1
|
Loganath K, Craig N, Barton A, Joshi S, Anagnostopoulos C, Erba PA, Glaudemans AWJM, Saraste A, Bucerius J, Lubberink M, Gheysens O, Buechel RR, Habib G, Gaemperli O, Gimelli A, Hyafil F, Newby DE, Slart RHJA, Dweck MR. Cardiovascular positron emission tomography imaging of fibroblast activation: A review of the current literature. J Nucl Cardiol 2025; 47:102106. [PMID: 39672296 DOI: 10.1016/j.nuclcard.2024.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Fibrosis is one of the key healing responses to injury, especially within the heart, where it helps to maintain structural integrity following acute insults such as myocardial infarction. However, if it becomes dysregulated, then fibrosis can become maladaptive, leading to adverse remodelling, impaired cardiac function and heart failure. Fibroblast activation protein is exclusively expressed by activated fibroblasts, the key effector cells of fibrogenesis, and has a unique extracellular domain that is an ideal ligand for novel molecular imaging probes. Fibroblast activation protein inhibitor (FAPI) radiotracers have been developed for positron emission tomography (PET) imaging, demonstrating high selectivity for activated fibroblasts across a range of different pathologies and disparate organ systems. In this review, we will summarise the role of fibroblast activation protein in cardiovascular disease and how FAPI radiotracers might improve the assessment and treatment of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Krithika Loganath
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Neil Craig
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Barton
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Shruti Joshi
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Constantinos Anagnostopoulos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Paola Anna Erba
- Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy; Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamllynkatu, Turku, Finland; Heart Center, Turku University Hospital, Turku, Finland
| | - Jan Bucerius
- Department of Nuclear Medicine, Georg-August University Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Mark Lubberink
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Gilbert Habib
- Cardiology Department, APHM, La Timone Hospital, Marseille, France; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Oliver Gaemperli
- HeartClinic, Hirslanden Hospital Zurich, Hirslanden, Switzerland
| | | | - Fabien Hyafil
- Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, University of Paris, Paris, France; PARCC, INSERM, University of Paris, Paris, France
| | - David E Newby
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine & Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Faculty of Science and Technology Biomedical, Photonic Imaging, University of Twente, Enschede, the Netherlands
| | - Marc R Dweck
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Guduguntla V, Weinberg RL. Cardiac PET Imaging for Coronary Artery Disease and Heart Failure: An Overview. Heart Fail Clin 2025; 21:175-189. [PMID: 40107797 DOI: 10.1016/j.hfc.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Cardiac PET imaging is an important noninvasive modality for the diagnosis and management of heart failure. Cardiac PET myocardial perfusion imaging can identify coronary artery disease with high accuracy and also detect myocardial viability, offering crucial information for the treatment of ischemic cardiomyopathy. Additionally, cardiac PET can help diagnose nonischemic cardiomyopathies including sarcoidosis, amyloidosis, and myocarditis. Improved PET scanner technology combined with emerging radiotracers will, in the future, offer disease-specific molecular imaging that will further assist in the diagnosis, prognosis, and treatment selection for a variety of cardiovascular pathologies.
Collapse
Affiliation(s)
- Vinay Guduguntla
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 600, Chicago, IL 60611, USA
| | - Richard L Weinberg
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 600, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Chung KJ, Abdelhafez YG, Spencer BA, Jones T, Tran Q, Nardo L, Chen MS, Sarkar S, Medici V, Lyo V, Badawi RD, Cherry SR, Wang G. Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. Nat Commun 2025; 16:3076. [PMID: 40159510 PMCID: PMC11955546 DOI: 10.1038/s41467-025-58356-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Neuroimaging of blood-brain barrier permeability has been instrumental in identifying its broad involvement in neurological and systemic diseases. However, current methods evaluate the blood-brain barrier mainly as a structural barrier. Here we developed a non-invasive positron emission tomography method in humans to measure the blood-brain barrier permeability of molecular radiotracers that cross the blood-brain barrier through its molecule-specific transport mechanism. Our method uses high-temporal resolution dynamic imaging and kinetic modeling for multiparametric imaging and quantification of the blood-brain barrier permeability-surface area product of molecular radiotracers. We show, in humans, our method can resolve blood-brain barrier permeability across three radiotracers and demonstrate its utility in studying brain aging and brain-body interactions in metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to effectively study the molecular permeability of the human blood-brain barrier in vivo using the large catalogue of available molecular positron emission tomography tracers.
Collapse
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Quyen Tran
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Moon S Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Souvik Sarkar
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA, USA
| | - Valentina Medici
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA, USA
| | - Victoria Lyo
- Department of Surgery, University of California Davis Health, Sacramento, CA, USA
- Center for Alimentary and Metabolic Sciences, University of California Davis Health, Sacramento, CA, USA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA
| | - Simon R Cherry
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA.
| |
Collapse
|
4
|
Meng X, Kong X, Wu R, Yang Z. Total Body PET/CT: A Role in Drug Development? Semin Nucl Med 2025; 55:116-123. [PMID: 39389888 DOI: 10.1053/j.semnuclmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Nowadays, total body PET has already entered the medical centers and enabled various clinical applications due to its superior imaging capabilities, especially the high sensitivity. However, the potential of the total body PET in the clinical evaluation of radiopharmaceuticals remains underexplored. The development and regulatory processes for radiopharmaceuticals present unique challenges that total body PET could address. In the safety evaluation of radiopharmaceuticals, the internal radiation dosimetry demands images with high quality and quantitative accuracy, which can be achieved using the total body PET. The current clinical pharmacokinetic study for radiopharmaceuticals still relies on invasively sampling of blood and other body fluid, causing discomfort of participant and difficulty in implementation. With the total body PET, the radioactive concentration of the drug in various blood vessels can be assessed noninvasively, facilitating the pharmacokinetic study. The parametric analysis over the total body based on compartment models also sheds light on the pharmacokinetics of the radiopharmaceutical. A special requirement for multi-center clinical research involving PET and SPECT is the harmonization of the quantitative performance among different imaging equipment, and the discrepancy between the total body PET and short axial field of view PET scanners may add to the complexity. To date, there are several successful examples of clinical trials of innovative radiopharmaceuticals using the total body PET, involving different types of tracers ranging from small molecules, peptides, nanobodies, minibodies, and aptamers. In conclusion, total body PET has the potential to revolutionize the clinical evaluation of radiopharmaceuticals and will play a crucial role in future drug development.
Collapse
Affiliation(s)
- Xiangxi Meng
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangxing Kong
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Runze Wu
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China
| | - Zhi Yang
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
5
|
Zoghi S, Mingels C, Badawi RD, Spencer BA, Yarbrough TL, Nardo L, Chaudhari AJ. Role of Total Body PET/CT in Inflammatory Disorders. Semin Nucl Med 2025; 55:41-51. [PMID: 39578110 PMCID: PMC11645246 DOI: 10.1053/j.semnuclmed.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Inflammatory disorders historically have been difficult to monitor with conventional PET imaging due to limitations including radiation exposure, lack of validated imaging biomarkers, low spatial resolution, and long acquisition durations. However, the recent development of long-axial field-of-view (LAFOV) PET/CT scanners may allow utilization of novel noninvasive biomarkers to diagnose, predict outcomes, and monitor therapeutic response of inflammatory conditions. LAFOV PET scanners can image most of the human body (if not the entire body) simultaneously in one bed position, with improved signal collection efficiency compared to conventional PET scanners. This allows for imaging with shorter acquisition durations, decreased injected radiotracer dose, prolonged uptake times, or a combination of any of these. In addition, LAFOV PET scanners enable whole-body dynamic imaging. Altogether, these intrinsically superior capabilities in assessing both local and systemic diseases, have allowed these scanners to make increasingly significant contributions to the assessment of inflammatory conditions. This review aims to further explore the role and benefits of LAFOV scanners for imaging various inflammatory conditions while addressing future developments and challenges faced by this technology.
Collapse
Affiliation(s)
- Shervin Zoghi
- Department of Radiology, University of California Davis, Sacramento, CA, USA.
| | - Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Tracy L Yarbrough
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
6
|
Martinez-Lucio TS, Mendoza-Ibañez OI, Liu W, Mostafapour S, Li Z, Providência L, Salvi de Souza G, Mohr P, Dobrolinska MM, van Leer B, Tingen HSA, van Sluis J, Tsoumpas C, Glaudemans AWJM, Koopmans KP, Lammertsma AA, Slart RHJA. Long Axial Field of View PET/CT: Technical Aspects in Cardiovascular Diseases. Semin Nucl Med 2025; 55:52-66. [PMID: 39537432 DOI: 10.1053/j.semnuclmed.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Positron emission tomography / computed tomography (PET/CT) plays a pivotal role in the assessment of cardiovascular diseases (CVD), particularly in the context of ischemic heart disease. Nevertheless, its application in other forms of CVD, such as infiltrative, infectious, or inflammatory conditions, remains limited. Recently, PET/CT systems with an extended axial field of view (LAFOV) have been developed, offering greater anatomical coverage and significantly enhanced PET sensitivity. These advancements enable head-to-pelvis imaging with a single bed position, and in systems with an axial field of view (FOV) of approximately 2 meters, even total body (TB) imaging is feasible in a single scan session. The application of LAFOV PET/CT in CVD presents a promising opportunity to improve systemic cardiovascular assessments and address the limitations inherent to conventional short axial field of view (SAFOV) devices. However, several technical challenges, including procedural considerations for LAFOV systems in CVD, complexities in data processing, arterial input function extraction, and artefact management, have not been fully explored. This review aims to discuss the technical aspects of LAFOV PET/CT in relation to CVD by highlighting key opportunities and challenges and examining the impact of these factors on the evaluation of most relevant CVD.
Collapse
Affiliation(s)
- Tonantzin Samara Martinez-Lucio
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Oscar Isaac Mendoza-Ibañez
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wanling Liu
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Samaneh Mostafapour
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zekai Li
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Providência
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Giordana Salvi de Souza
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Philipp Mohr
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalena M Dobrolinska
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bram van Leer
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrea S A Tingen
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Pieter Koopmans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
7
|
Rathod N, Jutidamrongphan W, Bosbach WA, Chen Y, Penner JL, Sari H, Zeimpekis K, Montes AL, Moskal P, Stepien E, Shi K, Rominger A, Seifert R. Total Body PET/CT: Clinical Value and Future Aspects of Quantification in Static and Dynamic Imaging. Semin Nucl Med 2025; 55:98-106. [PMID: 39616013 DOI: 10.1053/j.semnuclmed.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
Total body (TB) Positron Emission Tomography (PET) / Computed Tomography (CT) scanners have revolutionized nuclear medicine by enabling whole-body imaging in a single bed position.1 This review assesses the physical and clinical value of TB-PET/CT, with a focus on the advancements in both static and dynamic imaging, as well as the evolving quantification techniques. The significantly enhanced sensitivity of TB scanners can reduce radiation exposure and scan time, offering improved patient comfort and making it particularly useful for pediatric imaging and various other scenarios. Shorter scan times also decrease motion artifacts, leading to higher-quality images and better diagnostic accuracy. Dynamic PET imaging with TB scanners extends these advantages by capturing temporal changes in tracer uptake over time, providing real-time insights into both structural and functional assessment, and promoting the ability to monitor disease progression and treatment response. We also present CT-free attenuation correction methods that utilize the increased sensitivity of TB-PET as a potential improvement for dynamic TB-PET protocols. In static imaging, emerging quantification techniques such as dual-tracer PET using TB scanners allow imaging of two biological pathways, simultaneously, for a more comprehensive assessment of disease. In addition, positronium imaging, a novel technique utilizing positronium lifetime measurements, is introduced as a promising aspect for providing structural information alongside functional quantification. Finally, the potential of expanding clinical applications with the increased sensitivity of TB-PET/CT scanners is discussed.
Collapse
Affiliation(s)
- Narendra Rathod
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Warissara Jutidamrongphan
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Wolfram Andreas Bosbach
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Yizhou Chen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jan Luca Penner
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Alejandro López Montes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Pawel Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland and Centre for Theranostics, Jagiellonian University, Krakow, Poland
| | - Ewa Stepien
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland and Centre for Theranostics, Jagiellonian University, Krakow, Poland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
8
|
Hricak H, Mayerhoefer ME, Herrmann K, Lewis JS, Pomper MG, Hess CP, Riklund K, Scott AM, Weissleder R. Advances and challenges in precision imaging. Lancet Oncol 2025; 26:e34-e45. [PMID: 39756454 DOI: 10.1016/s1470-2045(24)00395-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 01/07/2025]
Abstract
Technological innovations in genomics and related fields have facilitated large sequencing efforts, supported new biological discoveries in cancer, and spawned an era of liquid biopsy biomarkers. Despite these advances, precision oncology has practical constraints, partly related to cancer's biological diversity and spatial and temporal complexity. Advanced imaging technologies are being developed to address some of the current limitations in early detection, treatment selection and planning, drug delivery, and therapeutic response, as well as difficulties posed by drug resistance, drug toxicity, disease monitoring, and metastatic evolution. We discuss key areas of advanced imaging for improving cancer outcomes and survival. Finally, we discuss practical challenges to the broader adoption of precision imaging in the clinic and the need for a robust translational infrastructure.
Collapse
Affiliation(s)
- Hedvig Hricak
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marius E Mayerhoefer
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Jason S Lewis
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology and Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Martin G Pomper
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Katrine Riklund
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Ralph Weissleder
- Department of Radiology and Center for Systems Biology, Massachusetts General Brigham, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Saraste A, Ståhle M, Roivainen A, Knuuti J. Molecular Imaging of Heart Failure: An Update and Future Trends. Semin Nucl Med 2024; 54:674-685. [PMID: 38609753 DOI: 10.1053/j.semnuclmed.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Molecular imaging can detect and quantify pathophysiological processes underlying heart failure, complementing evaluation of cardiac structure and function with other imaging modalities. Targeted tracers have enabled assessment of various cellular and subcellular mechanisms of heart failure aiming for improved phenotyping, risk stratification, and personalized therapy. This review outlines the current status of molecular imaging in heart failure, accompanied with discussion on novel developments. The focus is on radionuclide methods with data from clinical studies. Imaging of myocardial metabolism can identify left ventricle dysfunction caused by myocardial ischemia that may be reversible after revascularization in the presence of viable myocardium. In vivo imaging of active inflammation and amyloid deposition have an established role in the detection of cardiac sarcoidosis and transthyretin amyloidosis. Innervation imaging has well documented prognostic value in predicting heart failure progression and arrhythmias. Tracers specific for inflammation, angiogenesis and myocardial fibrotic activity are in earlier stages of development, but have demonstrated potential value in early characterization of the response to myocardial injury and prediction of cardiac function over time. Early detection of disease activity is a key for transition from medical treatment of clinically overt heart failure towards a personalized approach aimed at supporting repair and preventing progressive cardiac dysfunction.
Collapse
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Heart Center, Turku University Hospital and University of Turku, Turku, Finland.
| | - Mia Ståhle
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
10
|
Chung KJ, Abdelhafez YG, Spencer BA, Jones T, Tran Q, Nardo L, Chen MS, Sarkar S, Medici V, Lyo V, Badawi RD, Cherry SR, Wang G. Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.26.24311027. [PMID: 39108503 PMCID: PMC11302722 DOI: 10.1101/2024.07.26.24311027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Blood-brain barrier (BBB) disruption is involved in the pathogenesis and progression of many neurological and systemic diseases. Non-invasive assessment of BBB permeability in humans has mainly been performed with dynamic contrast-enhanced magnetic resonance imaging, evaluating the BBB as a structural barrier. Here, we developed a novel non-invasive positron emission tomography (PET) method in humans to measure the BBB permeability of molecular radiotracers that cross the BBB through different transport mechanisms. Our method uses high-temporal resolution dynamic imaging and kinetic modeling to jointly estimate cerebral blood flow and tracer-specific BBB transport rate from a single dynamic PET scan and measure the molecular permeability-surface area (PS) product of the radiotracer. We show our method can resolve BBB PS across three PET radiotracers with greatly differing permeabilities, measure reductions in BBB PS of 18F-fluorodeoxyglucose (FDG) in healthy aging, and demonstrate a possible brain-body association between decreased FDG BBB PS in patients with metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to efficiently study the molecular permeability of the human BBB in vivo using the large catalogue of available molecular PET tracers.
Collapse
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Quyen Tran
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Moon S Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
| | - Souvik Sarkar
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
| | - Valentina Medici
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA
| | - Victoria Lyo
- Department of Surgery, University of California Davis Health, Sacramento, CA
- Center for Alimentary and Metabolic Sciences, University of California Davis Health, Sacramento, CA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Health, Sacramento, CA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA
| |
Collapse
|
11
|
Arabi H, Manesh AS, Zaidi H. Innovations in dedicated PET instrumentation: from the operating room to specimen imaging. Phys Med Biol 2024; 69:11TR03. [PMID: 38744305 DOI: 10.1088/1361-6560/ad4b92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
This review casts a spotlight on intraoperative positron emission tomography (PET) scanners and the distinctive challenges they confront. Specifically, these systems contend with the necessity of partial coverage geometry, essential for ensuring adequate access to the patient. This inherently leans them towards limited-angle PET imaging, bringing along its array of reconstruction and geometrical sensitivity challenges. Compounding this, the need for real-time imaging in navigation systems mandates rapid acquisition and reconstruction times. For these systems, the emphasis is on dependable PET image reconstruction (without significant artefacts) while rapid processing takes precedence over the spatial resolution of the system. In contrast, specimen PET imagers are unburdened by the geometrical sensitivity challenges, thanks to their ability to leverage full coverage PET imaging geometries. For these devices, the focus shifts: high spatial resolution imaging takes precedence over rapid image reconstruction. This review concurrently probes into the technical complexities of both intraoperative and specimen PET imaging, shedding light on their recent designs, inherent challenges, and technological advancements.
Collapse
Affiliation(s)
- Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Abdollah Saberi Manesh
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, 500 Odense, Denmark
- University Research and Innovation Center, Óbuda University, Budapest, Hungary
| |
Collapse
|
12
|
Shiyam Sundar LK, Gutschmayer S, Maenle M, Beyer T. Extracting value from total-body PET/CT image data - the emerging role of artificial intelligence. Cancer Imaging 2024; 24:51. [PMID: 38605408 PMCID: PMC11010281 DOI: 10.1186/s40644-024-00684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
The evolution of Positron Emission Tomography (PET), culminating in the Total-Body PET (TB-PET) system, represents a paradigm shift in medical imaging. This paper explores the transformative role of Artificial Intelligence (AI) in enhancing clinical and research applications of TB-PET imaging. Clinically, TB-PET's superior sensitivity facilitates rapid imaging, low-dose imaging protocols, improved diagnostic capabilities and higher patient comfort. In research, TB-PET shows promise in studying systemic interactions and enhancing our understanding of human physiology and pathophysiology. In parallel, AI's integration into PET imaging workflows-spanning from image acquisition to data analysis-marks a significant development in nuclear medicine. This review delves into the current and potential roles of AI in augmenting TB-PET/CT's functionality and utility. We explore how AI can streamline current PET imaging processes and pioneer new applications, thereby maximising the technology's capabilities. The discussion also addresses necessary steps and considerations for effectively integrating AI into TB-PET/CT research and clinical practice. The paper highlights AI's role in enhancing TB-PET's efficiency and addresses the challenges posed by TB-PET's increased complexity. In conclusion, this exploration emphasises the need for a collaborative approach in the field of medical imaging. We advocate for shared resources and open-source initiatives as crucial steps towards harnessing the full potential of the AI/TB-PET synergy. This collaborative effort is essential for revolutionising medical imaging, ultimately leading to significant advancements in patient care and medical research.
Collapse
Affiliation(s)
| | - Sebastian Gutschmayer
- Quantitative Imaging and Medical Physics (QIMP) Team, Medical University of Vienna, Vienna, Austria
| | - Marcel Maenle
- Quantitative Imaging and Medical Physics (QIMP) Team, Medical University of Vienna, Vienna, Austria
| | - Thomas Beyer
- Quantitative Imaging and Medical Physics (QIMP) Team, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Slart RHJA, Bengel FM, Akincioglu C, Bourque JM, Chen W, Dweck MR, Hacker M, Malhotra S, Miller EJ, Pelletier-Galarneau M, Packard RRS, Schindler TH, Weinberg RL, Saraste A, Slomka PJ. Total-Body PET/CT Applications in Cardiovascular Diseases: A Perspective Document of the SNMMI Cardiovascular Council. J Nucl Med 2024:jnumed.123.266858. [PMID: 38388512 DOI: 10.2967/jnumed.123.266858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Digital PET/CT systems with a long axial field of view have become available and are emerging as the current state of the art. These new camera systems provide wider anatomic coverage, leading to major increases in system sensitivity. Preliminary results have demonstrated improvements in image quality and quantification, as well as substantial advantages in tracer kinetic modeling from dynamic imaging. These systems also potentially allow for low-dose examinations and major reductions in acquisition time. Thereby, they hold great promise to improve PET-based interrogation of cardiac physiology and biology. Additionally, the whole-body coverage enables simultaneous assessment of multiple organs and the large vascular structures of the body, opening new opportunities for imaging systemic mechanisms, disorders, or treatments and their interactions with the cardiovascular system as a whole. The aim of this perspective document is to debate the potential applications, challenges, opportunities, and remaining challenges of applying PET/CT with a long axial field of view to the field of cardiovascular disease.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Cigdem Akincioglu
- Division of Nuclear Medicine, Medical Imaging, Western University, London, Ontario, Canada
| | - Jamieson M Bourque
- Departments of Medicine (Cardiology) and Radiology, University of Virginia, Charlottesville, Virginia
| | - Wengen Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Edward J Miller
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, and Department of Internal Medicine, Yale University, New Haven, Connecticut
| | | | - René R S Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Weinberg
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Antti Saraste
- Turku PET Centre and Heart Center, Turku University Hospital and University of Turku, Turku, Finland; and
| | - Piotr J Slomka
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
14
|
Blankstein R, Chandrashekhar Y. Clinical Trials in Cardiac Sarcoidosis. JACC Cardiovasc Imaging 2024; 17:107-109. [PMID: 38176848 DOI: 10.1016/j.jcmg.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
|
15
|
Bengel FM, Di Carli MF. The Evolution of Cardiac Nuclear Imaging. J Nucl Med 2023; 64:1S-2S. [PMID: 37918847 DOI: 10.2967/jnumed.123.266845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Affiliation(s)
- Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | - Marcelo F Di Carli
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|