1
|
Kilic L, Liu J, Engel B, Jafvert CT, Bhatt P, Brunnquell J, Simsek H. Biological carbon capture from egg-washing wastewater using microalgae for sustainable biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178708. [PMID: 39919660 DOI: 10.1016/j.scitotenv.2025.178708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Carbon capture, storage, and utilization are essential strategies for mitigating climate change. Biological carbon capture, particularly algae-based systems, offers a low-energy alternative to traditional chemical processes, which are energy and water-intensive. This study explored the cultivation of Chlorella vulgaris using egg-washing wastewater, with the harvested biomass utilized for oil extraction and subsequent biofuel production. The harvested biomass was subjected to oil extraction using solvents after applying four different pretreatment methods, including UV light exposure, moist heat, microwave treatment, and electrocoagulation. Although UV-C treatment yielded the highest lipid content, oil yields for; UV, moist heat, electrocoagulation, and microwave pretreatments were 20.8, 28.9, 37.5, and 25.0 %, respectively. Electrocoagulation pretreatment not only delivered the highest oil yield but also improved the fatty acid profile, significantly increasing the levels of methyl heptadecanoate (C17:0) and methyl heptadecanoate (C17:1). Compared to conventional crop-based biodiesel, algae biodiesel exhibits lower energy density. Still, it offers advantages such as improved oxidation stability, a higher cetane number, and reduced nitrogen oxide emissions due to its lower polyunsaturated lipid content and shorter carbon chain lengths. However, its performance at low temperatures remains composition-dependent. Overall, these findings demonstrate the potential of C. vulgaris cultivated in egg-washing wastewater for biodiesel production while indicating that electrocoagulation stands out as a sustainable alternative for large-scale applications with energy efficiency, improved oil composition, and faster processing time.
Collapse
Affiliation(s)
- Levent Kilic
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Junli Liu
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Bernard Engel
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Chad T Jafvert
- School of Civil Engineering, Purdue University, West Lafayette, IN, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | | | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA.
| |
Collapse
|
2
|
Duan C, Hu L, Lin X, Xue J, Zou J, Wu H. Impacts of salinity stress induced by ballast water discharge on the ecosystem of shanghai port, China. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106629. [PMID: 39008941 DOI: 10.1016/j.marenvres.2024.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
Large quantities of marine ballast water discharged by ocean-going vessels can cause salinity increases in freshwater ports, which in turn negatively affects indigenous plankton in the ports. In this study, we investigated the impacts of marine ballast water discharge on the plankton community in a freshwater wharf through field surveys. It was found that salinity stress caused reductions in community indicators such as plankton community composition, abundance and diversity, thus threatening the structure and function of the plankton community in the wharf. In terms of the impact range, the salinity stress had a significant effect on all plankton in the waters near the discharge point and the phytoplankton in the waters 50 m from the discharge point, but had no significant effect on the plankton in the waters further away. Ballast water discharge also caused a significant decrease in the alpha diversity and richness of the plankton community but had no significant effect on the evenness of the plankton community. Moreover, phytoplankton were more tolerant of salinity changes than zooplankton in our study. This study provides an ecological reference for the scientific management of marine ballast water discharge and the risk of exogenous nutrient inputs to freshwater ecosystems.
Collapse
Affiliation(s)
- Chenyang Duan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Lei Hu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiangbin Lin
- Pudong Maritime Safety Administration, Shanghai, 200137, China
| | - Junzeng Xue
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jin Zou
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Huixian Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; The Hong Kong University of Science and Technology, Hong Kong, 999077, China.
| |
Collapse
|
3
|
Ma Y, Liu S, Cui L, Fei Q, Wang Q. Turning food waste to microbial lipid towards a superb economic and environmental sustainability: An innovative integrated biological route. ENVIRONMENTAL RESEARCH 2024; 255:119125. [PMID: 38740293 DOI: 10.1016/j.envres.2024.119125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
With the drastic growth of the economic and population, the global energy requirement is on the rise, and massive human and material resources have been put into the development of alternative and renewable energy sources. Biodiesel has been recognized as a green and sustainable alternative energy, but the raw materials-associated source and cost makes it difficult to achieve large-scale commercial production. Microbial lipids (ML) produced by oleaginous microbes have attracted more and more topics as feedstocks for biodiesel production because of their unique advantages (fast growth cycle, small footprint and so on). However, there are still many problems and challenges ahead towards commercialization of ML-based biodiesel, especially the cost of feedstock for ML production. Food waste (FW) rich in organic matters and nutrients is an excellent and almost zero-cost feedstock for ML production. However, current biological routes of FW-based ML production have some defects, which make it impossible to achieve full industrialization at present. Therefore, this review intends to provide a critical and comprehensive analysis of current biological routes of FW-based ML production with the focus on the challenges and solutions forward. The biological routes towards future FW-based ML production must be able to concurrently achieve economic feasibility and environmental sustainability. On this condition, an innovative integrated biological route for FW-based ML production has thus been put forward, which is also elucidated on its economic and environmental sustainability. Moreover, the prospective advantages, limitations and challenges for future scale-up of FW-based ML production have also been outlined, together with the perspectives and directions forward.
Collapse
Affiliation(s)
- Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Shiman Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lihui Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Peng Y, Yao S, Li A, Xiong F, Sun G, Li Z, Zhou H, Chen Y, Gong X, Peng F, Liu Z, Zhang C, Zeng J. Investigating quantitative approach for microalgal biomass using deep convolutional neural networks and image recognition. BIORESOURCE TECHNOLOGY 2024; 403:130889. [PMID: 38797362 DOI: 10.1016/j.biortech.2024.130889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
The effective monitoring of microalgae cultivation is crucial for optimizing their energy utilization efficiency. In this paper, a quantitative analysis method, using microalgae images based on two convolutional neural networks, EfficientNet (EFF) and residual network (RES), is proposed. Suspension samples prepared from two types of dried microalgae powders, Rhodophyta (RH) and Spirulina (SP), were used to mimic real microalgae cultivation settings. The method's prediction accuracy of the algae concentration ranges from 0.94 to 0.99. RH, with a distinctively pronounced red-green-blue value shift, achieves a higher prediction accuracy than SP. The prediction results of the two algorithms were significantly superior to those of a linear regression. Additionally, RES outperforms EFF in terms of its generalization ability and robustness, which is attributable to its distinct residual block architecture. The RES provides a viable approach for the image-based quantitative analysis.
Collapse
Affiliation(s)
- Yang Peng
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China.
| | - Shen Yao
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Aoqiang Li
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China
| | - FeiFei Xiong
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Guangwen Sun
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Zhouzhou Li
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Huaichun Zhou
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Yang Chen
- School of Electrical Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Xun Gong
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Fanke Peng
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Zhuolin Liu
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No 1, Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Chuxuan Zhang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Jianhui Zeng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| |
Collapse
|
5
|
Saleem S, Sheikh Z, Iftikhar R, Zafar MI. Eco-friendly cultivation of microalgae using a horizontal twin layer system for treatment of real solid waste leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119847. [PMID: 38142597 DOI: 10.1016/j.jenvman.2023.119847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Solid waste leachate (SWL) requires dilution with water to offset the negative effects of high nutrient concentration and organic compounds for its microalgae-based treatment. Among attached cultivation systems, twin layer is a technology in which limited information is available on treatment of high strength wastewater using microalgae. Moreover, widespread application of twin layer technology is limited due to cost of substrate and source layer used. In the present study, potential of Scenedesmus sp. for the treatment of SWL was assessed on horizontal twin layer system (HTLS). Novel and cost-effective substrate layers were tested as attachment material. Wetland treated municipal wastewater (WMW) was used to prepare SWL dilutions viz, 5%, 10%, 15%, 20% and 25% SWL. Recycled printing paper showed maximum biomass productivity of 5.19 g m-2 d-1. Among all the SWL dilutions, Scenedesmus sp. achieved maximum growth of 103.05 g m-2 in 5% SWL which was 16% higher than WMW alone. The maximum removal rate of NH4+ -N, TKN, and PO43- P was obtained in 20% SWL which was 1371, 1588 and 153 mg m-2 d-1 respectively. Varying concentrations of nutrients in different SWL dilutions significantly affected lipid biosynthesis, with enhanced productivity of 2.28 g m-2 d-1 achieved in 5% SWL compared to 0.97 g m-2 d-1 in 20% SWL. Hence, it can be concluded that 5% SWL dilution was good for biomass and lipid production, while the highest nutrient removal rates were obtained at 20% SWL mainly attributed to biotic and abiotic processes. Based on these results HTLS can be a promising technology for pilot scale to explore industrialized application of wastewater treatment and algal production.
Collapse
Affiliation(s)
- Sahar Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Zeshan Sheikh
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Rashid Iftikhar
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
6
|
Wu F, Gong X, Meng D, Li H, Ren D, Zhang J. Effective immobilization of bisphenol A utilizing activated biochar incorporated into soil: combined with batch adsorption and fixed-bed column studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103259-103273. [PMID: 37688701 DOI: 10.1007/s11356-023-29657-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
This study presented the mixture of biochar and soil for removal of bisphenol A (BPA) to assess environmental remediation ability. Using phoenix tree leaves as biomass and phosphoric acid as activator, after one-step hydrothermal and short-term activation, the eventual solid product was phosphoric acid hydrothermal activated carbon (HPC). The characterizations showed that HPC had the high specific surface (994.21 m2·g-1), and large unsaturated esters and hydroxyl groups. The saturated adsorption capacities of batch and column adsorption for the addition of 0.5% HPC to soil were 0.790 mg·g-1 and 67.23 mg·kg-1, while to the natural soil were 0.236 mg·g-1 and 8.75 mg·kg-1, respectively. The adsorption kinetics and thermodynamic analysis indicated that the adsorption process utilizing HPC incorporated into soil was a chemical reaction rate-controlled, physical-dominated multilayer adsorption, and spontaneous endothermic. Also, batch adsorption experiments and analysis were performed under different pH levels, HPC contents, organic acid concentrations, and cationic strengths. Successively, fixed-bed column experiments were carried out with and without the HPC; the results showed that the wide mass transfer zone led to the effective fixation of BPA, and the organic acid had no obvious effect on the fixation of BPA when the 1.0% HPC mixed with soil. Finally, through characterizations and data analysis, the enhanced adsorption of BPA by HPC mixed with soil mainly relied on π-π interaction, hydrogen bonding, followed by electrostatic attraction and pore filling.
Collapse
Affiliation(s)
- Fengying Wu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xiangyi Gong
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Dekang Meng
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hao Li
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Dajun Ren
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| |
Collapse
|
7
|
Naseema Rasheed R, Pourbakhtiar A, Mehdizadeh Allaf M, Baharlooeian M, Rafiei N, Alishah Aratboni H, Morones-Ramirez JR, Winck FV. Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges. Front Bioeng Biotechnol 2023; 11:1193424. [PMID: 37799812 PMCID: PMC10548143 DOI: 10.3389/fbioe.2023.1193424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
The burgeoning human population has resulted in an augmented demand for raw materials and energy sources, which in turn has led to a deleterious environmental impact marked by elevated greenhouse gas (GHG) emissions, acidification of water bodies, and escalating global temperatures. Therefore, it is imperative that modern society develop sustainable technologies to avert future environmental degradation and generate alternative bioproduct-producing technologies. A promising approach to tackling this challenge involves utilizing natural microbial consortia or designing synthetic communities of microorganisms as a foundation to develop diverse and sustainable applications for bioproduct production, wastewater treatment, GHG emission reduction, energy crisis alleviation, and soil fertility enhancement. Microalgae, which are photosynthetic microorganisms that inhabit aquatic environments and exhibit a high capacity for CO2 fixation, are particularly appealing in this context. They can convert light energy and atmospheric CO2 or industrial flue gases into valuable biomass and organic chemicals, thereby contributing to GHG emission reduction. To date, most microalgae cultivation studies have focused on monoculture systems. However, maintaining a microalgae monoculture system can be challenging due to contamination by other microorganisms (e.g., yeasts, fungi, bacteria, and other microalgae species), which can lead to low productivity, culture collapse, and low-quality biomass. Co-culture systems, which produce robust microorganism consortia or communities, present a compelling strategy for addressing contamination problems. In recent years, research and development of innovative co-cultivation techniques have substantially increased. Nevertheless, many microalgae co-culturing technologies remain in the developmental phase and have yet to be scaled and commercialized. Accordingly, this review presents a thorough literature review of research conducted in the last few decades, exploring the advantages and disadvantages of microalgae co-cultivation systems that involve microalgae-bacteria, microalgae-fungi, and microalgae-microalgae/algae systems. The manuscript also addresses diverse uses of co-culture systems, and growing methods, and includes one of the most exciting research areas in co-culturing systems, which are omic studies that elucidate different interaction mechanisms among microbial communities. Finally, the manuscript discusses the economic viability, future challenges, and prospects of microalgal co-cultivation methods.
Collapse
Affiliation(s)
| | - Asma Pourbakhtiar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Nahid Rafiei
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Hossein Alishah Aratboni
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Jose Ruben Morones-Ramirez
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Universidad Autonoma de Nuevo Leon (UANL), Av Universidad s/n, CD. Universitaria, San Nicolás de los Garza, Nuevo León, Mexico
| | - Flavia Vischi Winck
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
8
|
Jaiswal KK, Kumar V, Arora N, Vlaskin MS. Evaluation of the mechanisms underlying altered fatty acid biosynthesis in heterotrophic microalgal strain Chlorella sorokiniana during biodegradation of phenol and p-nitrophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87866-87879. [PMID: 37432577 DOI: 10.1007/s11356-023-28615-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Phenolic compounds have become a severe environmental concern due to water contamination, affecting the sustainability of the ecosystem. The microalgae enzymes have enticed for the efficient involvement in the biodegradation of phenolics compound in metabolic processes. In this investigation, the oleaginous microalgae Chlorella sorokiniana was cultured heterotrophically under the influence of phenol and p-nitrophenol. The enzymatic assays of algal cell extracts were used to decipher the underlying mechanisms for phenol and p-nitrophenol biodegradation. A reduction of 99.58% and 97.21% in phenol and p-nitrophenol values, respectively, was recorded after the 10th day of microalgae cultivation. Also, the biochemical components in phenol, p-nitrophenol, and control were found to be 39.6 ± 2.3%, 36.7 ± 1.3%, and 30.9 ± 1.8% (total lipids); 27.4 ± 1.4%, 28.3 ± 1.8%, and 19.7 ± 1.5% (total carbohydrates); and 26.7 ± 1.9%, 28.3 ± 1.9%, and 39.9 ± 1.2% (total proteins), respectively. The GC-MS and 1H-NMR spectroscopy attested the incidence of fatty acid methyl esters in the synthesized microalgal biodiesel. The activity of catechol 2,3-dioxygenase and hydroquinone 1,2-dioxygenase in microalgae under heterotrophic conditions has conferred the ortho- and hydroquinone pathways for phenol and p-nitrophenol biodegradation, respectively. Also, the acceleration of fatty acid profiles in microalgae is deliberated under the impact of the phenol and p-nitrophenol biodegradation process. Thus, microalgae enzymes in the metabolic degradation process of phenolic compounds encourage ecosystem sustainability and biodiesel prospects due to the increased lipid profiles of microalgae.
Collapse
Affiliation(s)
- Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, 248002, India.
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation.
| | - Neha Arora
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow, 125412, Russia
| |
Collapse
|
9
|
Takabe Y, Nitta Y, Shingu I, Hino Y, Horino T, Noguchi M. Effects of fluidised carriers on the community composition, settleability and energy production of indigenous microalgal consortia cultivated in treated wastewater. BIORESOURCE TECHNOLOGY 2023; 381:129133. [PMID: 37156282 DOI: 10.1016/j.biortech.2023.129133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Fluidised-bed systems are a promising approach to microalgal cultivation, but few studies have considered their application to indigenous microalgal consortia (IMCs), which have high adaptability to wastewater. In this study, IMCs were cultivated in treated wastewater with and without fluidised carriers, and the effects of operating parameters were considered. Microalgae in the culture were confirmed to originate from the carriers, and the IMC presence on the carriers was promoted by decreasing the carrier replacement number and increasing the culture replacement volume. The presence of carriers enabled greater nutrient removal from the treated wastewater by the cultivated IMCs. Without carriers, IMCs in the culture were scattered and showed poor settleability. With carriers, IMCs in the culture exhibited good settleability owing to floc formation. The improved settleability with carriers also increased the energy production from sedimented IMCs.
Collapse
Affiliation(s)
- Yugo Takabe
- Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan.
| | - Yoshiki Nitta
- Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan
| | - Itsuki Shingu
- Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan
| | - Yoshikuni Hino
- Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan
| | - Taro Horino
- Water Reclamation Technology Department, R&D Center, Business Strategy Division, METAWATER Co., Ltd., JR Kanda Manseibashi Bldg. 1-25, Kanda-sudacho, Chiyoda-ku, Tokyo 1010041, Japan
| | - Motoharu Noguchi
- Water Reclamation Technology Department, R&D Center, Business Strategy Division, METAWATER Co., Ltd., JR Kanda Manseibashi Bldg. 1-25, Kanda-sudacho, Chiyoda-ku, Tokyo 1010041, Japan
| |
Collapse
|
10
|
Cao B, Hu S, Zhu K, Pan C, Marrakchi F, Ni J, Yuan C, Qian L, Chen H, Yuan J, Abomohra A, Bartocci P, Fantozzi F, Wang S. Response surface optimization of product yields and biofuel quality during fast hydrothermal liquefaction of a highly CO 2-tolerant microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160541. [PMID: 36464061 DOI: 10.1016/j.scitotenv.2022.160541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The effects of biochemical components and processing variables (e.g., temperatures, solid-liquid ratio, ethanol concentration, and time) during fast hydrothermal liquefaction of a highly CO2-tolerant microalgae (Micractinium sp.) on the product yields and biofuel quality were explored using response surface methodology coupled with central composite design. Results showed that the maximum bio-oil yield (51.4 %) was obtained at 321 °C for 49 min at ethanol concentration of 75 % and solid-liquid ratio of 15.3 %. Among different studied parameters, ethanol concentration showed the highest significant impact on the bio-oil yield due to the low P-value and high F-value in ANOVA analysis. Furthermore, the chemical compositions of bio-oils were determined, which showed that the increase of ethanol concentration in the solvent not only increased the bio-oil yield but also promoted the bio-oil quality by reduction of carboxylic acids and nitrogen-containing compounds with simultaneous enhancement of esters in the bio-oil. The present results show that fast hydrothermal liquefaction is a promising approach to convert the microalgae into high quality biofuels rich in esters.
Collapse
Affiliation(s)
- Bin Cao
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuanhu Hu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Zhu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cheng Pan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fatma Marrakchi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Ni
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuan Yuan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lili Qian
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hao Chen
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianping Yuan
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
| | - Abdelfatah Abomohra
- New Energy and Environmental Laboratory (NEEL), School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Pietro Bartocci
- University of Perugia, Department of Engineering, via G. Duranti 67, Perugia, Italy; Department of Energy and Environment, Instituto de Carboquímica (C.S.I.C.), Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Francesco Fantozzi
- University of Perugia, Department of Engineering, via G. Duranti 67, Perugia, Italy
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Nazloo EK, Moheimani NR, Ennaceri H. Graphene-based catalysts for biodiesel production: Characteristics and performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160000. [PMID: 36368383 DOI: 10.1016/j.scitotenv.2022.160000] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Biodiesel is a promising alternative to reduce the dependency on fossil fuels. However, biodiesel's cost is still higher than its petroleum counterpart, hence its production process must be modified to make it economically viable. Microalgae are an alternative feedstock to replace agricultural crops for biodiesel production, and offer several advantages such as fast growth, use of non-arable land, growth in saline and wastewater, and high lipid yield. Unfortunately, biodiesel production from microalgae is very energy-intensive and costly, mainly due to the high energy consumption required for dewatering and drying. Therefore, utilizing wet microalgal biomass instead of dry biomass can be a promising solution to reduce the biodiesel production cost Furthermore, the use of heterogeneous catalysts offers high efficiency, recoverability, and reusability, and is therefore very promising from the economic and environmental perspectives. The unique characteristics of graphene-based nano-catalysts, such as their high surface area, two-dimensional structure, and functional groups, make them suitable candidates for biodiesel production. In this review, the use of graphene-based catalysts for biodiesel production is analyzed in depth, and their efficiency compared to other heterogeneous catalysts is scrutinized. Moreover, their recoverability, reusability, and economic feasibility are critically discussed, and their potential to produce biodiesel from wet microalgae is explored as a sustainable and cost-effective approach.
Collapse
Affiliation(s)
- Ehsan Khorshidi Nazloo
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
12
|
Sneha M, Sowmya S, Premalatha M, Mathivanan K, Muthukumar K, Mathimani T. Multifarious extraction methodologies for ameliorating lipid recovery from algae. ENVIRONMENTAL RESEARCH 2023; 218:114978. [PMID: 36495964 DOI: 10.1016/j.envres.2022.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Amongst the current alternatives, algae were proven to be a promising source of biofuel, which is renewable and capable of meeting world demand for transportation fuels. However, a suitable lipid extraction method that efficiently releases the lipids from different algal strains remains a bottleneck. The multifarious pretreatment methods are prevalent in this field of lipid extraction, and therefore, this article has critically reviewed the various lipid extraction methods for ameliorating the lipid yield from algae, irrespective of the strains/species. Physical, mechanical, and chemical are the different types of pretreatment methods. In this review, methodologies such as homogenization, sonication, Soxhlet extraction, microwave treatment, and bead-beating, have been studied in detail and are the most commonly used methods for lipid extraction. Specific advanced/emerging processes such as supercritical CO2 extraction, ionic liquid, and CO2 switchable solvent-based algal lipid extraction are yet to be demonstrated at pilot-scale, though promising. The extraction of lipids has to be financially conducive, environmentally sustainable, and industrially applicable for further conversion into biodiesel. Hence, this paper discusses variable pretreatment for lipid extraction and imparts a comparative analysis to elect an efficient, economically sound lipid extraction method for pilot-scale biodiesel production.
Collapse
Affiliation(s)
- Mohapatra Sneha
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - S Sowmya
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - M Premalatha
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Krishnan Muthukumar
- Department of Petrochemical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
13
|
Yamada R, Yokota M, Matsumoto T, Hankamer B, Ogino H. Promoting cell growth and characterizing partial symbiotic relationships in the co-cultivation of green alga Chlamydomonas reinhardtii and Escherichia coli. Biotechnol J 2023; 18:e2200099. [PMID: 36479591 DOI: 10.1002/biot.202200099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND By co-culturing selected microalgae and heterotrophic microorganisms, the growth rate of microalgae can be improved even under atmospheric conditions with a low CO2 concentration. However, the detailed mechanism of improvement of proliferative capacity by co-culture has not been elucidated. In this study, we investigated changes in the proliferative capacity of the green alga Chlamydomonas reinhardtii by co-culturing with Escherichia coli. MAIN METHODS AND MAJOR RESULTS In the co-culture, the number of C. reinhardtii cells reached 2.22 × 1010 cell/L on day 14 of culture. This was about 1.9 times the number of cells (1.16 × 1010 cell/L) on day 14 compared to C. reinhardtii cells in monoculture. The starch content per cell in the co-culture of C. reinhardtii and E. coli on the 14th day (2.09 × 10-11 g/cell) was 1.3 times higher than that in the C. reinhardtii monoculture (1.59 × 10-11 g/cell), and the starch content per culture medium improved 2.5 times with co-cultivation. By analyzing the gene transcription profiles and key media components, we clarified that E. coli produced CO2 from the organic carbon in the medium and the organic carbon produced by photosynthesis of C. reinhardtii, and this CO2 likely enhanced the growth of C. reinhardtii. CONCLUSIONS Consequently, E. coli plays a key role in promoting the growth of C. reinhardtii as well as the accumulation of starch which is a valuable intermediate for the production of a range of useful chemicals from CO2 .
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, Japan.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Moe Yokota
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
14
|
Oh YK, Kim S, Ilhamsyah DPA, Lee SG, Kim JR. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent advances. BIORESOURCE TECHNOLOGY 2022; 366:128183. [PMID: 36307027 DOI: 10.1016/j.biortech.2022.128183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Chlorella is a promising microalga for CO2-neutral biorefinery that co-produces drop-in biofuels and multiple biochemicals. Cell disruption and selective lipid extraction steps are major technical bottlenecks in biorefinement because of the inherent robustness and complexity of algal cell walls. This review focuses on the state-of-the-art achievements in cell disruption and lipid extraction methods for Chlorella species within the last five years. Various chemical, physical, and biological approaches have been detailed theoretically, compared, and discussed in terms of the degree of cell wall disruption, lipid extractability, chemical toxicity, cost-effectiveness, energy use, scalability, customer preferences, environment friendliness, and synergistic combinations of different methods. Future challenges and prospects of environmental-friendly and efficient extraction technologies are also outlined for practical applications in sustainable Chlorella biorefineries. Given the diverse industrial applications of Chlorella, this review may provide useful information for downstream processing of the advanced biorefineries of other algae genera.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea.
| | - Sangui Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | | | - Sun-Gu Lee
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Biodiesel production from wet microalgae: Progress and challenges. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Sinha A, Kumar R, Goswami G, Das D. Process engineering strategy for large scale outdoor cultivation of Tetradesmus obliquus CT02 coupled with pH guided CO 2 feeding. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115539. [PMID: 35728376 DOI: 10.1016/j.jenvman.2022.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
A novel CO2 tolerant microalga Tetradesmus obliquus CT02, was previously evaluated to be a suitable bio refinery platform for synthesis of bioactive molecules, biodiesel, and biofertilizer. In the present study, a process engineering strategy was developed targeting improved growth performance of the strain at large scale under fluctuating outdoor environmental conditions. The strategy relies on maintaining pH of the culture at its optimal value via cascade control with CO2 feeding. The strategy was developed at laboratory scale bubble column photobioreactor under diurnal variation of simulated sunlight intensity and was further validated through growth performance of the strain under outdoor conditions in a 100 L airlift bioreactor. Under laboratory condition, 53.3% and 85.16% improvement in biomass concentration (1.87 g L-1) and productivity (114.8 mg L-1 day-1) was achieved as compared to the uncontrolled pH, respectively. The strategy demonstrated a significant improvement in biomass concentration and productivity by 225.7% and 121.6% respectively, compared to the pH uncontrolled batch, even under outdoor fluctuating environmental condition.
Collapse
Affiliation(s)
- Ankan Sinha
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Ratan Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Gargi Goswami
- Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) University, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| |
Collapse
|
17
|
Zafar FF, Marrakchi F, Barati B, Yuan C, Cao B, Wang S. Highly efficient adsorption of Bisphenol A using NaHCO 3/CO 2 activated carbon composite derived from shrimp shell@cellulose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68724-68734. [PMID: 35554807 DOI: 10.1007/s11356-022-20564-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, the efficiency of activated carbon (AC) synthesized from the shrimp shell plus cellulose (SS@C) was optimized toward Bisphenol A (BPA) adsorption. Low-cost, renewable, and non-toxic shrimp shells mixed with cellulose were carbonized, followed by activation via CO2 and NaHCO3 to produce SS@C-AC. The results revealed that SS@C-AC samples were a porous composite with mesoporous structures comprising a relatively high specific surface area (935.20 m2/g) with a mean pore size of around 3.8 nm and mesoporous volume of 1.83E-02 cm3/g. The influences of initial concentrations, pH values, and adsorption on BPA were investigated systematically. Isotherm model and kinetics study of the adsorption of BPA on SS@C-AC exhibited that the obtained data were in agreement with the Langmuir adsorption isotherm model while there is no difference between PFO and PSO kinetic results for BPA concentrations in the range 25-100 mg/L. The impregnation ratio of 1.5 NaHCO3 and an activation time of 90 min at 800°C were the optimum conditions under which BPA removal of 81.78% was obtained.
Collapse
Affiliation(s)
- Fatemeh Fazeli Zafar
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fatma Marrakchi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bahram Barati
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuan Yuan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Cao
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
18
|
Yuan M, Chen N, Guo Y, Chen B, Wang S, Shen J, Qiu X. Simulation analysis of biomass pyrolysis based on the improved
CPD
model with chain reaction dynamics. AIChE J 2022. [DOI: 10.1002/aic.17853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengxue Yuan
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai People's Republic of China
| | - Na Chen
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai People's Republic of China
| | - Yun Guo
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai People's Republic of China
| | - Bin Chen
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai People's Republic of China
- School of Mechanical Engineering University of Shanghai for Science and Technology Shanghai People's Republic of China
- Institute of Thermal Energy Engineering, School of Mechanical Engineering Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Sha Wang
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai People's Republic of China
- Institute of Thermal Energy Engineering, School of Mechanical Engineering Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Jun Shen
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai People's Republic of China
- Institute of Thermal Energy Engineering, School of Mechanical Engineering Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Xihe Qiu
- School of Electronic and Electrical Engineering Shanghai University of Engineering Science Shanghai People's Republic of China
| |
Collapse
|
19
|
Tripathi S, Purchase D, Chandra R, Nadda AK, Bhargava PC. Mitigation of hazards and risks of emerging pollutants through innovative treatment techniques of post methanated distillery effluent - A review. CHEMOSPHERE 2022; 300:134586. [PMID: 35427655 DOI: 10.1016/j.chemosphere.2022.134586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Distillery wastewater has high biological and chemical oxygen demand and requires additional treatment before it can be safely discharged into receiving water. It is usually processed through a biomethanation digester and the end product is the post-methanated distillery effluent (PMDE). Research have shown that PMDE released by molasses-based distilleries is a hazardous effluent that can cause harm to the biota and the environment; it contains elevated amount of total dissolved solids (TDS), total suspended solids (TSS) and excess levels of persistent organic compounds (POPs), heavy metals, phenolic compounds, and salts. The practice of wastewater reuse for irrigation in many water scarce countries necessitates the proper treatment of PMDE before it is discharged into receiving water. Convention methods have been in practice for decades, but innovative technologies are needed to enhance the efficiency of PMDE treatment. Advance physical treatment such as membrane separation technology using graphene, ion-exchange and ultrafiltration membranes; chemical treatment such as advanced oxidation methods, electrocoagulation and photocatalytic technologies; biological treatment such as microbial and enzymatic treatment; and hybrid treatment such as microbial-fuel cell (MFC), genetically modified organisms (GMO) and constructed wetland technologies, are promising new methods to improve the quality of PMDE. This review provides insight into current accomplishments evaluates their suitability and discusses future developments in the detoxification of PMDE. The consolidated knowledge will help to develop a better management for the safe disposal and the reuse of PMDE wastewater.
Collapse
Affiliation(s)
- Sonam Tripathi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Ram Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
20
|
Barati B, Zafar FF, Qian L, Wang S, El-Fatah Abomohra A. Bioenergy characteristics of microalgae under elevated carbon dioxide. FUEL 2022; 321:123958. [DOI: 10.1016/j.fuel.2022.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Arabian D. Optimization of cell wall disruption and lipid extraction methods by combining different solvents from wet
Chlorella vulgaris. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daryush Arabian
- University Institute of Applied Science Malek Ashtar University of Technology Isfahan Iran
| |
Collapse
|
22
|
Wang S, Mukhambet Y, Esakkimuthu S, Abomohra AELF. Integrated microalgal biorefinery – Routes, energy, economic and environmental perspectives. JOURNAL OF CLEANER PRODUCTION 2022; 348:131245. [DOI: 10.1016/j.jclepro.2022.131245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Lin H, Li Q, Zhang S, Zhang L, Hu G, Hu X. Involvement of the organics in aqueous phase of bio-oil in hydrothermal carbonization of lignin. BIORESOURCE TECHNOLOGY 2022; 351:127055. [PMID: 35339655 DOI: 10.1016/j.biortech.2022.127055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Aqueous phase of bio-oil (APBO) is water-rich but also contains some sugar-derivatives and phenolics. APBO has little potential as feedstock for producing biofuel, but can be potentially used as medium for hydrothermal carbonization (HTC) of biomass. In this study, the HTC of lignin in APBO was conducted, aiming to probe the influence of the organics in APBO on property of the hydrochar. The results indicated that the organics in APBO cross-polymerized with lignin derivatives, resulted in the yield of hydrochar to exceed 100%. In addition, APBO promotes the deoxygenation but does not promote dehydrogenation. More aliphatic structures are generated in the hydrochar, reducing its thermal stability. In addition, the hydrochar from APBO also shows the improved combustion performance by lowering the activation energy and the ignition temperature (180 vs 240 °C).
Collapse
Affiliation(s)
- Haisheng Lin
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Qingyin Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Shu Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Lijun Zhang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, PR China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
24
|
Liu T, Chen Z, Xiao Y, Yuan M, Zhou C, Liu G, Fang J, Yang B. Biochemical and Morphological Changes Triggered by Nitrogen Stress in the Oleaginous Microalga Chlorella vulgaris. Microorganisms 2022; 10:microorganisms10030566. [PMID: 35336142 PMCID: PMC8949318 DOI: 10.3390/microorganisms10030566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Oleaginous microalgae have been considered promising sources of biodiesel due to their high lipid content. Nitrogen limitation/starvation is one of the most prominent strategies to induce lipid accumulation in microalgae. Nonetheless, despite numerous studies, the mechanism underlying this approach is not well understood. The aim of this study was to investigate the effect of nitrogen limitation and starvation on biochemical and morphological changes in the microalga Chlorella vulgaris FACHB-1068, thereby obtaining the optimal nitrogen stress strategy for maximizing the lipid productivity of microalgal biomass. The results showed that nitrogen limitation (nitrate concentration < 21.66 mg/L) and starvation enhanced the lipid content but generally decreased the biomass productivity, pigment concentration, and protein content in algal cells. Comparatively, 3-day nitrogen starvation was found to be a more suitable strategy to produce lipid-rich biomass. It resulted in an increased biomass production and satisfactory lipid content of 266 mg/L and 31.33%, respectively. Besides, nitrogen starvation caused significant changes in cell morphology, with an increase in numbers and total size of lipid droplets and starch granules. Under nitrogen starvation, saturated fatty acids (C-16:0, C-20:0, and C-18:0) accounted for the majority of the total fatty acids (~80%), making C. vulgaris FACHB-1068 a potential feedstock for biodiesel production. Our work may contribute to a better understanding of the biochemical and morphological changes in microalgae under nitrogen stress. Besides, our work may provide valuable information on increasing the lipid productivity of oleaginous microalgae by regulating nitrogen supply.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Yang
- Correspondence: (J.F.); (B.Y.)
| |
Collapse
|
25
|
Lee YR, Lee WH, Lee SY, Lee J, Kim MS, Moon M, Park GW, Kim HS, Kim JI, Lee JS, Lee S. Regulation of Reactive Oxygen Species Promotes Growth and Carotenoid Production Under Autotrophic Conditions in Rhodobacter sphaeroides. Front Microbiol 2022; 13:847757. [PMID: 35295297 PMCID: PMC8920488 DOI: 10.3389/fmicb.2022.847757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Industrial demand for capture and utilization using microorganisms to reduce CO2, a major cause of global warming, is significantly increasing. Rhodobacter sphaeroides is a suitable strain for the process of converting CO2 into high-value materials because it can accept CO2 and has various metabolic pathways. However, it has been mainly studied for heterotrophic growth that uses sugars and organic acids as carbon sources, not autotrophic growth. Here, we report that the regulation of reactive oxygen species is critical for growth when using CO2 as a sole carbon source in R. sphaeroides. In general, the growth rate is much slower under autotrophic conditions compared to heterotrophic conditions. To improve this, we performed random mutagenesis using N-methyl-N’-nitro-N-nitrosoguanidine (NTG). As a result, we selected the YR-1 strain with a maximum specific growth rate (μ) 1.44 day–1 in the early growth phase, which has a 110% faster growth rate compared to the wild-type. Based on the transcriptome analysis, it was confirmed that the growth was more sensitive to reactive oxygen species under autotrophic conditions. In the YR-1 mutant, the endogenous contents of H2O2 levels and oxidative damage were reduced by 33.3 and 42.7% in the cells, respectively. Furthermore, we measured that concentrations of carotenoids, which are important antioxidants. The total carotenoid is produced 9.63 g/L in the YR-1 mutant, suggesting that the production is 1.7-fold higher than wild-type. Taken together, our observations indicate that controlling ROS promotes cell growth and carotenoid production under autotrophic conditions.
Collapse
Affiliation(s)
- Yu Rim Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Won-Heong Lee
- Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, South Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Hui Su Kim
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- Department of Advanced Chemicals and Engineering, Chonnam National University, Gwangju, South Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- *Correspondence: Sangmin Lee,
| |
Collapse
|
26
|
Ma X, Mi Y, Zhao C, Wei Q. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151387. [PMID: 34740661 DOI: 10.1016/j.scitotenv.2021.151387] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Energy is a major driving force for the economic development. Due to the scarcity of fossil fuels and negative impact on the environment, it is important to develop renewable and sustainable energy sources for humankind. Microalgae as the primary feedstock for biodiesel has shown great application potential. However, lipid yield from microalgae is limited by the upstream cost, which restrain the realization of large-scale biofuel production. The modification of lipid-rich microalgae cell has become the focus over the last few decades to improve the lipid content and productivity of microalgae. Carbon is a vital nutrient that regulates the growth and metabolism of microalgae. Different carbon sources are assimilated by microalgae cells via different pathways. Inorganic carbon sources are mainly used through the CO2-concentrating mechanisms (CCMs), while organic carbon sources are absorbed by microalgae mainly through the Pentose Phosphate (PPP) Pathway and the Embden-Meyerhof-Pranas (EMP) pathway. Therefore, the addition of carbon source has a significant impact on the production of microalgae biomass and lipid accumulation. In this paper, mechanisms of lipid synthesis and carbon uptake of microalgae were introduced, and the effects of different carbon conditions (types, concentrations, and addition methods) on lipid accumulation in microalgal biomass production and biodiesel production were comprehensively discussed. This review also highlights the recent advances in microalgae lipid cultivation with large-scale commercialization and the development prospects of biodiesel production. Current challenges and constructive suggestions are proposed on cost-benefit concerns in large-scale production of microalgae biodiesel.
Collapse
Affiliation(s)
- Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, China
| | - Yuwei Mi
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Chen Zhao
- China Construction Fifth Engineering Division Corp., Ltd, 9 Kaixuan Rd, Liangqing District, Nanning, Guangxi 530000, China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
27
|
Kant Mehta S. Assessing the prospects of Zygnema heydrichii, a filamentous Chlorophyte, as a biodiesel feedstock. BIORESOURCE TECHNOLOGY 2022; 345:126487. [PMID: 34871720 DOI: 10.1016/j.biortech.2021.126487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
This research aimed to investigate the suitability of the filamentous microalga Zygnema heydrichii as a biodiesel feedstock. Under ambient culture conditions, biomass yield, lipid content, and fatty acid composition were measured. The effects of nutrient deprivation, pH, and salinity on biomass and lipid production were also investigated. Z. heydrichii under nutrient-enriched medium showed specific growth rate (µ) 0.31 day-1 and lipid content 14.75% DW. The most abundant fatty acids were C16:0, C18:1, C18:2 and C18:3, all of which are considered appropriate for biodiesel production. Nitrogen and phosphorus depletion from the growth medium further increased lipid content to 21.45% and 15.35% DW, respectively. The N depletion of the medium remarkably increased TAG content of the culture. Z. heydrichii possess great ability to grow in salty water (40 Mm NaCl). A low-cost, semi-continuous outdoor culture yielded biomass and lipid productivity of 0.208 g day-1and 0.038 g L-1 day-1, respectively.
Collapse
|
28
|
Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang BI, Sim SJ, Kim SH, Pandey A. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-28. [PMID: 35095355 PMCID: PMC8783767 DOI: 10.1007/s11101-021-09784-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
In the current global scenario, the world is under a serious dilemma due to the increasing human population, industrialization, and urbanization. The ever-increasing need for fuels and increasing nutritional problems have made a serious concern on the demand for nutrients and renewable and eco-friendly fuel sources. Currently, the use of fossil fuels is creating ecological and economic problems. Microalgae have been considered as a promising candidate for high-value metabolites and alternative renewable energy sources. Microalgae offer several advantages such as rapid growth rate, efficient land utilization, carbon dioxide sequestration, ability to cultivate in wastewater, and most importantly, they do not participate in the food crop versus energy crop dilemma or debate. An efficient microalgal biorefinery system for the production of lipids and subsequent byproduct for nutraceutical applications could well satisfy the need. But, the current microalgal cultivation systems for the production of lipids and nutraceuticals do not offer techno-economic feasibility together with energy and environmental sustainability. This review article has its main focus on the production of lipids and nutraceuticals from microalgae, covering the current strategies used for lipid production and the major high-value metabolites from microalgae and their nutraceutical importance. This review also provides insights on the future strategies for enhanced microalgal lipid production and subsequent utilization of microalgal biomass. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram, Kerala 695 004 India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sung Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sang Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226 001 India
| |
Collapse
|
29
|
Chen H, Xia A, Zhu X, Huang Y, Zhu X, Liao Q. Hydrothermal hydrolysis of algal biomass for biofuels production: A review. BIORESOURCE TECHNOLOGY 2022; 344:126213. [PMID: 34715338 DOI: 10.1016/j.biortech.2021.126213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal hydrolysis is an energy-efficient and economical pretreatment technology to disrupt the algal cells and hydrolyze the intracellular compounds, thereby promoting the biofuels production of fermentation. However, complex reaction mechanisms, unpredictable rheological properties of algal slurry, and immature continuous reactors still constrain the commercialization of such a process. To systematically understand the existing status and lay a foundation for promoting the technology, the chemical mechanism of hydrothermal hydrolysis of algal biomass is elaborated in this paper, and the influences of temperature, residence time, total solid content, and pH, on the biomethane production of hydrolyzed algal biomass are summarized. Besides, a comprehensive overview of the rheological behavior of algal slurries is discussed at various operational factors. The recent advances in flow, heat and mass transfer model coupling with the generic kinetics model in continuous reactors and the application of energy-saving strategies for efficient algal biomass pretreatment are detailed reviewed.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
30
|
Marrakchi F, Fazeli Zafar F, Wei M, yuan C, Cao B, Wang S. N-doped mesoporous H3PO4–pyrocarbon from seaweed and melamine for batch adsorption of the endocrine disruptor bisphenol A. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Hydrothermal liquefaction of Spirulina platensis in post-carbonization wastewater from sewage sludge. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
López-Pacheco IY, Rodas-Zuluaga LI, Fuentes-Tristan S, Castillo-Zacarías C, Sosa-Hernández JE, Barceló D, Iqbal HM, Parra-Saldívar R. Phycocapture of CO2 as an option to reduce greenhouse gases in cities: Carbon sinks in urban spaces. J CO2 UTIL 2021; 53:101704. [DOI: 10.1016/j.jcou.2021.101704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Hu Y, Yuan C, Wang S, Li B, Liu Q, Zhao S, Cao B. Study on pressurized upgradation of pyrolysis oil for high-value liquid products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62541-62548. [PMID: 34212325 DOI: 10.1007/s11356-021-14401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Upgradation of pyrolysis oil is a key process to achieve high-quality biofuel. In this study, the effects of different Ar pressures and H2/Ar ratios in the presence and absence of catalysts on deoxygenation of pyrolysis oil were investigated by autoclaving. When the initial pressure of the reaction is 6MPa and without catalyst addition, the content of carboxylic acid decreases from 51.52 to 41.54%, whereas with the addition of catalyst (10 % Ni/C), the deoxygenation and hydrocarbon content in the product were significantly improved. Hence, 6 MPa was found to be optimum and above which failed to induce such useful changes but can lead to lower high heating value (HHV). However, the presence of hydrogen affects the content of alkanes and olefins in the product.
Collapse
Affiliation(s)
- Yamin Hu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chuan Yuan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shuang Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Bin Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qian Liu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shuang Zhao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Bin Cao
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
35
|
Brar A, Kumar M, Soni T, Vivekanand V, Pareek N. Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: A review. BIORESOURCE TECHNOLOGY 2021; 339:125597. [PMID: 34315089 DOI: 10.1016/j.biortech.2021.125597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Conventional fuel resources are overburden with speedy global energy demand which ensued the urgent need of alternate energy resources. Biofuel generation efficiency of microalgae is notable due to their comparatively rapid biomass production rate and high oil content. But, the employment of microalgae as biofuel resource is in infancy due to low productivity and high production cost. The issues can be addressed by employing engineered microalgal strains that would be able to efficiently generate enhanced levels of biomass with augmented lipid and/or carbohydrate content for proficient biofuel production. Genetic alterations and metabolic engineering of microalgal species might be helpful in developing high stress-tolerant strains with improved properties for biofuel generation. Various omics approaches appeared significant to upgrade the microalgal lipid production. Intervention of genetic and metabolic engineering approaches would facilitate the development of microalgae as a competent biofuel resource and inflate the economic commercialization of biofuels.
Collapse
Affiliation(s)
- Amandeep Brar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan 302017, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
36
|
Dry route process and wet route process for algal biodiesel production: A review of techno-economical aspects. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Yuan C, El-Fatah Abomohra A, Wang S, Liu Q, Zhao S, Cao B, Hu X, Marrakchi F, He Z, Hu Y. High-grade biofuel production from catalytic pyrolysis of waste clay oil using modified activated seaweed carbon-based catalyst. JOURNAL OF CLEANER PRODUCTION 2021; 313:127928. [DOI: 10.1016/j.jclepro.2021.127928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
38
|
The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow (Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Biochar as C Carrier for Fertilizers via Torrefaction Process. ENERGIES 2021. [DOI: 10.3390/en14175262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of foliar application of Cyanobacteria and Chlorella sp. monocultures on physiological activity, element composition, development and biomass weight of basket willow (Salix viminalis L.) and the possibility to prepare biofuel from it in the fortification process was studied. Triple foliar plant spraying with non-sonicated monocultures of Cyanobacteria (Anabaena sp. PCC 7120, Microcystis aeruginosa MKR 0105) and Chlorella sp. exhibited a considerably progressive impact on metabolic activity and development of plants. This biofertilization increased cytomembrane impermeability, the amount of chlorophyll in plants, photosynthesis productivity and transpiration, as well as degree of stomatal opening associated with a decreased concentration of intercellular CO2, in comparison to control (treatments with water, Bio-Algeen S90 or with environmental sample). The applied strains markedly increased the element content (N, P, K) in shoots and the productivity of crucial growth enzymes: alkaline or acid phosphorylase, total dehydrogenases, RNase and nitrate reductase. Treatments did not affect energy properties of the burnt plants. These physiological events were associated with the improved growth of willow plants, namely height, length and amount of all shoots and their freshly harvested dry mass, which were increased by over 25% compared to the controls. The effectiveness of these treatments depended on applied monoculture. The plant spraying with Microcystis aeruginosa MKR 0105 was a little more effective than treatment with Chlorella sp. and Anabaena sp. or the environmental sample. The research demonstrate that the studied Cyanobacteria and Chlorella sp. monocultures have prospective and useful potential in production of Salix viminalis L., which is the basic energy plant around the word. In this work, a special batch reactor was used to produce torrefaction material in an inert atmosphere: nitrogen, thermogravimetric analysis and DTA analysis, like Fourier-transform infrared spectroscopy. The combustion process of Salix viminalis L. with TG-MS analysis was conducted as well as study on a willow torrefaction process, obtaining 30% mass reduction with energy loss close to 10%. Comparing our research results to other types of biomasses, the isothermal temperature of 245 °C during thermo-chemical conversion of willow for the carbonized solid biofuel production from Salix viminalis L. biomass fertilized with Cyanobacteria and Chlorella sp. is relatively low. At the end, a SEM-EDS analysis of ash from torrefied Salix viminalis L. after carbonization process was conducted.
Collapse
|
39
|
Lakshmikandan M, Wang S, Murugesan AG, Saravanakumar M, Selvakumar G. Co-cultivation of Streptomyces and microalgal cells as an efficient system for biodiesel production and bioflocculation formation. BIORESOURCE TECHNOLOGY 2021; 332:125118. [PMID: 33866154 DOI: 10.1016/j.biortech.2021.125118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The phytohormone producing Streptomyces rosealbus MTTC 12,951 (S.R) and green microalga Chlorella vulgaris MSU-AGM 14 (C.V) were cultivated in co-culture system to evaluate exogenous hormonal activity. Biosynthesis of indole-3-acetic acid (IAA) and their precursors were quantitatively evaluated by employing High Performance Liquid Chromatography (HPLC). The concentration of IAA (0.72 ± 0.02 µg mL-1) was observed to be elevated in co-cultivation system due to symbiotic interaction between Streptomyces and microalgae. In exchange, microalgae produced adequate volume of tryptophan (Trp) to induce IAA biosynthesis. The Trp stress in late exponential phase encouraged lipid accumulation (175 ± 10 mg g-1). The bioflocculation property of microalgae ensures potential and economic viable harvesting process by reducing 148% input energy compared to conventional method. The overall results evidenced that C.V co-cultivation with S.R exhibits promotional behavior and serves as a promising cultivation process for microalgae in terms of cost efficiency and energy conservation.
Collapse
Affiliation(s)
- M Lakshmikandan
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China.
| | - A G Murugesan
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tamil Nadu, India
| | - M Saravanakumar
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tamil Nadu, India
| | - G Selvakumar
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tamil Nadu, India
| |
Collapse
|
40
|
Dalvi V, Chawla P, Malik A. Year-long performance assessment of an on-site pilot scale (100 L) photobioreactor on nutrient recovery and pathogen removal from urban wastewater using native microalgal consortium. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Zhang C, Ren HX, Jiang L. Cultivation of Chlorella protothecoides in polyglutamic acid wastewater for cost-effective biodiesel production. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Lakshmikandan M, Murugesan A, Wang S, El-Fatah Abomohra A. Optimization of acid hydrolysis on the green seaweed Valoniopsis pachynema and approach towards mixotrophic microalgal biomass and lipid production. RENEWABLE ENERGY 2021; 164:1052-1061. [DOI: 10.1016/j.renene.2020.10.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
43
|
Wang Q, Oshita K, Takaoka M. Effective lipid extraction from undewatered microalgae liquid using subcritical dimethyl ether. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:17. [PMID: 33422122 PMCID: PMC7797121 DOI: 10.1186/s13068-020-01871-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recent studies of lipid extraction from microalgae have focused primarily on dewatered or dried samples, and the processes are simple with high lipid yield. Yet, the dewatering with drying step is energy intensive, which makes the energy input during the lipid production more than energy output from obtained lipid. Thus, exploring an extraction technique for just a thickened sample without the dewatering, drying and auxiliary operation (such as cell disruption) is very significant. Whereas lipid extraction from the thickened microalgae is complicated by the high water content involved, and traditional solvent, hence, cannot work well. Dimethyl ether (DME), a green solvent, featuring a high affinity for both water and organic compounds with an ability to penetrate the cell walls has the potential to achieve this goal. RESULTS This study investigated an energy-saving method for lipid extraction using DME as the solvent with an entrainer solution (ethanol and acetone) for flocculation-thickened microalgae. Extraction efficiency was evaluated in terms of extraction time, DME dosage, entrainer dosage, and ethanol:acetone ratio. Optimal extraction occurred after 30 min using 4.2 mL DME per 1 mL microalgae, with an entrainer dosage of 8% at 1:2 ethanol:acetone. Raw lipid yields and its lipid component (represented by fatty acid methyl ester) contents were compared against those of common extraction methods (Bligh and Dryer, and Soxhlet). Thermal gravimetry/differential thermal analysis, Fourier-transform infrared spectroscopy, and C/H/N elemental analyses were used to examine differences in lipids extracted using each of the evaluated methods. Considering influence of trace metals on biodiesel utilization, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy analyses were used to quantify trace metals in the extracted raw lipids, which revealed relatively high concentrations of Mg, Na, K, and Fe. CONCLUSIONS Our DME-based method recovered 26.4% of total raw lipids and 54.4% of total fatty acid methyl esters at first extraction with remnants being recovered by a 2nd extraction. In additional, the DME-based approach was more economical than other methods, because it enabled simultaneous dewatering with lipid extraction and no cell disruption was required. The trace metals of raw lipids indicated a purification demand in subsequent refining process.
Collapse
Affiliation(s)
- Quan Wang
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Cluster C, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Kazuyuki Oshita
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Cluster C, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Cluster C, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|
44
|
Wang S, Zhao S, Cheng X, Qian L, Barati B, Gong X, Cao B, Yuan C. Study on two-step hydrothermal liquefaction of macroalgae for improving bio-oil. BIORESOURCE TECHNOLOGY 2021; 319:124176. [PMID: 33017778 DOI: 10.1016/j.biortech.2020.124176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/18/2023]
Abstract
In this work, the conversion of Enteromorpha clathrata into bio-oil through hydrothermal liquefaction (HTL) was investigated under different preparation conditions. A two-step reaction method was compared with single-step reaction. At a high temperature, bio-oil produced through the two-step hydrothermal reaction displayed slight changes in yield, but solid residue rate was low. The liquid-to-material ratio of the optimal preparation condition was 40/4 (mL/g). Bio-oil produced in each experiment at this ratio was further analyzed using GC/MS. Furthermore, density functional theory (DFT) quantitative calculation was used in analyzing and proving the possible reaction path of the conversion of furan compounds to aromatic compounds during a direct high-temperature liquefaction process. Results revealed that the two-step method can ensure a high bio-oil yield, while preventing the occurrence of side reactions caused by long-term high-temperature reactions, and improve the bio-oil quality.
Collapse
Affiliation(s)
- Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Shuang Zhao
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Xiaoxue Cheng
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Lili Qian
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Bahram Barati
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Xun Gong
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Hubei 430074, China.
| | - Bin Cao
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
| | - Chuan Yuan
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| |
Collapse
|
45
|
Yu Z, Pei H, Li Y, Yang Z, Xie Z, Hou Q, Nie C. Inclined algal biofilm photobioreactor (IABPBR) for cost-effective cultivation of lipid-rich microalgae and treatment of seawater-diluted anaerobically digested effluent from kitchen waste with the aid of phytohormones. BIORESOURCE TECHNOLOGY 2020; 315:123761. [PMID: 32652437 DOI: 10.1016/j.biortech.2020.123761] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Previous study has demonstrated that freshwater can be replaced with seawater for dilution of feed to algal production and wastewater treatment, but high harvest cost in suspended-growth systems is still a troublesome limitation for large-scale production. Therefore, a novel inclined algal biofilm photobioreactor (IABPBR) was constructed for algal bioproduct production and treatment of seawater-diluted anaerobically digested effluent (SA) in this study. Fluffy polyester was selected as the best carrier for the algal biofilm among ten discarded materials. With the help of phytohormones, the viability of SDEC-18 was clearly enhanced and an algal biomass productivity of 5.66 g/m2/d was achieved. The SDEC-18 biofilm provided removal capacities of 0.65, 0.25 and 3.31 g/m2/d for TN, TP and COD. Phytohormones clearly enhanced the lipid biosynthesis, with an extraordinary lipid productivity of 3.98 g/m2/d being achieved. Moreover, an automatic harvesting system was designed for the efficient harvesting process during large-scale production.
Collapse
Affiliation(s)
- Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China.
| | - Yizhen Li
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Zhigang Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Qingjie Hou
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Changliang Nie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| |
Collapse
|