1
|
Adly A, Galal MM, Matta ME. Catalytic degradation of norfloxacin using persulfate activation by Ni-Fe layered double hydroxide catalyst supported on activated carbon. Sci Rep 2025; 15:5132. [PMID: 39934292 DOI: 10.1038/s41598-025-89106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
This study investigated the catalytic degradation of Norfloxacin (NOR), a persistent fluoroquinolone antibiotic, using a novel Ni-Fe Layered Double Hydroxide supported on Activated Carbon (NiFe-LDH@AC) as a catalyst. The composite was designed to activate persulfate (PDS) and generate sulfate radicals for NOR degradation in aqueous solutions. Characterization techniques such as XRD, SEM, EDS, TEM, FTIR, and BET confirmed the successful synthesis and structural integrity of the composite. The optimal degradation was achieved with a NiFe-LDH@AC ratio of 2:1, 0.3 g/L catalyst dosage, and 1 g/L PDS, resulting in 86% NOR removal efficiency within 60 min at neutral pH and ambient temperature for an initial concentration of 50 mg/L, and 100% removal for initial concentrations of 10 mg/L and 20 mg/L under the same conditions. The activation energy of the reaction was calculated as 58.27 kJ/mol. Radical scavenging experiments identified sulfate (SO₄˙⁻) and hydroxyl (•OH) radicals as the dominant reactive species, but the SO₄˙⁻ played a larger role. Furthermore, the catalyst exhibited good reusability, maintaining 75% degradation efficiency after four cycles, and showed minimal metal leaching. The study also proposed a mechanism for PDS activation using XPS analysis and suggested NOR degradation pathways through LC-ESI-MS/MS analysis. Moreover, the NiFe-LDH@AC/PDS system demonstrated 84% NOR degradation and 55% COD removal in real treated wastewater. Results demonstrated that the NiFe-LDH@AC composite effectively activated PDS, achieving high NOR removal efficiency, making it a promising sustainable material for wastewater treatment.
Collapse
Affiliation(s)
- Adel Adly
- Sanitary and Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, 12613, Egypt.
| | - Mona M Galal
- Sanitary and Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
| | - Minerva E Matta
- Sanitary and Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Sikorski Ł, Bęś A, Warmiński K, Truszkowski W, Kowal P. Utilizing Morphological and Physiological Parameters of Lemna minor for Assessing Tetracyclines' Removal. Molecules 2024; 29:3971. [PMID: 39203049 PMCID: PMC11356931 DOI: 10.3390/molecules29163971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Antibiotics with significant environmental toxicity, e.g., tetracyclines (TCs), are often used in large quantities worldwide, with 50-80% of the applied dose ending up in the environment. This study aimed to investigate the effects of exposure to tetracycline hydrochloride (TC) and minocycline hydrochloride (MIN) on L. minor. Our research evaluated the phytotoxicity of the TCs by analyzing plant growth and biomass and evaluating assimilation pigment levels and fluorescence. The research was extended with the ability potential of duckweed as a tool for removing TCs from water/wastewater. The results demonstrated that both TCs influenced Ir, Iy, biomass, and photosynthetic efficiency. The uptake of TC and MIN by duckweed was proportional to the concentration in the growth medium. The TC was absorbed more readily, reaching up to 8.09 mg × g-1 of dry weight (DW) at the highest concentration (19.2 mg × L-1), while MIN reached 6.01 mg × g-1 of DW. As indicated, the consequences of the influence of TC on plants were slightly smaller, in comparison to MIN, while the plants could biosorb this drug, even at the lowest tested concentration. This study has shown that using plants for drug biosorption can be an effective standalone or complementary method for water and wastewater treatment.
Collapse
Affiliation(s)
- Łukasz Sikorski
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (K.W.)
| | - Agnieszka Bęś
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (K.W.)
| | - Kazimierz Warmiński
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (K.W.)
| | - Wojciech Truszkowski
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 8, 10-719 Olsztyn, Poland;
| | - Przemysław Kowal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
3
|
Wang X, Hu X, Qu Z, Sun T, Huang L, Xu S. MoS 2@MWCNTs with Rich Vacancy Defects for Effective Piezocatalytic Degradation of Norfloxacin via Innergenerated-H 2O 2: Enhanced Nonradical Pathway and Synergistic Mechanism with Radical Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26257-26271. [PMID: 38728622 DOI: 10.1021/acsami.4c04152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Molybdenum disulfide (MoS2)-based materials for piezocatalysis are unsatisfactory due to their low actual piezoelectric coefficient and poor electrical conductivity. Herein, 1T/3R phase MoS2 grown in situ on multiwalled carbon nanotubes (MWCNTs) was proposed. MoS2@MWCNTs exhibited the interwoven morphology of thin nanoflowers and tubes, and the piezoelectric response of MoS2@MWCNTs was 4.07 times higher than that of MoS2 via piezoresponse force microscopy (PFM) characterization. MoS2@MWCNTs exhibited superior activity with a 91% degradation rate of norfloxacin (NOR) after actually working 24 min (as for rhodamine B, reached 100% within 18 min) by pulse-mode ultrasonic vibration-triggered piezocatalysis. It was found that piezocatalysis for removing pollutants was attributed to the synergistic effect of free radicals (•OH and O2•-) and nonfree radical (1O2, key role) pathways, together with the innergenerated-H2O2 promoting the degradation rate. 1O2 can be generated by electron transfer and energy transfer pathways. The presence of oxygen vacancies (OVs) induced the transformation of O2 to 1O2 by triplet energy transfer. The fast charge transfer in MoS2@MWCNTs heterostructure and the coexistence of sulfur vacancies and OVs enhanced charge carrier separation resulting in a prominent piezoelectric effect. This work opens up new avenues for the development of efficient piezocatalysts that can be utilized for environmental purification.
Collapse
Affiliation(s)
- Xueyao Wang
- School of Environmental Science and Engineering, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, Shandong 266237, PR China
| | - Xuyang Hu
- School of Environmental Science and Engineering, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, Shandong 266237, PR China
| | - Zhengjun Qu
- School of Environmental Science and Engineering, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, Shandong 266237, PR China
| | - Ting Sun
- School of Environmental Science and Engineering, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, Shandong 266237, PR China
- Institute of Eco-Environmental Forensics, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, Shandong 266237, PR China
| | - Lihui Huang
- School of Environmental Science and Engineering, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, Shandong 266237, PR China
| | - Shimin Xu
- 801 Hydrogeological Engineering Geological Brigade, Shandong Geological and Mineral Exploration and Development Bureau, Jinnan, Shandong 250013, PR China
| |
Collapse
|
4
|
Liaqat M, Iqbal T, Ashfaq Z, Afsheen S, Mahmood Khan RR, Sayed MA, Ali AM. Comparative photocatalytic study of visible light driven BiVO4, Cu2O, and Cu2O/BiVO4 nanocomposite for degradation of antibiotic for wastewater treatment. J Chem Phys 2023; 159:204704. [PMID: 38010333 DOI: 10.1063/5.0176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Semiconductor-based photocatalysts have become increasingly used in the removal of pollutants from wastewater, especially antibiotics. A series of composite-based cuprous oxide and bismuth vanadate (Cu2O/BiVO4) composite-based photocatalysts were synthesized by using the chemical method. The structure of the Cu2O/BiVO4 composite was verified by using x-ray diffraction, scanning electron microscopy, photoluminescence, Fourier transform infrared spectroscopy, and UV-visible spectra. The degradation of methylene blue (MB) and tetracycline (TC) was investigated to check the photocatalytic activity of the Cu2O/BiVO4 composite series. The quantity of Cu2O was varied from 1% to 7% by weight to prepare the series of Cu2O/BiVO4 composites. The analysis of results verified that 5% Cu2O/BiVO4 exhibits an outstanding photocatalytic activity as compared to 1%, 3%, and 7% Cu2O/BiVO4, pure Cu2O, and pure BiVO4 under visible light irradiation. The optimum value of photocatalytic degradation achieved with 5% Cu2O/BiVO4 was 97% for MB dye and 95% for TC in 120 min, which is greater than the photocatalytic degradation of pure BiVO4 (MB 45% and TC 72%), pure Cu2O (MB 57% and TC 80%), 1% Cu2O/BiVO4 (MB 72% and TC 85%), 3% Cu2O/BiVO4 (MB 83% and TC 88%), and 7% Cu2O/BiVO4 (MB 87% and TC 91%). The stability and reusability of Cu2O/BiVO4 were also investigated. To check the major role of trapping in degradation, a trapping experiment was also performed by using three trapping agents: BQ, EDTA, and tBuOH. The results showed that Cu2O/BiVO4 exhibits an improved photocatalytic activity in the degradation of antibiotics in polluted water because the recombination rate of the electron-hole pair decreased and the surface area increased, which increased the active sites for redox reactions. Such a photocatalytic composite with high efficiency has various applications, such as energy production, environmental remediation, and water remediation.
Collapse
Affiliation(s)
- Maira Liaqat
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Zain Ashfaq
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | | | - M A Sayed
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Atif Mossad Ali
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Dai H, Yang X, Tang F. Ag 2S Nanoparticles Supported on 3D Flower-Shaped Bi 2WO 6 Enhanced Visible Light Catalytic Degradation of Tetracycline. ACS OMEGA 2023; 8:42647-42658. [PMID: 38024701 PMCID: PMC10652829 DOI: 10.1021/acsomega.3c05386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
A three-dimensional flower-shaped Bi2WO6 has been prepared by a hydrothermal procedure without the addition of an auxiliary agent and under neutral conditions with ultrapure water serving as solvent, and the Ag2S-Bi2WO6 composite with weight ratios of 5, 10, and 15% was prepared by a hydrothermal method. The crystallinity, morphology, mode of binding, and optical properties of the Ag2S-Bi2WO6 composite were characterized, the results of which showed that the composite had excellent dispersion, crystallinity, and purity. The composite with a weight ratio of 10% had the best photocatalytic performance, and the degradation rate of tetracycline reached 95.51% within 120 min, an increase of 27.35% over Bi2WO6. In experiments, some focus was given to the effect of the initial solution pH and the concentrations of humic acid and inorganic anions on the degradation efficiency. Based on free radical capture experiments and the semiconductor theory, the main active substances and mechanisms in the optical catalytic reaction process were studied, and speculation was given concerning the degradation pathway for the target pollutants. This study has conceived novel methods for the development of dual semiconductor systems consisting of a Ag NP composite and in doing so has provided new approaches for the development and photocatalysis for water pollution control.
Collapse
Affiliation(s)
- Hengcan Dai
- College
of Civil Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Xiaoliang Yang
- POWERCHINA
Guizhou Electric Power Engineering Co., Ltd. Guiyang, Guizhou 550025, PR China
| | - Fei Tang
- College
of Civil Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| |
Collapse
|
6
|
Huang ST, Lei YQ, Guo PR, Zhang WX, Liang JY, Chen X, Xu JW, Diao ZH. Degradation of Levofloxacin by a green zero-valent iron-loaded carbon composite activating peroxydisulfate system: Reactivity, products and mechanism. CHEMOSPHERE 2023; 340:139899. [PMID: 37611769 DOI: 10.1016/j.chemosphere.2023.139899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
In this study, a green zero-valent iron-loaded carbon composite (ZVI-SCG) was synthesized using coffee grounds and FeCl3 solution through two-steps method, and the synthesized ZVI-SCG was used in the activation of peroxydisulfate (PDS) to degrade Levofloxacin (LEX). Results revealed that ZVI-SCG exhibited a great potential for LEX removal by adsorption and catalytic degradation in the ZVI-SCG/PDS system, and 99% of LEX was removed in the ZVI-SCG/PDS system within 60 min. ZVI-SCG/PDS system showed a high reactivity toward LEX degradation under realistic environmental conditions. Also, the ZVI-SCG/PDS system could effectively degrade several quinolone antibiotics including gatifloxacin, ciprofloxacin and LEX in single and simultaneous removal modes. A potential reaction mechanism of LEX degradation by ZVI-SCG/PDS system was proposed, SO4•-, HO•, O2•- and 1O2 involved in radical and non-radical pathways took part in catalytic degradation of LEX by ZVI-SCG/PDS system, but HO• might be the main reactive species for LEX degradation. The possible degradation pathway of LEX was also proposed based on the identified ten intermediate products, LEX degradation was successfully achieved through decarboxylation, opening ring and hydroxylation processes. The potential toxicity of LEX and its oxidation products decreased significantly after treatment. This study provides a promising strategy of water treatment for the antibiotics-containing wastewater.
Collapse
Affiliation(s)
- Shi-Ting Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Yong-Qian Lei
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Peng-Ran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China.
| | - Wen-Xuan Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jing-Yi Liang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xie Chen
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jing-Wei Xu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Zeng-Hui Diao
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
7
|
Dai H, Yang X, Li W, Wang Y. AgBr nanoparticle surface modified SnO 2 enhanced visible light catalytic performance: characterization, mechanism and kinetics study. RSC Adv 2023; 13:32457-32472. [PMID: 37928858 PMCID: PMC10624157 DOI: 10.1039/d3ra05750j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
In this study, a simple hydrothermal procedure and in situ precipitation method were used to prepare SnO2-AgBr composites, where the molar ratios of SnO2 and AgBr were 1 : 1, 1 : 2 and 2 : 1. Characterization results showed that the composites had excellent dispersion, crystallinity, and purity. A photocatalytic degradation experiment and first-order kinetic model indicate that SnO2-AgBr (1 : 1) had the best photocatalytic performance, and the degradation rates of 30 mg L-1 simulated MO and MG wastewater reached 96.71% and 93.36%, respectively, in 150 min, which were 3.5 times those of SnO2. The degradation rate of MO and MG increases with the dosage. Humic acid inhibited the degradation of MG, while a low concentration of humic acid promoted the degradation of MO, and the composite has good stability with pH. A free radical trapping experiment shows that ·OH and ·O2- were the main active substances, and h+ was the secondary one. According to the results of the characterization and photocatalysis experiments, a Z-scheme mechanism for the SnO2-AgBr composite was proposed, and the degradation pathway of target pollutants was speculated upon. This study has conceived novel methods for the development of a mature Z-scheme mechanism and in doing so has provided new approaches for the development of photocatalysis for water pollution control.
Collapse
Affiliation(s)
- Hengcan Dai
- College of Civil Engineering, Guizhou University Guiyang 555000 PR China
| | - Xiaoliang Yang
- POWERCHINA Guizhou Electric Power Engineering Co., Ltd Guiyang 555000 PR China
| | - WanLi Li
- Guizhou Polytechnic of Construction Guiyang 551400 PR China
| | - Yukai Wang
- College of Civil Engineering, Guizhou University Guiyang 555000 PR China
| |
Collapse
|
8
|
Yueyu S. The synergistic degradation of pollutants in water by photocatalysis and PMS activation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10927. [PMID: 37723660 DOI: 10.1002/wer.10927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In recent years, the synergistic degradation of water pollutants through advanced oxidation technology has emerged as a prominent research area due to its integration of various advanced oxidation technologies. The combined utilization of peroxymonosulfate (PMS) activation technology and photocatalysis demonstrates mild and nontoxic characteristics, enabling the degradation of water pollutants across a wide pH range. Moreover, this approach reduces the efficiency of electron hole recombination, broadens the catalyst's light response range, facilitates electron transfer of PMS, and ultimately improves its photocatalytic performance. The paper reviews the current research status of photocatalytic technology and PMS activation technology, respectively, while highlighting the advancements achieved through the integration of photocatalytic synergetic PMS activation technology for water pollutant degradation. Furthermore, this review delves into the mechanisms involving both free radicals and nonradicals in the reaction process and presents a promising prospect for future development in water treatment technology. PRACTITIONER POINTS: Degradation of water pollutants by photocatalysis and PMS synergistic action has emerged. Synergism can enhance the generation of free radicals. This technology can provide theoretical support for actual wastewater treatment.
Collapse
Affiliation(s)
- Song Yueyu
- Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan, China
| |
Collapse
|
9
|
Cha B, Yea Y, Yun K, Kim T, Kim H, Yoon Y, Kim S, Park CM. Enhanced catalytic oxidation of naproxen via activation of peroxymonosulfate by Fe-based metal-organic framework aerogels functionalized with Ag nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131847. [PMID: 37352778 DOI: 10.1016/j.jhazmat.2023.131847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
In this study, Ag3PO4 and Fe-based metal-organic frameworks (MOFs)-functionalized three-dimensional (3D) porous gelatin aerogels (Ag/Fe@GMA) were fabricated and used as adsorbents and catalysts for the activation of peroxymonosulfate (PMS) for naproxen (NPX) removal from water. The morphology, crystallinity, surface functional groups, and surface chemical element compositions of the fabricated Ag/Fe@GMA was evaluated using various analytical techniques. Our results showed that as an adsorbent, Ag/Fe@GMA showed a 18.0 % higher NPX adsorption capacity compared with the pristine aerogels. This can be attributed to the well-embedded Ag3PO4 and MOFs, indicating a stronger interaction between functionalized aerogels and NPX. After adsorption, 99.9 % of total NPX removal was achieved within 15 min by activating PMS and effectively generating •OH and •SO4- in water. The PMS/Ag/Fe@GMA aerogel system also showed high removal performance for rhodamine B (99.5 %) and tetracycline (93.7 %). Moreover, the Ag/Fe@GMA aerogels showed excellent reusability to achieve 95.7 % NPX removal efficiency after six times of recycling. This study revealed that the Ag/Fe@GMA aerogels had good potential for PMS activation and NPX removal. In particular, as an alternative to powdery materials, 3D shape of Ag/Fe@GMA with excellent reusability facilitates its application in the treatment of water contaminated with organic contaminants.
Collapse
Affiliation(s)
- Byungjun Cha
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, the Republic of Korea
| | - Yeonji Yea
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, the Republic of Korea
| | - Keunyoung Yun
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, the Republic of Korea
| | - Taeyeon Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, the Republic of Korea
| | - Hyeonjeong Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, the Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA; Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, the Republic of Korea
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, the Republic of Korea.
| |
Collapse
|
10
|
Cai N, Bai G, Zhang T, Lei Y, Guo P, Chen Z, Xu J. Three-dimensional heterogeneous electro-Fenton system with reduced graphene oxide based particle electrode for Acyclovir removal. CHINESE CHEM LETT 2023; 35:108514. [PMID: 37362325 PMCID: PMC10139746 DOI: 10.1016/j.cclet.2023.108514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
New pollutant pharmaceutical and personal care products (PPCPs), especially antiviral drugs, have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment. Electro-Fenton technology is an effective method to remove PPCPs from water. Novel particle electrodes (MMT/rGO/Fe3O4) were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional Electro-Fenton (3D-EF) system. The electrodes combined the catalytic property of Fe3O4, hydrophilicity of montmorillonite and electrical conductivity of graphene oxides, and applied for the degradation of Acyclovir (ACV) with high efficiency and ease of operation. At optimal condition, the degradation rate of ACV reached 100% within 120 min, and the applicable pH range could be 3 to 11 in the 3D-EF system. The stability and reusability of MMT/rGO/Fe3O4 particle electrodes were also studied, the removal rate of ACV remained at 92% after 10 cycles, which was just slightly lower than that of the first cycle. Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS.
Collapse
Affiliation(s)
- Nan Cai
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Ge Bai
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730000, China
| | - Ting Zhang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730000, China
| | - Yongqian Lei
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhiliang Chen
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Jingwei Xu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| |
Collapse
|
11
|
Zhang X, Tian Y, Zhou L, Wang L, Zhang J, Liu Y, Lei J. Efficient degradation of levofloxacin using a g-C 3N 4@glucose-derived carbon catalyst with adjustable N content via peroxymonosulfate activation. CHEMOSPHERE 2023; 314:137684. [PMID: 36584832 DOI: 10.1016/j.chemosphere.2022.137684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Metal-free carbon-based catalysts hold great promise for the degradation of organic pollutants by peroxymonosulfate (PMS) activation because they avoid the negative effects of metal catalysts such as harmful metal ions leaching. However, these carbon-based catalysts are limited by their high cost and complex synthesis, and the mechanisms for the activation of PMS are unclear. Herein, the N-rich carbon catalysts (GCN-x) derived from glucose and g-C3N4 were facilely synthesized by hydrothermal treatment and carbonization to explore the mechanism of PMS activation. The nitrogen content of catalysts could be adjusted by simply altering the ratio of glucose and g-C3N4. GCN-2.4 with a ratio of glucose and g-C3N4 of 2.4 displayed the highest efficiency for the degradation of pollutants represented by Levofloxacin. The electron paramagnetic resonance and quenching experiments demonstrated that the non-radical pathway was dominant in Levofloxacin degradation and singlet oxygen (1O2) was the main active specie. Further, we found 1O2 was generated from superoxide radical (• O2-) which has rarely been studied. Levofloxacin degradation rate was shown to be positively correlated with both the amount of graphitic N and pyridinic N. Graphitic N and pyridinic N were identified as the catalytic sites. The GCN-2.4/PMS system could also remove multifarious contaminants effectively. Overall, this research advances understanding of the role of N species in PMS activation and has potential practical application in wastewater treatment.
Collapse
Affiliation(s)
- Xinxi Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Yunhao Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Liang Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yongdi Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Juying Lei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| |
Collapse
|
12
|
Hassani A, Scaria J, Ghanbari F, Nidheesh PV. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. ENVIRONMENTAL RESEARCH 2023; 217:114789. [PMID: 36375505 DOI: 10.1016/j.envres.2022.114789] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Jaimy Scaria
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
13
|
Pan S, Guo X, Li R, Hu H, Yuan J, Liu B, Hei S, Zhang Y. Activation of peroxymonosulfate via a novel UV/hydrated Fe(III) oxide coupling strategy for norfloxacin removal: Performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Zhang J, Luo M, Zhang D, Feng R, Jia Y, Meng J, Yang S. Hydrolysis of norfloxacin in the hyporheic zone: kinetics and pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82481-82491. [PMID: 35752671 DOI: 10.1007/s11356-022-21541-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Understanding the hydrolysis behavior and pathway of norfloxacin (NOR) in the hyporheic zone (HZ) is important for predicting its environmental persistence. Therefore, the effects of different environmental factors on NOR hydrolysis were investigated, and the hydrolysis pathway of NOR in the HZ was determined by DFT calculations and UPLC/TOF-MS. The hydrolysis process of NOR was consistent with the first-order kinetic. The experiment of environmental factors showed that DO was an important factor to affect NOR hydrolysis, and its hydrolysis rate was positively correlated with DO concentration. The superoxide radical (·O2-) was the main active species for NOR hydrolysis. The hydrolysis rates of NOR under neutral and alkaline conditions were higher than that under acidic conditions in both aerobic and anoxic environments. The ions of Ca2+, Mg2+, HCO3-, CO32-, and NO3- in simulated water samples inhibited the hydrolysis of NOR, while Cl- promoted its hydrolysis. In addition, the electronegativity of NOR was determined by DFT calculations, and it was speculated that the active sites of NOR hydrolysis were mainly located in the piperazine ring and quinolone ring. The main hydrolysis pathway of NOR in aerobic environment was piperazine ring cracking and quinolone ring decomposition, and that in anoxic environment was piperazine ring cracking. The results are of great significance to evaluate the environmental fate of NOR in the HZ and provide a theoretical basis for further understanding the degradation and governance of fluoroquinolones in water environment.
Collapse
Affiliation(s)
- Jianping Zhang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Mengya Luo
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Dan Zhang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Ruyi Feng
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yang Jia
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Junsheng Meng
- China Jikan Research Institute of Engineering Investigations and Design Co, LTD, Xi'an, 710000, China
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China.
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
15
|
Xu M, Yang J, Wang Y, Lu B, Chen R, Liu H. Novel urchin-like Co5Mn-LDH hierarchical nanoarrays: Formation mechanism and its performance in PMS activation and norfloxacin degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Photocatalytic treatment for antibacterials wastewater with high-concentration using ZnFe2O4/Bi7O9I3 magnetic composite with optimized morphology and structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
He B, Zhao Z, Song L, Liu W, Yang Y, Shang J, Cheng X. Highly efficient activation of peroxymonosulfate by the (3R + 2H)-CuFeO2 nanocomposite photocatalyst: Intermediate toxicity, BVS validation ionic migration and degradation pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|