1
|
Nikolić N, Massaro S, Tagliapietra F, Schiavon S, Masin R. Post digestion weed seed survival in cattle. FRONTIERS IN PLANT SCIENCE 2025; 16:1483774. [PMID: 40171480 PMCID: PMC11960749 DOI: 10.3389/fpls.2025.1483774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025]
Abstract
Introduction This research aimed to evaluate the impact of ruminant digestion on viability and germination pattern of the seeds of 9 weed species (A. theophrasti, A. myosuroides, A. retroflexus, A. sterilis, C. album, D. stramonium, E. crus-galli, L. multiflorum and S. halepense). Methods One hundred seeds of each species were included in nylon bags and exposed to in vitro procedures simulating the rumen fermentation according to an experimental design that considered: 9 weed species, 3 incubation times in the artificial rumen (12, 24 and 48 h), 2 diets (lactating cows, and heifers), 4 replications, plus 4 additional replicas per species with seeds not subjected to the in vitro digestion as a control. This design was repeated two times (2 batches), involving a total of 504 replicas. Results were expressed in relative terms, using the data from the untreated seeds as a scaling factor. Data were analyzed, by species, with a model that considered diet and incubation time, and their interaction as fixed factors, and the batch as a random effect. Results and conclusions Incubation time evidenced the greatest impact on seed germination and viability (6 species), where diet (4 species) and Incubation time x diet interaction (3 species) had lower impact. Compared to the control, A. theophrasti germination increased to 150% after 12 h but dropped to ~20% after 48 h under the lactating cows' diet. Germination of A. myosuroides remained stable initially but fell to ~60% after 48 h, while A. sterilis showed consistently low germination, further declining with digestion. Germination of C. album rose to ~130% after 48 h, and the one of E. crus-galli to ~140%. For D. stramonium, germination decreased to ~20%, with heifers' diet causing greater losses. No significant effects were noted for L. multiflorum, S. halepense, or A. retroflexus. Viability losses were significant for A. theophrasti and A. myosuroides under the lactating cows' diet and for D. stramonium under the heifers' diet. Possible variation causes were evidenced in the thickness and the fibrous content (NDF, ADF, ADL) of the seed coats, correlated with the rumen microbial activity.
Collapse
Affiliation(s)
| | - Selene Massaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | | | | | | |
Collapse
|
2
|
Ighalo JO, Ohoro CR, Ojukwu VE, Oniye M, Shaikh WA, Biswas JK, Seth CS, Mohan GBM, Chandran SA, Rangabhashiyam S. Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold. iScience 2025; 28:111524. [PMID: 39807171 PMCID: PMC11728978 DOI: 10.1016/j.isci.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process. The alkaline nature of biochar is attributed to surface functional groups and addresses soil acidity issues. The porous structure and oxygen-containing functional groups contribute to soil microbial adhesion, affecting soil health and nutrient availability, improving plant root morphology, photosynthetic pigments, enzyme activities, and growth even under salinity stress conditions. The review underscores the potential of biochar to address diverse agricultural challenges, emphasizing the need for further research and application-specific considerations.
Collapse
Affiliation(s)
- Joshua O. Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem R. Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Victor E. Ojukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Wasim Akram Shaikh
- Department of Basic Science, School of Science and Technology, The Neotia University, Sarisha, West Bengal 743368, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering & Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | | | - Ganesh Babu Malli Mohan
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, USA
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Selvasembian Rangabhashiyam
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
3
|
Fu J, Chen S, Tan Y, Zou K, Yu X, Ji L, Zhang J, Xiao X, Wang W, Zhao K, Zou L. Inoculation of thermophilic bacteria from giant panda feces into cattle manure reduces gas emissions and decreases resistance gene prevalence in short-term composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123601. [PMID: 39642832 DOI: 10.1016/j.jenvman.2024.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Here, thermophilic bacteria (TB) with cellulose degradation functions were screened from composting panda feces and applied to cattle manure composting. TB (Aeribacillus pallidus G5 and Parageobacillus toebii G12) inoculation led to remarkable improvement of the compost temperature, prolonging of the thermophilic stage and shortening of the composting process, resulting in increased manure harmlessness (GI ≥ 70%), compost humification, and greenhouse gas emission reduction (14.19%-22.57%), compared with the control compost, within 15 days of composting. In particular, G5 inoculation reduced NH3 emissions by 41.97% relative to control composts over 15 days. G5 was capable of rapidly colonizing in the composts, and its inoculation immediately enriched the genera of Firmicutes, and simultaneously decreased the genera of Proteobacteria, contributing to the elimination of harmful microorganisms. Notably, this strain lacked antibiotic resistance genes, and the absolute abundances of resistance genes and mobile genetic genes (MGEs) decreased the most (by 80.84%). Metagenomic analysis revealed that enzymes capable of producing CO2, N2O, and NH3 were generally inhibited, while CO2 fixation and N2O and NH3 reduction enzymes were enriched in the G5 compost, since metagenome-assembled genomes of Proteobacteria harbored more key genes and enzymes in complete pathways for producing N2O, NH3, and CO2. Moreover, Proteobacteria, such as Pseudomonas and Halopseudomonas, were the main host of resistance genes and MGEs. Overall, the gas emission could be reduced, and more efficient control of resistance genes could be achieved by inhibited the abundance of Proteobacteria during composting. This study provides a safe and effective microbial agent (A. pallidus) for manure treatment.
Collapse
Affiliation(s)
- Jingxia Fu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yulan Tan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, China
| | - Keyi Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Ji
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianmin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Zhong J, Ding S, Zou X, Yu M, Du S, Wu D. Unraveling the impact of intervention strategies and oxygen disparity in humification during domestic waste composting. BIORESOURCE TECHNOLOGY 2025; 416:131736. [PMID: 39489310 DOI: 10.1016/j.biortech.2024.131736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
This study constructs three different photovoltaic assisted composting systems to treat rural domestic waste, and explores the interaction pathways between biomacromolecules and other factors under oxygen disparity at gradient heights of the compost. The optimized mode of regular turning and ventilation-dehydration significantly reduced the moisture content by 53.6% and increased the seed germination index by 35.6%. The oxygen content at different heights under the optimized mode significantly affects the physicochemical properties of the compost, and the degradation of cellulose, hemicellulose, and protein in the middle is higher than other parts. The structural equation model shows that the physicochemical properties at the bottom are affected by biomacromolecules, which may be related to volatile fatty acids(VFAs) produced under low oxygen conditions.The research results show that using manual turning and ventilation-dehydration as the optimized process can promote compost maturity, and oxygen concentration has an important impact on the humification process of the compost.
Collapse
Affiliation(s)
- Jialin Zhong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Shang Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xixuan Zou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Mengwen Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Shuwen Du
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Donglei Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
5
|
Mwangi O, Mucheru-Muna M, Kinyua M, Bolo P, Kihara J. Organic farming practices increase weed density and diversity over conventional practices: A meta-analysis. Heliyon 2024; 10:e32761. [PMID: 38952364 PMCID: PMC11215295 DOI: 10.1016/j.heliyon.2024.e32761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. Organic farming has been seen as a promising option due to its eco-friendly approaches during production. However, weeds are regarded as the major hindrance to effective crop production which varies depending on the type of crop and spacing. Their presence leads to reduced yield, increase in harvest cost and lower the qualities of some produce. Thus, weed management is a key priority for successful crop production. Therefore, we conducted a meta-analysis from published studies to quantify possible differences on weed density, diversity and evenness in organic and conventional farming systems and best intervention for weed management in organic farming system. Data included were obtained from 32 studies where 31 studies with 410 observations were obtained for weed density, 15 studies with 168 observations for diversity, and 5 studies with 104 observations for evenness. Standard deviation of mean was obtained from the studies, log transformed using natural logarithms and the effect size pooled using standardized mean difference (SMD). Publication bias was determined through funnel plot. Results showed that organic farming has significant higher weed density (P < 0.01), diversity (P = 0.01), and evenness (P < 0.05) compared to conventional farming. Despite so, diversified crop rotation has been proved to reduce weed density in organic farming by up to 49 % while maize-bean intercropping decrease densities of Amaranthus ssp, Cyperus ssp and Cammelina ssp compared with monocropping. Use of mulch after one hand weeding was found to control up to 98 % of weeds and use of cover crop between 24 % and 85 % depending on the type of the cover crop. The study results show that organic farming encourages high weed density, diversity and evenness but use of the integrated approaches can help to maintain weed density at a manageable level.
Collapse
Affiliation(s)
- Obadiah Mwangi
- Department of Environmental Sciences and Education, Kenyatta University P.O Box 43844-00100, Nairobi, Kenya
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) c/o International Centre of Insect Physiology and Ecology (ICIPE), Duduville Campus Off Kasarani Road P.O Box 82300621, Nairobi, Kenya
| | - Monicah Mucheru-Muna
- Department of Environmental Sciences and Education, Kenyatta University P.O Box 43844-00100, Nairobi, Kenya
| | - Michael Kinyua
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) c/o International Centre of Insect Physiology and Ecology (ICIPE), Duduville Campus Off Kasarani Road P.O Box 82300621, Nairobi, Kenya
| | - Peter Bolo
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) c/o International Centre of Insect Physiology and Ecology (ICIPE), Duduville Campus Off Kasarani Road P.O Box 82300621, Nairobi, Kenya
| | - Job Kihara
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) c/o International Centre of Insect Physiology and Ecology (ICIPE), Duduville Campus Off Kasarani Road P.O Box 82300621, Nairobi, Kenya
| |
Collapse
|
6
|
Wang F, Pan T, Fu D, Fotidis IA, Moulogianni C, Yan Y, Singh RP. Pilot-scale membrane-covered composting of food waste: Initial moisture, mature compost addition, aeration time and rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171797. [PMID: 38513870 DOI: 10.1016/j.scitotenv.2024.171797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The impact of different operational parameters on the composting efficiency and compost quality during pilot-scale membrane-covered composting (MCC) of food waste (FW) was evaluated. Four factors were assessed in an orthogonal experiment at three different levels: initial mixture moisture (IMM, 55 %, 60 %, and 65 %), aeration time (AT, 6, 9, and 12 h/d), aeration rate (AR, 0.2, 0.4, and 0.6 m3/h) and mature compost addition ratio (MC, 2 %, 4 %, and 6 %). Results indicated that 55 % IMM, 6 h/d AT, 0.4 m3/h AR, and 4 % MC addition ratio simultaneously provided the compost with the maximum cumulative temperature and the minimum moisture. It was shown that the IMM was the driving factor of this optimum composting process. On contrary, the optimal parameters for reducing carbon and nitrogen loss were 65 % IMM, 6 h/d AT, 0.4 m3/h AR, and 2 % MC addition ratio. The AR had the most influence on reducing carbon and nitrogen losses compared to all other factors. The optimal conditions for compost maturity were 55 % IMM, 9 h/d AT, 0.2 m3/h AR, and 6 % MC addition ratio. The primary element influencing the pH and electrical conductivity values was the AR, while the germination index was influenced by IMM. Protein was the main organic matter limiting the composting efficiency. The results of this study will provide guidance for the promotion and application of food waste MCC technology, and contribute to a better understanding of the mechanisms involved in MCC for organic solid waste treatment.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Ting Pan
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Ioannis A Fotidis
- School of Civil Engineering, Southeast University, Nanjing 211189, China; Department of Environment, Ionian University, 29100 Zakynthos, Greece
| | | | - Yixin Yan
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | | |
Collapse
|
7
|
Amin F, Shah F, Ullah S, Shah W, Ahmed I, Ali B, Khan AA, Malik T, Mustafa AEZMA. The germination response of Zea mays L. to osmotic potentials across optimal temperatures via halo-thermal time model. Sci Rep 2024; 14:3225. [PMID: 38332029 PMCID: PMC11303777 DOI: 10.1038/s41598-024-53129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
The maize (Zea mays L.) is a monocot that is a member of the Poaceae family and a valuable feed for livestock, human food, and raw material for various industries. The halothermal time model determines how plants respond to salt (NaCl) stress under sub-optimal conditions. This model examines the relation between NaClb (g), GR, GP, salinity and temperature stress on germination of seeds dynamics in various crops. Five constant temperatures i.e. 20, 25, 30, 35, and 40 °C and five ψ levels (NaCl concentrations converted to ψ - 0, - 0.2, - 0.4, - 0.6, and - 0.8 MPa) were used in this experiment. In light of the results, the maximum halo-thermal time constant value was recorded at 35 °C temperature, while maximum germination percentage was detected at 30 °C in the controlled condition. Moreover, the lowermost value was recorded at 20 °C at - 0.8 MPa osmotic potential. The highest CAT, APX, and GPX activities were recorded at 15 °C at - 0.8 MPa, while the lowest values were observed for 0 MPa at 30 °C temperature. In conclusion, by employing the halo thermal time model, the germination of maize variety (var.30W52) was accurately predicted for the first time under varying levels of temperature and osmotic potentials.
Collapse
Affiliation(s)
- Fazal Amin
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Fakhra Shah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Wadood Shah
- Biological Sciences Research Division, Pakistan Forest Institute, Peshawar, 25120, Pakistan.
| | - Iftikhar Ahmed
- National Agricultural Research Center, Islamabad, 45500, Pakistan.
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Amir Abdullah Khan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, 212013, China.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, 378, Jimma, Ethiopia.
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Zhu Y, Cao Y, Fu B, Wang C, Shu S, Zhu P, Wang D, Xu H, Zhong N, Cai D. Waste milk humification product can be used as a slow release nano-fertilizer. Nat Commun 2024; 15:128. [PMID: 38167856 PMCID: PMC10761720 DOI: 10.1038/s41467-023-44422-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The demand for milk has increased globally, accompanied by an increase in waste milk. Here, we provide an artificial humification technology to recycle waste milk into an agricultural nano-fertilizer. We use KOH-activated persulfate to convert waste milk into fulvic-like acid and humic-like acid. We mix the product with attapulgite to obtain a slow-release nano fulvic-like acid fertilizer. We apply this nano-fertilizer to chickweeds growing in pots, resulting in improved yield and root elongation. These results indicate that waste milk could be recycled for agricultural purposes, however, this nano-fertilizer needs to be tested further in field experiments.
Collapse
Affiliation(s)
- Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yuxuan Cao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Bingbing Fu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chengjin Wang
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Shihu Shu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Pengjin Zhu
- Guangxi Subtropical Crops Research Institute, Nanning, 530000, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Naiqin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
9
|
Pan C, Zhao Y, Chen X, Zhang G, Xie L, Wei Z, Song C. Improved carbon sequestration by utilization of ferrous ions during different organic wastes composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119188. [PMID: 37801948 DOI: 10.1016/j.jenvman.2023.119188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
The humic acid (HA) possesses a more recalcitrant structure, making it crucial carbon components that improve carbon sequestration. Moreover, ferrous ions could improve microbial activity and enhance compost humification, and their oxidation into iron oxides could adsorb carbon components for sequestration. Based on the advantages of low cost and easy availability of ferrous sulfate (FeSO4), this study investigated the effect of FeSO4 on carbon sequestration during composting. Chicken manure (CM) and food waste (FW) composting were carried out in four treatments, namely control (CM, FW) and 5% (w/w) FeSO4 treated groups (CM+, FW+). Results indicated that FeSO4 increased HA content, improved organic carbon stability. Carbon loss for CM, CM+, FW and FW + treatments were 48.5%, 46.2%, 45.0%, and 40.3%, respectively. Meanwhile, FeSO4 enhanced the function of bacterial taxa involved in HA synthesis in CM + treatment, and improved the number of core bacteria significantly associated with formation of HA and iron oxide. SEM analysis verified that role of FeSO4 was significant in promoting HA synthesis during CM + composting, while it was remarkably in enhancing HA sequestration during FW + composting. This article provided fundamental theoretical backing for enhancing HA production and improving carbon sequestration during different materials composting.
Collapse
Affiliation(s)
- Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| |
Collapse
|
10
|
Wang Y, Zhang C, Zhao Y, Wei Z, Li J, Song C, Chen X, Zhao M. Lignite drove phenol precursors to participate in the formation of humic acid during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162609. [PMID: 36871714 DOI: 10.1016/j.scitotenv.2023.162609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
This study set out to explore the impact of lignite on preserving organic matter and promoting the formation of humic acid (HA) during chicken manure composting. Composting test was carried out for control (CK), 5 % lignite addition treatment (L1), 10 % addition treatment (L2) and 15 % addition treatment (L3). The results demonstrated that lignite addition effectively reduced the loss of organic matter. The HA content of all lignite-added groups was higher than that of CK, and the highest was 45.44 %. L1 and L2 increased the richness of bacterial community. Network analysis showed higher diversity of HA-associated bacteria in L2 and L3 treatments. Structural equation models revealed that reducing sugar and amino acid contributed to the formation of HA during CK and L1 composting, while polyphenol contributed more to the HA formation during L2 and L3 composting. Furthermore, lignite addition also could promote the direct effect of microorganisms on HA formation. Therefore, the addition of lignite had practical significance to enhance compost quality.
Collapse
Affiliation(s)
- Yumeng Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China,; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhao Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China,.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiaomeng Chen
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meiyang Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Yan J, Chen X, Wang Z, Zhang C, Meng X, Zhao X, Ma X, Zhu W, Cui Z, Yuan X. Effect of temperature and storage methods on liquid digestate: Focusing on the stability, phytotoxicity, and microbial community. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 159:1-11. [PMID: 36724571 DOI: 10.1016/j.wasman.2023.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Identifying the stability and phytotoxicity of liquid digestate (LD) is necessary for safe agricultural utilization. Storage temperature, method, and time are critical factors that affect the stability and phytotoxicity of LD. This study therefore aimed to explore the dynamics of stability, phytotoxicity, and microbial community of LD in cattle farms under different storage conditions. The results showed that the contents of solids, organic matter, nitrogen, and phosphorous decreased during storage and exhibited temperature dependency. Conversely, the seed germination index increased, which was negatively correlated with dissolved organic carbon and ammonium nitrogen and positively correlated with certain bacteria (Thermovirga and Fastidiosipila). Open storage and/or higher temperature were found to contribute to the stabilization efficiency and phytotoxicity disappearance of LD. Open storage of LD at 30 °C for 60 days and 20 °C for 90 days was safe for its agricultural utilization, while hermetic storage of LD at 30 °C for 120 days and 20 °C for 150 days was safe. However, for storage at 10 °C for 180 days, additional post-treatment is required.
Collapse
Affiliation(s)
- Jing Yan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaotian Chen
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Ziyu Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - ChaoJun Zhang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Xingyao Meng
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoling Zhao
- College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuguang Ma
- School of Chemistry, Resource and Environment, Leshan Normal University, Leshan 614000, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Zongjun Cui
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Xufeng Yuan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China.
| |
Collapse
|
12
|
Kumar N, Gedam P, Gupta SK. Investigating the dynamics of ammonia volatilisation and the role of additives in thermal digestion of food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116312. [PMID: 36261998 DOI: 10.1016/j.jenvman.2022.116312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Averting nutrient volatilisation in thermal treatment of organic waste is a challenging task. The dynamics of ammonia volatilisation and the role of additives in preventing the losses of nutrients in thermal digestion of food waste (FW) were explored. The experimental trials were performed in a convective dehydrator at different combinations of temperatures and airflow velocities. The study dictated that ammonia volatilisation rate increased with increase in temperature and airflow velocity. The losses reached to its peak during the initial drying period and then gradually declined in the falling rate period. An artificial intelligence-based random forest model was explored to precisely predict the ammonia losses during the drying process. The SEM-EDX images confirmed enhanced N (2.25%) in the alum treated end product compared to blank (N - 1.8%) and thus reveals alum induced mineralization of nutrients. Higher intensities of the N containing compounds peaks observed in FTIR spectra also supported the mineralization of nitrogen. XRD analysis indicated formation of stable ammonium compounds in the sample digested with alum. Cost benefit analysis of the alum aided digestion revealed that it enhances the nutrient retention and overall cost of N in the end product by ₹626/tonne. The study revealed high potential of alum in reducing the ammonia volatilisation and enhancing the agronomical value of nutrients in the thermal digestion process.
Collapse
Affiliation(s)
- Nitin Kumar
- Department of Environmental Science & Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, 826004, India
| | - Pratik Gedam
- Department of Environmental Science & Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, 826004, India
| | - Sunil Kumar Gupta
- Department of Environmental Science & Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
13
|
Wang L, Wang X, Song Y, Sun L, Chen X, Wu J, Song C, Zhao Y. Slowed down nitrogen mineralization under bacterial community-driven conditions by adding inhibitors during rice straw composting. BIORESOURCE TECHNOLOGY 2022; 362:127778. [PMID: 35973568 DOI: 10.1016/j.biortech.2022.127778] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The aim of this paper was to confirm the role of inhibitors addition, namely adenosine triphosphate (ATP) and malonic acid (MA), on nitrogen availability during rice straw (RS) composting. The results showed that inhibitors addition slowed down the mineralization of ammonium nitrogen and nitrate nitrogen compared to CK. Meanwhile, amino sugar nitrogen and hydrolysable unknown nitrogen contents in ATP and MA treatments were higher, indicating that their addition improved the retention of organic nitrogen components. Furthermore, inhibitors additions attenuated the responsive relationship between bacterial communities and nitrogen components. The main reason was that the addition changed the bacterial community structure of RS compost. The final structural equation verified that inhibitors addition enhanced conversion between nitrogen components, that was, to complex nitrogen components to improve the quality of compost, and the remodeling of bacterial community played an important role. Therefore, adding inhibitors had a driving effect on promoting nitrogen sequestration.
Collapse
Affiliation(s)
- Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yangyang Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lihua Sun
- Dongchangfu Bureau of Agricultural and Rural Affairs, Liaocheng 252000, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Xu Z, Li R, Liu T, Zhang G, Wu S, Xu K, Zhang Y, Wang Q, Kang J, Zhang Z, Quan F, Zhang Y. Effect of inoculation with newly isolated thermotolerant ammonia-oxidizing bacteria on nitrogen conversion and microbial community during cattle manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115474. [PMID: 35751273 DOI: 10.1016/j.jenvman.2022.115474] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen loss during composting is closely related to NH4+-N conversion, and ammonia-oxidizing bacteria (AOB) are important microorganisms that promote NH4+-N conversion. Since the biological activity of conventional AOB agents used for compost inoculation declines rapidly during the thermophilic phase of composting, new compound inoculants should be developed that are active during that phase. In the current study, the effects of inoculating cattle manure compost with newly isolated AOB (5%, v/w) [thermotolerant AOB X-2 strain (T-AOB-2), mesophilic AOB X-4 strain (M-AOB-4), and AOB X-2 combined with AOB X-4 (MT-AOB-2-4)] on the conversion of nitrogen, compost maturity, and the resident microbial community were studied. During 35 days of composting, compared with the control, AOB inoculation reduced NH3 emissions by 29.98-46.94%, accelerated the conversion of NH4+-N to NO2--N, increased seed germination values by 13.00-25.90%, and increased the abundance of the microbial community at the thermophilic phase (16.38-68.81%). Network analysis revealed that Bacillaceae play a crucial role in the composting process, with the correlation coefficients: 0.83 (p < 0.05) with NH3, 0.64 (p < 0.05) with NH4+-N, and 0.81 (p < 0.05) with NO2--N. In addition, inoculation with MT-AOB-2-4 notably increased the total nitrogen content of compost, prolonged the sanitation stage, and promoted compost maturity. Hence, MT-AOB-2-4 may be used to increase the microbial community abundance and improve the efficiency of cattle manure composting.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Guanghui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Shenghui Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Kaili Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
15
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
16
|
Wang L, Qu F, Zhu Z, Zhao Y, Chen X, Shi M, Wei Z. The important role of tricarboxylic acid cycle metabolism pathways and core bacterial communities in carbon sequestration during chicken manure composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:20-29. [PMID: 35785624 DOI: 10.1016/j.wasman.2022.06.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
As a kind of livestock manure, chicken manure (CM) was rich in organic matter and microorganisms. However, a large amount of foul gas discharged by its random stacking not only threatened the environment, but also caused harm to human health. In view of the serious carbon loss and the unclear action mechanism of microbial community on carbon metabolism during CM composting, the effect of adding regulators on the sequestration of organic carbon was explored. Therefore, the purpose of this study was to explore the regulation mechanism of adding tricarboxylic acid cycle (TCA cycle) regulators on the core carbon metabolism pathway during CM composting. The results showed that the adenosine triphosphate (ATP) and malonic acid (MA) slowed down organic carbon degradation, resulting in lower carbon loss rate, which were 64.99% (CK), 62.35% (MA), and 61.26% (ATP) in each treatment. By comparing the abundance and structure of the carbon-related bacterial communities in different treatments, it was found that adding ATP and MA not only reduced the bacterial community abundance, but also tended to be similar in bacterial community composition. Moreover, the microbial specificity related to carbon metabolism pathway was enhanced, while the related gene expression and gene abundance were weakened. The regulation of TCA cycle metabolism pathway was confirmed to be the main way to improve organic carbon content. These findings revealed the positive effects of ATP and MA on carbon fixation from the perspective of gene metabolism.
Collapse
Affiliation(s)
- Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengting Qu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Xu S, Li L, Zhan J, Guo X. Variation and factors on heavy metal speciation during co-composting of rural sewage sludge and typical rural organic solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114418. [PMID: 34999283 DOI: 10.1016/j.jenvman.2021.114418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In this study, a co-composting of rural organic solid waste (rural sewage sludge, kitchen waste and corn stalks) was conducted to analyze the variation of heavy metals (As, Cu, Cr, Ni, Pb, Hg, and Zn) and their major influencing factors. During composting, significant changes were observed in the total contents of heavy metals (p < 0.01): the total concentrations of As, Cu, Hg, Pb and Zn increased by 7.5%, 54.1%, 26.3%, 15.8%, and 34.2%, whereas that of Cr and Ni decreased by 71.3% and 33.4%, respectively. Heavy metals were mainly bound to the oxidizable and residual fractions. Spearman and Redundancy analysis (RDA) indicated that substances were significantly correlated with the changes in speciation of heavy metals, among all the factors, while pH and temperature were the dominating environmental influencing parameters. Several metal-resistant bacterial genera (Pseudomonas, Paenibacillus, Bacillus, Acinetobacter, Desulfovibrio, and Ochrobactrum, etc) were observed, with significant explanatory capacity for the changes in heavy metals. Composting showed a poor effect on heavy metal passivation, except for that of As. After composting, the heavy metal contents were consistent with the application standards. The evaluation of potential ecological risk showed a high cumulative ecological risk (336.9) of heavy metals. This study provides technical support and practical information for the disposal and safe recycling for rural organic solid waste.
Collapse
Affiliation(s)
- Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Zhan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
18
|
Wang M, Zhang M, Chen X, Chen A, Xiao R, Chen X. Hydrothermal conversion of Chinese cabbage residue for sustainable agriculture: Influence of process parameters on hydrochar and hydrolysate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152478. [PMID: 34953838 DOI: 10.1016/j.scitotenv.2021.152478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The demands on novel and sustainable techniques for vegetable waste (VW) valorization continues to increase during the past few decades due to the growing waste production under the flourishing vegetable industries. In this study, Chinese cabbage residues were hydrothermal carbonization (HTC) at 180, 200, 220 and 240 °C for 2 to 6 h to explore the impacts of process parameters on the characteristics of hydrochars and hydrolysates and their feasibility in sustainable agriculture. Results indicated that hydrothermal temperature had a greater impact on cabbage residue hydrolysis than the residence time. With the rising reaction severity, hydrochars became more alkaline with higher amount of ash and carbon (C), while the pH and dissolved organic nitrogen (DON) and NH4+-N in the hydrolysate were gradually reduced. The thermogravimetric analysis (TG-DTG) indicated that organic constitutions in the feedstock went through incomplete decomposition. Although the recalcitrance index (R50) steadily increased through HTC (0.37-0.46), hydrochars were unstable and would not applicable for carbon sequestration. Furthermore, hydrochars and hydrolysate would be optimal media for plants seedling and growth for the abundant nutrients and dissolved organic compounds but reduced phytotoxicity. In conclusion, these results showed that HTC is highly applicable for vegetable waste management for sustainable agriculture.
Collapse
Affiliation(s)
- Mengqiao Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Muyuan Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xuhao Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Awasthi SK, Kumar M, Sarsaiya S, Ahluwalia V, Chen H, Kaur G, Sirohi R, Sindhu R, Binod P, Pandey A, Rathour R, Kumar S, Singh L, Zhang Z, Taherzadeh MJ, Awasthi MK. Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies. JOURNAL OF CLEANER PRODUCTION 2022; 341:130862. [DOI: 10.1016/j.jclepro.2022.130862] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
20
|
Liu T, Awasthi MK, Wang X, Awasthi SK, Jiao M, Shivpal V, Zhou Y, Liu H, Zhang Z. Effects of further composting black soldier fly larvae manure on toxic metals and resistant bacteria communities by cornstalk amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150699. [PMID: 34600993 DOI: 10.1016/j.scitotenv.2021.150699] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Rapid composting by black soldier fly larvae (BSFL) may be insufficient to maturation and humification of composting and further composting is necessary. The purpose of this study was to explore cornstalk addition on toxic metals (Cu, Zn, Pb and Cd), toxic metals resistance bacterial (TMRB) destiny and their relationship with physicochemical factors during BSFL manure composting. High-throughput sequencing was performed by six treatments, namely T1 to T6, where T1 to T3 were BSFL manures from chicken, pig and dairy manure, respectively, and T4 to T6 were same manures and utilized cornstalk to adjust C/N to 25. The results showed that cornstalk amendment could enhance the toxic metals immobilization rate compared to control treatments in the ultimate product. TMRB indicated that the major potential hosts bacteria were Firmicutes, Bacteroidota, Proteobacteria, Acidobacteriota and Actinobacteriota, and the sum relative abundance were 63.33%, 90.62%, 83.62%, 69.38%, 50.66% and 90.52% in T1 to T6 at the end of composting. Bacteria diversity and heat map revealed composting micro-ecology with additive cornstalk to remarkably effect main resistant bacterial distribution via adjusting environmental factors and potential hosts bacterial. Finally, T5 treatment was able to greatly decrease the TMRB abundance, and improve the ability of composting and ultimate product quality.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xuejia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Verma Shivpal
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
21
|
Chen X, Du Z, Guo T, Wu J, Wang B, Wei Z, Jia L, Kang K. Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118624. [PMID: 34864104 DOI: 10.1016/j.envpol.2021.118624] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuang Du
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Liming Jia
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin, 150056, China
| |
Collapse
|
22
|
Yang Y, Wang G, Li G, Ma R, Kong Y, Yuan J. Selection of sensitive seeds for evaluation of compost maturity with the seed germination index. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:238-243. [PMID: 34700164 DOI: 10.1016/j.wasman.2021.09.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The seed germination index (GI) is a widely used indicator of compost maturity and is a required index in many national standards. However, seeds of different species vary markedly in sensitivity to the biological toxicity of compost. Therefore, suitable seed selection is essential for evaluation of compost maturity with the GI. This study systematically investigated the germination percentage and root length for seeds of 17 species incubated in deionized water for 48 h at 25 °C in the dark. Based on the germination percentage, seeds of eight species (white radish, cucumber, fruit radish, edible rape, round radish, hybrid cucumber, cress, and Chinese cabbage) were selected for determination of the GI of chicken manure composted with differing proportions of tobacco powder and mushroom substrate. The GI of hybrid cucumber seeds showed a significant positive correlation with temperature and pH, and a significant negative correlation with E4/E6 ratio and ammonium-nitrogen content. The change in GI of hybrid cucumber seeds during composting and the GI value at the completion of composting were consistent with other maturity indicators. Among the tested seeds, the biological toxicity of the compost was best characterized by hybrid cucumber seeds, which thus represented a sensitive and reliable seed suitable for evaluation of compost maturity with the GI.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Shi M, Liu C, Wang Y, Zhao Y, Wei Z, Zhao M, Song C, Liu Y. Nitrate shifted microenvironment: Driven aromatic-ring cleavage microbes and aromatic compounds precursor biodegradation during sludge composting. BIORESOURCE TECHNOLOGY 2021; 342:125907. [PMID: 34536840 DOI: 10.1016/j.biortech.2021.125907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to clarify the aromatic cleavage pathways and microbes involved in the adverse effect of nitrate on aromatic compounds humic substances during sludge composting. Results showed that the functional microbes involved in aromatic compounds humic substances precursors (catechol, tyrosine, tryptophan and phenylalanine) cleavage pathways significantly enriched after nitrate addition. Linear regression analysis showed that aromatic-ring cleavage functional microbes exhibited significant negative correlation with aromatic humic substances (p < 0.05). Furthermore, network analysis indicated that most of microbial communities prefer cooperative with aromatic-ring cleavage functional microbes. Structural equation model further revealed that composting microenvironment drove aromatic-ring cleavage functional microbes activities, resulting in the biodegradation of complex aromatic compounds. This study parsed the effect of a negative factor on aromatic compounds humic substances from an opposing perspective. Properly controlling nitrate concentration and aromatic-ring cleavage functional microbes involved in precursors cleavage was suggested to the practice of composting.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Chengguo Liu
- Instrumental Analysis Center, Northeast Agricultural University, Northeast Agricultural University, Harbin 150030, PR China
| | - Yumeng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Maoyuan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Caihong Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Liaocheng University, Liaocheng 252000, PR China
| | - Yan Liu
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, PR China
| |
Collapse
|
24
|
Afsharnia F, Moosavi SA. Effects of diesel-engine exhaust emissions on seed germination and seedling growth of Brassicaceae family using digital image analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1887-1900. [PMID: 34900314 PMCID: PMC8617225 DOI: 10.1007/s40201-021-00742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
This paper describes a multi-phase investigation into the direct effect of diesel exhaust emission on seed germination traits and biochemical changes responsible for observed effects in seeds belongs to the Brassica family. Diesel exhaust emissions were collected in germination boxes and seeds were exposed to diesel exhaust pollutants for durations of 30 to 120 min with 30 min intervals. Observed effects include seed germination inhibition, changes in seeds' antioxidants activity, and protein content. The lowest seed germination of canola (71 %) and arugula (84 %) was observed when seeds were exposed to 120 min of diesel exhaust pollution. Seed exposure to diesel exhaust emission for 60 min, caused a 23 % and 8 % decline of germination index of canola and arugula, respectively. The maximum seed soluble protein for canola (3.72 mg/g FW) was observed in seeds exposed to 120 min diesel exhaust pollution declined to 1.65 mg/g FW, and 0.60 mg/g FW after 60 and 30 min exposure to diesel exhaust, respectively. The maximum protein content of arugula seeds (0.95 mg/g FW) was observed in the control treatment and it was reduced to 0.72 mg/g FW and 0.53 mg/g FW after 60 and 90 min exposure to diesel exhaust pollution. Catalase activity was significantly reduced as canola seed exposure to diesel exhausted was increased while there were no statistically significant changes for catalase activity of arugula seeds. All evidence suggested that time of exposure was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on agro-ecosystems.
Collapse
Affiliation(s)
- Fatemeh Afsharnia
- Department of Agricultural Machinery and Mechanization Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Seyed Amir Moosavi
- Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
25
|
Liu T, Kumar Awasthi M, Verma S, Qin S, Awasthi SK, Liu H, Zhou Y, Zhang Z. Evaluation of cornstalk as bulking agent on greenhouse gases emission and bacterial community during further composting. BIORESOURCE TECHNOLOGY 2021; 340:125713. [PMID: 34371335 DOI: 10.1016/j.biortech.2021.125713] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The aim of current work was to explore the impact of Cornstalk (CS) on greenhouse gaseous emission and maturation during further composting and analyzed its impact on bacterial diversity. Three kinds of immature fertilizers were collected from chicken, pig and dairy manure namely T1, T2 and T3 as control, T4, T5 and T6 were added CS into T1 to T3 and adjusted C/N to 25 namely treatment. The results illustrated that gases (N2O, CH4 and NH3) emission of CS added treatments decreased by 6.39%-24.68%, 10.60%-23.23% and 13.00%-19.58%, respectively. But the CS amendment increased CO2 emission by 15.53%-30.81%. The mineralization of carbon and nitrogen was mainly correlated to Firmicutes, Actinobacteria, Proteobacteria and Bacteroidota, CS amendment increased abundance by 22.28%, 17.79%, 1.48% and 35.90%, respectively. The strategy of employing CS would be the most feasible approach for recycling of immature manure, considering its compost quality and environmental from farm.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
26
|
Zhu Y, Jin Y, Liu X, Miao T, Guan Q, Yang R, Qu J. Insight into interactions of heavy metals with livestock manure compost-derived dissolved organic matter using EEM-PARAFAC and 2D-FTIR-COS analyses. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126532. [PMID: 34252653 DOI: 10.1016/j.jhazmat.2021.126532] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
Dissolved organic matter (DOM), as the most active ingredient in compost, directly determines the speciation and environmental behavior of HMs. Here, the binding properties of DOM derived from chicken-manure compost (CHM), cow-manure compost (COM) and pig-manure compost (PIM) with HMs were explored by analyses of Fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and two-dimensional correlation Fourier transform infrared spectroscopy (2D-FTIR-COS). Results showed that the binding characteristics vary with origin of DOM and type of HMs. The fulvic-like component dominated the transformation of HMs speciation, and CHM-DOM had higher affinity with HMs and greater risk causing pollution due to its higher aromaticity, molecular weight and distribution of fluorescent components. Moreover, Cu(II) can efficiently bind to DOM with the stability constants (log kM) ranging from 4.53 to 5.38, followed by Pb(II) (3.34-3.57), whereas Cd(II) can hardly bind to DOM. The amide and polysaccharide were the predominant sites for HMs binding in CHM-DOM, and polysaccharide and phenolic in COM-DOM, while phenolic and amide in PIM-DOM, respectively. Although the proportion of protein-like components and non-fluorescent polysaccharides in DOM were low, their role in HMs binding should not be ignored. In brief, the environmental risk caused by livestock manure compost may originate from interactions between DOM and HMs.
Collapse
Affiliation(s)
- Yuanchen Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tianlin Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Chen X, Ren X, Wang Q, Li R, Jiao M, Li S, Wang Y, Zhang Z. The Normalization of Seed Germination Test: An Effective Method to Assess Compost Maturity. COMPOST SCIENCE & UTILIZATION 2021; 29:65-74. [DOI: 10.1080/1065657x.2023.2262461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/18/2023] [Indexed: 01/11/2025]
Affiliation(s)
- Xing Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Songling Li
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Yayi Wang
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Xue S, Zhou L, Zhong M, Kumar Awasthi M, Mao H. Bacterial agents affected bacterial community structure to mitigate greenhouse gas emissions during sewage sludge composting. BIORESOURCE TECHNOLOGY 2021; 337:125397. [PMID: 34139563 DOI: 10.1016/j.biortech.2021.125397] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The present work studied the influence of bacterial agents (B1, B2) and bamboo biochar (BB) on greenhouse gas emissions and bacterial community during the sewage sludge composting. Results showed that compared with CK, the total methane emissions ofC, B1, B1C, B2, and B2C treatments declined by 16.4%, 25.2%, 45.4%, 7.8%, and 44.4%, respectively. The total N2O emissions ofC and B1C treatments declined by 5.1% and 3.7% while B1, B2, and B2C treatments increased the total N2O emissions by 6.7%, 21.6%, and 10.4%, respectively. These results illustrated that the addition of BB is conducive for reducing greenhouse gas emissions while different bacterial agents have various effects. According to pearson correlation analysis, N2O emissions and Acidimicrobiia, Alphaproteobacteria, Gammaproteobacteria, and Tepidiformia have strong negative correlation while positive correlation with Bacilli and Clostridia. Methane emissions have a strong negative correlation with Actinobacteria. CO2 emissions have a strong positive correlation with Bacilli.
Collapse
Affiliation(s)
- Shudan Xue
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lina Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Minzheng Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
29
|
Ren X, Wang Q, Chen X, He Y, Li R, Li J, Zhang Z. Pathways and mechanisms of nitrogen transformation during co-composting of pig manure and diatomite. BIORESOURCE TECHNOLOGY 2021; 329:124914. [PMID: 33690057 DOI: 10.1016/j.biortech.2021.124914] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 05/16/2023]
Abstract
The aim of this study was to investigate the pathways and mechanisms of nitrogen transformation during the composting process, by adding diatomite (0%, 2.5%, 5%, 10%, 15% and 20%) into initial mixtures of pig manure and sawdust. The results revealed that diatomite facilitated the conversion from NH4+-N to amino acid nitrogen and hydrolysis undefined nitrogen, then reduced NH3 and N2O emission by 8.63-35.29% and 14.34-73.21%, respectively. Moreover, the structure and abundance of nitrogen functional genes provided evidence for nitrogen loss. Furthermore, compared with the control (0.03), the treatment blended with 10% diatomite (T3) had the highest value in composting score (-1.27). Additionally, the ratio of carbon and nitrogen (57.30%) was vital for reducing nitrogen loss among all physio-chemical parameters in this study. In conclusion, adding diatomite was a practical way to enhance nitrogen conservation and increase quality of end products, and the optimum added dosage was at 10%.
Collapse
Affiliation(s)
- Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xing Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yifeng He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Ji Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University and Suzhou ViHong Biotechnology, Wuzhong District, 215128 Jiangsu Province, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
30
|
Chen X, Cheng W, Li S, Tang X, Wei Z. The "quality" and "quantity" of microbial species drive the degradation of cellulose during composting. BIORESOURCE TECHNOLOGY 2021; 320:124425. [PMID: 33242687 DOI: 10.1016/j.biortech.2020.124425] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to explore the contribution of microbial community to cellulose degradation during cellulosic wastes composting. Three raw materials with different cellulose content were employed, including rice straws (RS), leaves (L) and mushroom dregs (MD). The cellulose degraded by 92.09%, 56.68% and 40.03% during RS, L and MD composting, respectively, which could be explained by cellulases activity. Besides, each cellulase were only linked to a specific group of bacteria, thus cellulose degradation needed the cooperation of various microorganisms. Ultimately, structural equation models verified that the richness and evenness of microbial community were the primary driving factors of cellulose degradation. The richness symbolized microbial functionality, which was equivalent to the "quality" of microbial species. The evenness symbolized the scope of function, which was equivalent to the "quantity". Therefore, the "quality" and "quantity" of microbial species drove cellulose degradation during RS, L and MD composting.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wanting Cheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shenzhou Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Tang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
31
|
Liu T, Kumar Awasthi M, Kumar Awasthi S, Ren X, Liu X, Zhang Z. Influence of fine coal gasification slag on greenhouse gases emission and volatile fatty acids during pig manure composting. BIORESOURCE TECHNOLOGY 2020; 316:123915. [PMID: 32739574 DOI: 10.1016/j.biortech.2020.123915] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
This study was evaluated industrial waste fine coal gasification slag (FCGS) as an additive on pig manure composting by parameters of greenhouse gases, NH3, volatile fatty acids (VFAs) and maturity. Six treatments of FCGS (0%, 2%, 4%, 6%, 8% and 10%) were added into the mixture raw material and composted 42 days. Results illustrated that the FCGS amendment could prolong sanitation stage and promote the degree of maturity, germination index and C/N ratio during composting. With the increasing amendment of FCGS, GI was increased from 9.97 to 28.45%. Compared with control, increasing of FCGS proportion could reduce the mitigation of global warming potential (N2O and CH4), NH3 and cumulative of VFAs from 8.89-77.04%, 3.81-71.65%, 5.18-28.02% and 8.79-83.33%. Finally, present study results revealed that 10%FCGS could improve composting and reduced the maturity period as well as compost quality, thus recommended as effective dosage for efficient pig manure composting.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangyu Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
32
|
Vaverková MD, Adamcová D, Winkler J, Koda E, Petrželová L, Maxianová A. Alternative method of composting on a reclaimed municipal waste landfill in accordance with the circular economy: Benefits and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137971. [PMID: 32220733 DOI: 10.1016/j.scitotenv.2020.137971] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Waste composting is becoming a key element of integrated waste management. Composting has a number of advantages, including economic benefits, improvement of soil properties through the use of compost, reduction in the use of chemical fertilisers, and minimization of environmental pollution. Composting on a landfill surface appears to be an economical solution that can help close the waste loop and material cycle. In this study, a composting plant located on a landfill surface was analysed. The main objective of the research was to identify the species of plants growing in the organic fraction of municipal solid waste in temporary storage, in the composting plant, and in maturing compost located in a reclaimed plot at the landfill site. During monitoring, 88 plant species were identified altogether. It was observed that compost can become a source of weed infestation. To control the presence of weeds in the compost, basic principles of composting are to be followed to reduce the quantity of weed seeds. The thermophilic phase must occur to reduce the viability of seeds in the input materials and sufficient moisture must be ensured during the composting process. When these principles are strictly observed and the stored compost is maintained without vegetation, the supply of seeds in the compost will be low, and the undesirable spread of plant species to adjacent areas will be controlled. The results showed that the use of the obtained compost did not result in the propagation of weed species. This study demonstrates that composting on a reclaimed landfill offers various advantages such as a closed waste management cycle, coverage of the active landfill body, and fertilisation of the reclaimed part of the landfill.
Collapse
Affiliation(s)
- Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland.
| | - Dana Adamcová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Jan Winkler
- Department of Plant biology, AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Eugeniusz Koda
- Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
| | - Lenka Petrželová
- Department of Plant biology, AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Alžbeta Maxianová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| |
Collapse
|