa. And before and after rolling by a bicycle or electric motorcycle, the sensor has the almost same responses, exhibiting great robustness.
Collapse
Affiliation(s)
- Yuyang Cai
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South UniversityChangsha 410012China
| | - Linpeng Liu
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South UniversityChangsha 410012China
| | - Xiancun Meng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin UniversityChangchun 130022China
| | - Jingxiang Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin UniversityChangchun 130022China
| | - Changchao Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin UniversityChangchun 130022China
| | - Jianhao Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin UniversityChangchun 130022China
| | - Zhilai Lu
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South UniversityChangsha 410012China
| | - Ji-an Duan
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South UniversityChangsha 410012China
| |
Collapse
|
34
|
Zhang H, Zhang D, Zhang B, Wang D, Tang M. Wearable Pressure Sensor Array with Layer-by-Layer Assembled MXene Nanosheets/Ag Nanoflowers for Motion Monitoring and Human-Machine Interfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48907-48916. [PMID: 36281989 DOI: 10.1021/acsami.2c14863] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, wearable sensors and electronic skin systems have become prevalent, which can be employed to detect the movement status and physiological signals of wearers. Here, a pressure sensor composed of mesh-like micro-convex structure polydimethylsiloxane (PDMS), MXene nanosheet/Ag nanoflower (AgNF) films, and flexible interdigital electrodes was designed by layer-by-layer (LBL) assembly. The unique microstructure of PDMS effectively increases the contact area and improves sensitivity. Moreover, AgNFs were introduced into the MXene as a "bridge," and the synergistic effect of the two further enhanced the performance of the sensor. The pressure sensor has high sensitivity (191.3 kPa-1), good stability (18,000 cycles), fast response/recovery time (80 ms/90 ms), and low detection limit (8 Pa), so it can be used for all-round monitoring of the human body. Sensing arrays were integrated with a wireless transmitter as an intelligent artificial electronic skin for spatial pressure mapping and human-computer interaction sensing. Moreover, we develop a smart glove by a simple method, combining it with a 3D model for wireless accurate detection of hand poses. This provides ideas for hand somatosensory detection technology, leading to health monitoring, intelligent rehabilitation training, and personalized medicine.
Collapse
Affiliation(s)
- Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Bao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyue Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingcong Tang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
35
|
Shumba AT, Montanaro T, Sergi I, Fachechi L, De Vittorio M, Patrono L. Leveraging IoT-Aware Technologies and AI Techniques for Real-Time Critical Healthcare Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:7675. [PMID: 36236773 PMCID: PMC9571691 DOI: 10.3390/s22197675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Personalised healthcare has seen significant improvements due to the introduction of health monitoring technologies that allow wearable devices to unintrusively monitor physiological parameters such as heart health, blood pressure, sleep patterns, and blood glucose levels, among others. Additionally, utilising advanced sensing technologies based on flexible and innovative biocompatible materials in wearable devices allows high accuracy and precision measurement of biological signals. Furthermore, applying real-time Machine Learning algorithms to highly accurate physiological parameters allows precise identification of unusual patterns in the data to provide health event predictions and warnings for timely intervention. However, in the predominantly adopted architectures, health event predictions based on Machine Learning are typically obtained by leveraging Cloud infrastructures characterised by shortcomings such as delayed response times and privacy issues. Fortunately, recent works highlight that a new paradigm based on Edge Computing technologies and on-device Artificial Intelligence significantly improve the latency and privacy issues. Applying this new paradigm to personalised healthcare architectures can significantly improve their efficiency and efficacy. Therefore, this paper reviews existing IoT healthcare architectures that utilise wearable devices and subsequently presents a scalable and modular system architecture to leverage emerging technologies to solve identified shortcomings. The defined architecture includes ultrathin, skin-compatible, flexible, high precision piezoelectric sensors, low-cost communication technologies, on-device intelligence, Edge Intelligence, and Edge Computing technologies. To provide development guidelines and define a consistent reference architecture for improved scalable wearable IoT-based critical healthcare architectures, this manuscript outlines the essential functional and non-functional requirements based on deductions from existing architectures and emerging technology trends. The presented system architecture can be applied to many scenarios, including ambient assisted living, where continuous surveillance and issuance of timely warnings can afford independence to the elderly and chronically ill. We conclude that the distribution and modularity of architecture layers, local AI-based elaboration, and data packaging consistency are the more essential functional requirements for critical healthcare application use cases. We also identify fast response time, utility, comfort, and low cost as the essential non-functional requirements for the defined system architecture.
Collapse
Affiliation(s)
- Angela-Tafadzwa Shumba
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, 73010 Lecce, Italy
| | - Teodoro Montanaro
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Ilaria Sergi
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Luca Fachechi
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, 73010 Lecce, Italy
| | - Massimo De Vittorio
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, 73010 Lecce, Italy
| | - Luigi Patrono
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
36
|
Ren M, Sun Z, Zhang M, Yang X, Guo D, Dong S, Dhakal R, Yao Z, Li Y, Kim NY. A high-performance wearable pressure sensor based on an MXene/PVP composite nanofiber membrane for health monitoring. NANOSCALE ADVANCES 2022; 4:3987-3995. [PMID: 36133328 PMCID: PMC9470067 DOI: 10.1039/d2na00339b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/14/2022] [Indexed: 06/16/2023]
Abstract
Flexible and wearable pressure sensors have attracted extensive attention in domains, such as electronic skin, medical monitoring and human-machine interaction. However, developing a pressure sensor with high sensitivity, mechanical stability and a wide detection range remains a huge challenge. In this work, a flexible capacitive pressure sensor, based on a Ti3C2T x (MXene)/polyvinyl pyrrolidone (PVP) composite nanofiber membrane (CNM), prepared via an efficient electrospinning process, is presented. The experimental results show that even a small mass fraction of MXene can effectively decrease the compression modulus of the PVP nanofiber membrane, thus enhancing the sensing performance. Specifically, the sensor based on (0.1 wt% MXene)/PVP CNM has a high sensitivity (0.5 kPa-1 at 0-1.5 kPa), a fast response/recovery time (45/45 ms), a wide pressure detection range (0-200 kPa), a low detection limit (∼9 Pa) and an excellent mechanical stability (8000 cycles). Due to its superior performance, the sensor can monitor subtle changes in human physiology and other signals, such as pulse, respiration, human joint motions and airflow. In addition, a 4 × 4 sensor array is fabricated that can accurately map the shape and position of objects with good resolution. The high-performance flexible pressure sensor, as developed in this work, shows good application prospects in advanced human-computer interface systems.
Collapse
Affiliation(s)
- Mengna Ren
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Zhongsen Sun
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Mengqi Zhang
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Xiaojun Yang
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Dedong Guo
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Shuheng Dong
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Rajendra Dhakal
- Department of Computer Science and Engineering, Sejong University Seoul 05006 Korea
| | - Zhao Yao
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Yuanyue Li
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Nam Young Kim
- Department of Electronic Engineering, Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
37
|
Guan H, Li H, Lai X, Zeng X. Facile fabrication of flame‐retardant and conductive cotton fabric via layer‐by‐layer assembly for human motion detection. J Appl Polym Sci 2022. [DOI: 10.1002/app.52915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hang Guan
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| |
Collapse
|