1
|
Lou M, Heuckeroth RO, Tjaden NEB. Neuroimmune Crossroads: The Interplay of the Enteric Nervous System and Intestinal Macrophages in Gut Homeostasis and Disease. Biomolecules 2024; 14:1103. [PMID: 39334870 PMCID: PMC11430413 DOI: 10.3390/biom14091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
A defining unique characteristic of the gut immune system is its ability to respond effectively to foreign pathogens while mitigating unnecessary inflammation. Intestinal macrophages serve as the cornerstone of this balancing act, acting uniquely as both the sword and shield in the gut microenvironment. The GI tract is densely innervated by the enteric nervous system (ENS), the intrinsic nervous system of the gut. Recent advances in sequencing technology have increasingly suggested neuroimmune crosstalk as a critical component for homeostasis both within the gut and in other tissues. Here, we systematically review the ENS-macrophage axis. We focus on the pertinent molecules produced by the ENS, spotlight the mechanistic contributions of intestinal macrophages to gut homeostasis and inflammation, and discuss both existing and potential strategies that intestinal macrophages use to integrate signals from the ENS. This review aims to elucidate the complex molecular basis governing ENS-macrophage signaling, highlighting their cooperative roles in sustaining intestinal health and immune equilibrium.
Collapse
Affiliation(s)
- Meng Lou
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Abramson Research Center and Department of Pediatrics, Pearlman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19004, USA; (R.O.H.); (N.E.B.T.)
| | - Robert O. Heuckeroth
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Abramson Research Center and Department of Pediatrics, Pearlman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19004, USA; (R.O.H.); (N.E.B.T.)
- Division of Gastroenterology, Nutrition and Hepatology, The Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19004, USA
| | - Naomi E. Butler Tjaden
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Abramson Research Center and Department of Pediatrics, Pearlman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19004, USA; (R.O.H.); (N.E.B.T.)
- Division of Gastroenterology, Nutrition and Hepatology, The Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19004, USA
| |
Collapse
|
2
|
Choi EL, Taheri N, Zhang Y, Matsumoto K, Hayashi Y. The critical role of muscularis macrophages in modulating the enteric nervous system function and gastrointestinal motility. J Smooth Muscle Res 2024; 60:1-9. [PMID: 38462479 PMCID: PMC10921093 DOI: 10.1540/jsmr.60.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Macrophages are the originators of inflammatory compounds, phagocytic purifiers in their local environment, and wound healing protectors in oxidative environments. They are molded by the tissue milieu they inhabit, with gastrointestinal (GI) muscularis macrophages (MMs) being a prime example. MMs are located in the muscular layer of the GI tract and contribute to muscle repair and maintenance of GI motility. MMs are often in close proximity to the enteric nervous system, specifically near the enteric neurons and interstitial cells of Cajal (ICCs). Consequently, the anti-inflammatory function of MMs corresponds to the development and maintenance of neural networks in the GI tract. The capacity of MMs to shift from anti-inflammatory to proinflammatory states may contribute to the inflammatory aspects of various GI diseases and disorders such as diabetic gastroparesis or postoperative ileus, functional disorders such as irritable bowel syndrome, and organic diseases such as inflammatory bowel disease. We reviewed the current knowledge of MMs and their influence on neighboring cells due to their important role in the GI tract.
Collapse
Affiliation(s)
- Egan L. Choi
- Graduate Research Education Program in the Department of
Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences,
200 First Street SW, Rochester, MN 55905, USA
| | - Negar Taheri
- Research Fellow in the Department of Physiology and
Biomedical Engineering, Mayo Clinic School of Graduate Medical Education, 200 First Street
SW, Rochester, MN 55905, USA
| | - Yuebo Zhang
- Department of Physiology and Biomedical Engineering, Mayo
Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kenjiro Matsumoto
- Laboratory of Pathophysiology, Faculty of Pharmaceutical
Sciences, Doshisha Woman’s College of Liberal Arts, Kodo, Kyotanabe City, Kyoto 610-0395,
Japan
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering, Mayo
Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Li X, Ji S, Cipriani G, Hillestad ML, Eisenman ST, Barry MA, Nath KA, Linden DR, Wright A, AlAsfoor S, Grover M, Sha L, Hsi LC, Farrugia G. Adeno-associated virus-9 reverses delayed gastric emptying of solids in diabetic mice. Neurogastroenterol Motil 2023; 35:e14669. [PMID: 37702100 PMCID: PMC10841310 DOI: 10.1111/nmo.14669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Gastroparesis is defined by delayed gastric emptying (GE) without obstruction. Studies suggest targeting heme oxygenase-1 (HO1) may ameliorate diabetic gastroparesis. Upregulation of HO1 expression via interleukin-10 (IL-10) in the gastric muscularis propria is associated with reversal of delayed GE in diabetic NOD mice. IL-10 activates the M2 cytoprotective phenotype of macrophages and induces expression of HO1 protein. Here, we assess delivery of HO1 by recombinant adeno-associated viruses (AAVs) in diabetic mice with delayed GE. METHODS C57BL6 diabetic delayed GE mice were injected with 1 × 1012 vg scAAV9-cre, scAAV9-GFP, or scAAV9-HO1 particles. Changes to GE were assessed weekly utilizing our [13 C]-octanoic acid breath test. Stomach tissue was collected to assess the effect of scAAV9 treatment on Kit, NOS1, and HO1 expression. KEY RESULTS Delayed GE returned to normal within 2 weeks of treatment in 7/12 mice receiving scAAV9-cre and in 4/5 mice that received the scAAV9-GFP, whereas mice that received scAAV9-HO1 did not respond in the same manner and had GE that took significantly longer to return to normal (6/7 mice at 4-6 weeks). Kit, NOS1, and HO1 protein expression in scAAV9-GFP-treated mice with normal GE were not significantly different compared with diabetic mice with delayed GE. CONCLUSIONS AND INFERENCES Injection of scAAV9 into diabetic C57BL6 mice produced a biological response that resulted in acceleration of GE independently of the cargo delivered by the AAV9 vector. Further research is needed to determine whether use of AAV mediated gene transduction in the gastric muscularis propria is beneficial and warranted.
Collapse
Affiliation(s)
- Xiaojie Li
- Department of Medicine, Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Sihan Ji
- Department of Medicine, Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Gianluca Cipriani
- Department of Medicine, Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | | | - Seth T. Eisenman
- Department of Medicine, Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Michael A. Barry
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Mn, USA
| | - Karl A. Nath
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Mn, USA
| | - David R. Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Alec Wright
- Department of Medicine, Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Shefaa AlAsfoor
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Madhusudan Grover
- Department of Medicine, Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Linda C. Hsi
- Department of Medicine, Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Gianrico Farrugia
- Department of Medicine, Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| |
Collapse
|
4
|
Huang Q, Yang Y, Zhu Y, Chen Q, Zhao T, Xiao Z, Wang M, Song X, Jiang Y, Yang Y, Zhang J, Xiao Y, Nan Y, Wu W, Ai K. Oral Metal-Free Melanin Nanozymes for Natural and Durable Targeted Treatment of Inflammatory Bowel Disease (IBD). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207350. [PMID: 36760016 DOI: 10.1002/smll.202207350] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD. Moreover, MeNPs have extremely excellent natural and long-lasting characteristics of targeting IBD lesions. In view of the dominant role of ROS in IBD, the authors further reveal that oral administration of MeNPs can greatly alleviate the six major pathological features of IBD: oxidative stress, endoplasmic reticulum stress, apoptosis, inflammation, gut barrier disruption, and gut dysbiosis. Overall, this strategy highlights the great clinical application prospects of metal-free MeNPs via harnessing ROS scavenging at IBD lesions, offering a paradigm for antioxidant nanozyme in IBD or other inflammatory diseases.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiangping Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
5
|
Xu S, Liang S, Pei Y, Wang R, Zhang Y, Xu Y, Huang B, Li H, Li J, Tan B, Cao H, Guo S. TRPV1 Dysfunction Impairs Gastric Nitrergic Neuromuscular Relaxation in High-Fat Diet-Induced Diabetic Gastroparesis Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:548-557. [PMID: 36740184 DOI: 10.1016/j.ajpath.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023]
Abstract
Diabetic gastroparesis (DGP) is characterized by delayed gastric emptying of solid food. Nitrergic neuron-mediated fundus relaxation and intragastric peristalsis are pivotal for gastric emptying and are impaired in DGP. Transient receptor potential vanilloid 1 (TRPV1) ion channels are expressed in gastrointestinal vagal afferent nerves and have a potential role in relevant gastrointestinal disorders. In this study, mice with high-fat diet (HFD)-induced type 2 diabetes mellitus (T2DM), associated with gastroparesis, were used to determine the role of TRPV1 in DGP. After feeding with HFD, mice exhibited obesity, hyperglycemia, insulin resistance, and delayed gastric emptying. Cholinergic- and nitrergic neuron-mediated neuromuscular contractions and relaxation were impaired. The antral tone of the DGP mice was attenuated. Interestingly, activating or suppressing TRPV1 facilitated or inhibited gastric fundus relaxation in normal mice. These effects were neutralized by using a nitric oxide synthase (NOS) inhibitor. Activation or suppression of TRPV1 also increased or reduced NO release. TRPV1 was specifically localized with neuronal NOS in the gastric fundus. These data suggest that TRPV1 activation facilitates gastric fundus relaxation by regulating neuronal NOS and promoting NO release. However, these effects and mechanisms disappeared in mice with DGP induced by HFD diet. TRPV1 expression was only marginally decreased in the fundus of DGP mice. TRPV1 dysfunction may be a potential mechanism underlying the dysfunction of DGP gastric nitrergic neuromuscular relaxation.
Collapse
Affiliation(s)
- Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shaochan Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Pei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haiwen Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanjuan Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bo Tan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shaoju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
6
|
Mischopoulou M, D'Ambrosio M, Bigagli E, Luceri C, Farrugia G, Cipriani G. Role of Macrophages and Mast Cells as Key Players in the Maintenance of Gastrointestinal Smooth Muscle Homeostasis and Disease. Cell Mol Gastroenterol Hepatol 2022; 13:1849-1862. [PMID: 35245688 PMCID: PMC9123576 DOI: 10.1016/j.jcmgh.2022.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
The gut contains the largest macrophage pool in the body, with populations of macrophages residing in the mucosa and muscularis propria of the gastrointestinal (GI) tract. Muscularis macrophages (MMs), which are located within the muscularis propria, interact with cells essential for GI function, such as interstitial cells of Cajal, enteric neurons, smooth muscle cells, enteric glia, and fibroblast-like cells, suggesting that these immune cells contribute to several aspects of GI function. This review focuses on the latest insights on the factors contributing to MM heterogeneity and the functional interaction of MMs with other cell types essential for GI function. This review integrates the latest findings on macrophages in other organs with increasing knowledge of MMs to better understand their role in a healthy and diseased gut. We describe the factors that contribute to (muscularis macrophage) MM heterogeneity, and the nature of MM interactions with cells regulating GI function. Finally, we also describe the increasing evidence suggesting a critical role of another immune cell type, the mast cell, in normal and diseased GI physiology.
Collapse
Affiliation(s)
| | - Mario D'Ambrosio
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Cristina Luceri
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | | | | |
Collapse
|
7
|
Huizinga JD, Hussain A, Chen JH. Interstitial cells of Cajal and human colon motility in health and disease. Am J Physiol Gastrointest Liver Physiol 2021; 321:G552-G575. [PMID: 34612070 DOI: 10.1152/ajpgi.00264.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our understanding of human colonic motility, and autonomic reflexes that generate motor patterns, has increased markedly through high-resolution manometry. Details of the motor patterns are emerging related to frequency and propagation characteristics that allow linkage to interstitial cells of Cajal (ICC) networks. In studies on colonic motor dysfunction requiring surgery, ICC are almost always abnormal or significantly reduced. However, there are still gaps in our knowledge about the role of ICC in the control of colonic motility and there is little understanding of a mechanistic link between ICC abnormalities and colonic motor dysfunction. This review will outline the various ICC networks in the human colon and their proven and likely associations with the enteric and extrinsic autonomic nervous systems. Based on our extensive knowledge of the role of ICC in the control of gastrointestinal motility of animal models and the human stomach and small intestine, we propose how ICC networks are underlying the motor patterns of the human colon. The role of ICC will be reviewed in the autonomic neural reflexes that evoke essential motor patterns for transit and defecation. Mechanisms underlying ICC injury, maintenance, and repair will be discussed. Hypotheses are formulated as to how ICC dysfunction can lead to motor abnormalities in slow transit constipation, chronic idiopathic pseudo-obstruction, Hirschsprung's disease, fecal incontinence, diverticular disease, and inflammatory conditions. Recent studies on ICC repair after injury hold promise for future therapies.
Collapse
Affiliation(s)
- Jan D Huizinga
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Amer Hussain
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Ji-Hong Chen
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Liu B, Dong J, Wang S, Yu H, Li Z, Sun P, Zhao L. Helicobacter pylori causes delayed gastric emptying by decreasing interstitial cells of Cajal. Exp Ther Med 2021; 22:663. [PMID: 33986828 PMCID: PMC8111862 DOI: 10.3892/etm.2021.10095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori (HP) infection is one of the most frequent bacterial infections in humans and is associated with the pathogenesis of gastric motility disorders such as delayed gastric emptying (DGE). Although HP infection is considered to delay gastric emptying, there has been little research on the underlying mechanism. Gastric motility involves interactions among gastrointestinal hormones, smooth muscle, enteric and extrinsic autonomic nerves and interstitial cells of Cajal (ICCs), and ICCs play an important role in gastrointestinal motility. Mutation or loss of stem cell factor (SCF) expression is known to reduce the number of ICCs or alter the integrity of the ICC network, contributing to gastrointestinal dysmotility. The aim of the present study was to investigate whether a reduction in ICCs contributes to the DGE caused by HP. A mouse model of HP infection was established and gastric emptying was compared between HP-infected and uninfected mice using the bead method. In addition, ICC counts and SCF expression levels in gastric tissue were evaluated using immunohistochemistry and western blotting, respectively. The results revealed that gastric emptying was significantly slower, the number of ICCs in gastric tissue was significantly reduced and the protein level of SCF in gastric tissue was significantly decreased in HP-infected mice compared with uninfected mice. Therefore, it may be concluded that HP reduced the number of ICCs by decreasing the expression of SCF protein in gastric tissue, thereby causing DGE.
Collapse
Affiliation(s)
- Bin Liu
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China.,Department of General Surgery, Changqing District People's Hospital, Jinan, Shandong 250300, P.R. China.,Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jun Dong
- Department of General Surgery, Changqing District People's Hospital, Jinan, Shandong 250300, P.R. China
| | - Shasha Wang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China.,Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Haining Yu
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China.,Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhongchao Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China.,Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Pengfei Sun
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China.,Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Lei Zhao
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China.,Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
9
|
Singh R, Ha SE, Wei L, Jin B, Zogg H, Poudrier SM, Jorgensen BG, Park C, Ronkon CF, Bartlett A, Cho S, Morales A, Chung YH, Lee MY, Park JK, Gottfried-Blackmore A, Nguyen L, Sanders KM, Ro S. miR-10b-5p Rescues Diabetes and Gastrointestinal Dysmotility. Gastroenterology 2021; 160:1662-1678.e18. [PMID: 33421511 PMCID: PMC8532043 DOI: 10.1053/j.gastro.2020.12.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Interstitial cells of Cajal (ICCs) and pancreatic β cells require receptor tyrosine kinase (KIT) to develop and function properly. Degeneration of ICCs is linked to diabetic gastroparesis. The mechanisms linking diabetes and gastroparesis are unclear, but may involve microRNA (miRNA)-mediated post-transcriptional gene silencing in KIT+ cells. METHODS We performed miRNA-sequencing analysis from isolated ICCs in diabetic mice and plasma from patients with idiopathic and diabetic gastroparesis. miR-10b-5p target genes were identified and validated in mouse and human cell lines. For loss-of-function studies, we used KIT+ cell-restricted mir-10b knockout mice and KIT+ cell depletion mice. For gain-of-function studies, a synthetic miR-10b-5p mimic was injected in multiple diabetic mouse models. We compared the efficacy of miR-10b-5p mimic treatment vs antidiabetic and prokinetic medicines. RESULTS miR-10b-5p is highly expressed in ICCs from healthy mice, but drastically depleted in ICCs from diabetic mice. A conditional knockout of mir-10b in KIT+ cells or depletion of KIT+ cells in mice leads to degeneration of β cells and ICCs, resulting in diabetes and gastroparesis. miR-10b-5p targets the transcription factor Krüppel-like factor 11 (KLF11), which negatively regulates KIT expression. The miR-10b-5p mimic or Klf11 small interfering RNAs injected into mir-10b knockout mice, diet-induced diabetic mice, and TALLYHO polygenic diabetic mice rescue the diabetes and gastroparesis phenotype for an extended period of time. Furthermore, the miR-10b-5p mimic is more effective in improving glucose homoeostasis and gastrointestinal motility compared with common antidiabetic and prokinetic medications. CONCLUSIONS miR-10b-5p is a key regulator in diabetes and gastrointestinal dysmotility via the KLF11-KIT pathway. Restoration of miR-10b-5p may provide therapeutic benefits for these disorders.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Se Eun Ha
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Lai Wei
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Byungchang Jin
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Hannah Zogg
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Sandra M Poudrier
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Brian G Jorgensen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Chanjae Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Charles F Ronkon
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Allison Bartlett
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Sung Cho
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Addison Morales
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Yu Heon Chung
- Division of Biological Sciences, Wonkwang University, Iksan, Chonbuk, Korea
| | - Moon Young Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada; Department of Physiology, Wonkwang Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, Chonbuk, Korea
| | - Jong Kun Park
- Division of Biological Sciences, Wonkwang University, Iksan, Chonbuk, Korea
| | - Andrés Gottfried-Blackmore
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Linda Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Seungil Ro
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada.
| |
Collapse
|
10
|
Chikkamenahalli LL, Pasricha PJ, Farrugia G, Grover M. Gastric Biopsies in Gastroparesis: Insights into Gastric Neuromuscular Disorders to Aid Treatment. Gastroenterol Clin North Am 2020; 49:557-570. [PMID: 32718570 PMCID: PMC7387746 DOI: 10.1016/j.gtc.2020.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cellular and molecular understanding of human gastroparesis has markedly improved due to studies on full-thickness gastric biopsies. A decrease in the number of interstitial cells of Cajal (ICC) and functional changes in ICC constitutes the hallmark cellular feature of gastroparesis. More recently, in animal models, macrophages have also been identified to play a central role in development of delayed gastric emptying. Activation of macrophages leads to loss of ICC. In human gastroparesis, loss of anti-inflammatory macrophages in gastric muscle has been shown. Deeper molecular characterization using transcriptomics and proteomics has identified macrophage-based immune dysregulation in human gastroparesis.
Collapse
Affiliation(s)
- Lakshmikanth L. Chikkamenahalli
- Enteric NeuroScience Program, Mayo clinic, Division of Gastroenterology & Hepatology, Physiology & Biomedical Engineering Mayo Clinic, 200 1 Street SW, Rochester, MN 55905, Tel: +1 507-538-0337
| | - Pankaj J. Pasricha
- Center for Neurogastroenterology, Division of Gastroenterology & Hepatology Johns Hopkins School of Medicine, Ross 958, 720 Rutland Avenue, Baltimore, MD 21205, Tel: +1 443-613-8152
| | - Gianrico Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology & Hepatology, Physiology & Biomedical Engineering Mayo Clinic, 200 1 Street SW, Rochester, MN 55905, Tel: +1 507-284-4695
| | - Madhusudan Grover
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA; Division of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Foong D, Zhou J, Zarrouk A, Ho V, O’Connor MD. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility. Int J Mol Sci 2020; 21:ijms21124540. [PMID: 32630607 PMCID: PMC7352366 DOI: 10.3390/ijms21124540] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Millions of patients worldwide suffer from gastrointestinal (GI) motility disorders such as gastroparesis. These disorders typically include debilitating symptoms, such as chronic nausea and vomiting. As no cures are currently available, clinical care is limited to symptom management, while the underlying causes of impaired GI motility remain unaddressed. The efficient movement of contents through the GI tract is facilitated by peristalsis. These rhythmic slow waves of GI muscle contraction are mediated by several cell types, including smooth muscle cells, enteric neurons, telocytes, and specialised gut pacemaker cells called interstitial cells of Cajal (ICC). As ICC dysfunction or loss has been implicated in several GI motility disorders, ICC represent a potentially valuable therapeutic target. Due to their availability, murine ICC have been extensively studied at the molecular level using both normal and diseased GI tissue. In contrast, relatively little is known about the biology of human ICC or their involvement in GI disease pathogenesis. Here, we demonstrate human gastric tissue as a source of primary human cells with ICC phenotype. Further characterisation of these cells will provide new insights into human GI biology, with the potential for developing novel therapies to address the fundamental causes of GI dysmotility.
Collapse
Affiliation(s)
- Daphne Foong
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.F.); (J.Z.); (V.H.)
| | - Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.F.); (J.Z.); (V.H.)
| | - Ali Zarrouk
- Campbelltown Private Hospital, Campbelltown, NSW 2560, Australia;
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.F.); (J.Z.); (V.H.)
- Campbelltown Private Hospital, Campbelltown, NSW 2560, Australia;
| | - Michael D. O’Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.F.); (J.Z.); (V.H.)
- Correspondence:
| |
Collapse
|
12
|
Kong MM, Kong MM, Huang P, Jia CH. Therapeutic effect of Huangqi Jianzhong decoction on diabetic gastroparesis in rats: Impact on SCF-Kit signaling pathway in the gastric antrum. Shijie Huaren Xiaohua Zazhi 2019; 27:87-93. [DOI: 10.11569/wcjd.v27.i2.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the therapeutic effect of Huangqi Jianzhong decoction on diabetic gastroparesis (DGP) in rats and its impact on the stem cell factor (SCF)-Kit signaling pathway in the gastric antrum.
METHODS Seventy-five male Wistar rats of SPF grade were randomly divided into five groups: model group, normal group, positive control group, low-dose Huangqi Jianzhong decoction group, and high-dose Huangqi Jianzhong decoction group (15 rats in each group). Except the normal group, DGP was induced in other groups. After DGP was induced, the rats in the positive control group were intra-gastrically administered with 0.78 g/mL of morphine suspension, and the two Huangqi Jianzhong decoction groups were intra-gastrically administered with 0.78 g/mL and 3.12 g/mL of Huangqi Jianzhong decoction. The normal group and the model group were given normal saline. The dose of each group was 10 mL/kg. After continuous administration for 6 wk, the general condition, body weight, gastric emptying rate, serum soluble SCF (sSCF), gastrin (GAS), motilin (MLT), and interstitial cells of Cajal (ICC) in the gastric antrum were observed. C-kit and membrane-bound SCF (mSCF) protein expression was detected.
RESULTS Compared with the normal group, the blood glucose, GAS, and MLT levels in the model group increased, and the sSCF content and gastric emptying rate decreased. Compared with the model group, positive control group, and low dose Huangqi Jianzhong decoction group, the contents of blood glucose, GAS, and MLT significantly decreased, and the sSCF content and gastric emptying rate significantly increased in the high-dose group (P < 0.05). Compared with the normal group, the expression of c-kit and mSCF proteins in the gastric antrum decreased in the model group. Compared with the model group, the expression of c-Kit and mSCF proteins in the positive control group, low-dose and high-dose Huangqi Jianzhong decoction groups significantly increased (P < 0.05). Compared with the positive control group, the expression of c-Kit and mSCF proteins in the low-dose and high-dose Huangqi Jianzhong decoction groups increased, but the difference was not statistically significant (P > 0.05).
CONCLUSION Huangqi Jianzhong decoction enhances the expression of mSCF protein and up-regulates the SCF-Kit signaling pathway, which increases the number of ICC in the gastric antrum of DGP rats, improves gastric pacing function, and enhances gastric motility.
Collapse
Affiliation(s)
- Meng-Meng Kong
- Zhejiang University of Traditional Chinese Medicine, Hangzhou Zhejiang Province, China
| | - Meng-Meng Kong
- Community Health Service Center, Gulou Street, Haishu District, Ningbo 315000, Zhejiang Province, China
| | - Ping Huang
- Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, Zhejiang Province, China
| | - Cai-Hua Jia
- Department of Pediatrics, Ninghe District Hospital, Tianjin 301500, China
| |
Collapse
|
13
|
Bekkelund M, Sangnes DA, Gunnar Hatlebakk J, Aabakken L. Pathophysiology of idiopathic gastroparesis and implications for therapy. Scand J Gastroenterol 2019; 54:8-17. [PMID: 30638082 DOI: 10.1080/00365521.2018.1558280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Idiopathic gastroparesis is a gastric motility disorder characterized by chronic upper gastrointestinal symptoms and delayed gastric emptying without an identifiable underlying condition. This review summarizes recent understanding of the pathophysiology and treatment of idiopathic gastroparesis. MATERIALS AND METHODS Structured literature search in the PubMed, Embase and ClinicalTrials.gov databases. RESULTS Idiopathic gastroparesis involves several alterations in gastric motility and sensation, including delayed gastric emptying, altered myoelectrical activity, impaired fundic accommodation, visceral hypersensitivity and disturbances in antropyloroduodenal motility and coordination. Multiple cellular changes have been identified, including depletion of interstitial cells of Cajal (ICC) and enteric nerves, as well as stromal fibrosis. The underlying cause of these changes is not fully understood but may be an immune imbalance, including loss of anti-inflammatory heme-oxygenase-1 positive (HO-1) macrophages. There is currently no causal therapy for idiopathic gastroparesis. The treatment ladder consists of dietary measures, prokinetic and antiemetic medications, and varying surgical or endoscopic interventions, including promising pyloric therapies. There are ongoing trials with several novel medications, raising hopes for future treatment. CONCLUSIONS Patients with idiopathic gastroparesis present several pathophysiological alterations in the stomach, where depletion of ICC is of special importance. Treatment is currently focused on alleviating symptoms through dietary adjustments, medication or surgical or endoscopic interventions.
Collapse
Affiliation(s)
- Mattis Bekkelund
- a Faculty of Medicine, Department of Clinical Medicine , University of Oslo , Oslo , Norway.,b Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway
| | - Dag A Sangnes
- b Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway.,c Department of Medicine , Haukeland University Hospital , Bergen , Norway.,d Clinical institute 1, University of Bergen , Bergen , Norway
| | - Jan Gunnar Hatlebakk
- b Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway.,c Department of Medicine , Haukeland University Hospital , Bergen , Norway.,d Clinical institute 1, University of Bergen , Bergen , Norway
| | - Lars Aabakken
- a Faculty of Medicine, Department of Clinical Medicine , University of Oslo , Oslo , Norway.,e Department of Transplantation Medicine , Section for Gastroenterology, Oslo University Hospital , Oslo , Norway
| |
Collapse
|
14
|
Abstract
This article is a comprehensive review of diabetic gastroparesis, defined as delayed or disordered gastric emptying, including basic principles and current trends in management. This review includes sections on anatomy and physiology, diagnosis and differential diagnosis as well as management and current guidelines for treatment of diabetic gastroparesis. Diabetic gastroparesis (DGp) is a component of autonomic neuropathy resulting from long-standing poorly controlled type 1 and type 2 diabetes. The diagnostic workup of DGp first excludes obstruction and other causes including medications that may mimic delayed/disordered gastric emptying. Targeting nutrition, hydration, symptomatic relief and glycemic control are mainstays of treatment for DGp. Additionally, optimal treatment of DGp includes good glycemic management, often involving customizing insulin delivery using basal-bolus insulin and technology, including sensor-augmented pumps and continuous glucose monitoring systems. Prokinetic medications may be helpful in DGp symptoms, although only limited number of medications is currently available in the USA. Selected medication-refractory patients with DGp may benefit from gastric neuromodulation, and some from surgical interventions including pyloric therapies that can also be done endoscopically. As is true of any of the diabetic complications, prevention of DGp by early and optimal glycemic control is more cost-effective.Funding: Hansa Medcell, India.
Collapse
Affiliation(s)
- Sathya Krishnasamy
- Division of Endocrinology, Metabolism, and Diabetes, University of Louisville, Louisville, KY, USA
| | - Thomas L Abell
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
15
|
Cipriani G, Gibbons SJ, Miller KE, Yang DS, Terhaar ML, Eisenman ST, Ördög T, Linden DR, Gajdos GB, Szurszewski JH, Farrugia G. Change in Populations of Macrophages Promotes Development of Delayed Gastric Emptying in Mice. Gastroenterology 2018; 154:2122-2136.e12. [PMID: 29501441 PMCID: PMC5985210 DOI: 10.1053/j.gastro.2018.02.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Muscularis propria macrophages lie close to cells that regulate gastrointestinal motor function, including interstitial cells of Cajal (ICC) and myenteric neurons. In animal models of diabetic gastroparesis, development of delayed gastric emptying has been associated with loss of macrophages that express cytoprotective markers and reduced networks of ICC. Mice with long-term diabetes and normal gastric emptying have macrophages that express anti-inflammatory markers and have normal gastric ICC. Mice homozygous for the osteopetrosis spontaneous mutation in the colony-stimulating factor 1 gene (Csf1op/op) do not have macrophages; when they are given streptozotocin to induce diabetes, they do not develop delayed gastric emptying. We investigated whether population of the gastric muscularis propria of diabetic Csf1op/op mice with macrophages is necessary to change gastric emptying, ICC, and myenteric neurons and investigated the macrophage-derived factors that determine whether diabetic mice do or do not develop delayed gastric emptying. METHODS Wild-type and Csf1op/op mice were given streptozotocin to induce diabetes. Some Csf1op/op mice were given daily intraperitoneal injections of CSF1 for 7 weeks; gastric tissues were collected and cellular distributions were analyzed by immunohistochemistry. CD45+, CD11b+, F4/80+ macrophages were dissociated from gastric muscularis propria, isolated by flow cytometry and analyzed by quantitative real-time polymerase chain reaction. Cultured gastric muscularis propria from Csf1op/op mice was exposed to medium that was conditioned by culture with bone marrow-derived macrophages from wild-type mice. RESULTS Gastric muscularis propria from Csf1op/op mice given CSF1 contained macrophages; 11 of 15 diabetic mice given CSF1 developed delayed gastric emptying and had damaged ICC. In non-diabetic Csf1op/op mice, administration of CSF1 reduced numbers of gastric myenteric neurons but did not affect the proportion of nitrergic neurons or ICC. In diabetic Csf1op/op mice given CSF1 that developed delayed gastric emptying, the proportion of nitrergic neurons was the same as in non-diabetic wild-type controls. Medium conditioned by macrophages previously exposed to oxidative injury caused damage to ICC in cultured gastric muscularis propria from Csf1op/op mice; neutralizing antibodies against IL6R or TNF prevented this damage to ICC. CD45+, CD11b+, and F4/80+ macrophages isolated from diabetic wild-type mice with delayed gastric emptying expressed higher levels of messenger RNAs encoding inflammatory markers (IL6 and inducible nitric oxide synthase) and lower levels of messenger RNAs encoding markers of anti-inflammatory cells (heme oxygenase 1, arginase 1, and FIZZ1) than macrophages isolated from diabetic mice with normal gastric emptying. CONCLUSIONS In studies of Csf1op/op and wild-type mice with diabetes, we found delayed gastric emptying to be associated with increased production of inflammatory factors, and reduced production of anti-inflammatory factors, by macrophages, leading to loss of ICC.
Collapse
|
16
|
Abstract
Gastroparesis is defined as a combination of chronic dyspeptic symptoms and delayed emptying of a solid test meal. It remains a difficult-to-treat disorder with a significant impact on quality of life. Although gastroparesis is defined by delayed emptying, several important studies did not find a correlation between this biomarker and symptom severity or treatment success. Thus, some of the more recent trials explored strategies that ranged from antiemetics to antidepressants. Although dietary management showed benefit, most of the other interventions were barely superior to placebo or were not superior at all. Placebo responses were often quite high and this complicates the assessment of active agents. While it complicates the design and interpretation of clinical trials, high response rates for active and sham interventions indicate that we can achieve symptom relief in many patients and thus give them some reassurance. If indeed most therapies are only marginally better than placebo, the differences in adverse effects should be weighed more strongly, a point that is especially important in view of the controversy surrounding metoclopramide. Mechanistic studies introduced the network of macrophages as another potentially important player in the development of gastroparesis. Results are too preliminary and are largely based on preclinical data but show up- and downregulation of cellular elements controlling gastric function. Thus, future developments may teach us how they interfere with some of these mechanisms in clinical settings, potentially making gastroparesis a reversible process.
Collapse
Affiliation(s)
| | - Klaus Bielefeldt
- Division of Gastroenterology, University of Utah, UT, USA.,Gastroenterology Section, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84103, USA
| |
Collapse
|
17
|
Electroacupuncture at ST-36 Protects Interstitial Cells of Cajal via Sustaining Heme Oxygenase-1 Positive M2 Macrophages in the Stomach of Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3987134. [PMID: 29854081 PMCID: PMC5944261 DOI: 10.1155/2018/3987134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Abstract
Background Electroacupuncture (EA) at ST-36 has been reported to improve delayed gastric emptying and protect the networks of ICC in diabetic models. However, the mechanisms of the effects of EA are still unclear. The purpose of this study was to investigate whether the HO-1 positive M2 macrophages participate in the protective effects of EA for the ICC networks. Methods Male C57BL/6 mice were randomized into five groups: the normal control group, diabetic group (DM), diabetic mice with sham EA group (SEA), diabetic mice with low frequency EA group (LEA), and diabetic mice with high frequency EA group (HEA). ICC network changes were detected by Ano1 immunostaining. F4/80 and HO-1 costaining was used to measure HO-1 positive macrophage expression. Western blot and PCR methods were applied to monitor HO-1, IL-10, and macrophage markers, respectively. The serum MDA levels were detected by a commercial kit. Results This study presents the following results: (1) Compared with the control group, ICC networks were severely disrupted in the DM group, but no obvious changes were found in the LEA and HEA groups. (2) Many HO-1 positive macrophages could be observed in the LEA and HEA groups, and the expression of HO-1 was also markedly upregulated. (3) The IL-10 expression was obviously upregulated in the LEA and HEA groups. (4) The serum MDA levels were decreased in the real EA group. (5) When compared to the DM group, the expression of CD163 and Arg-1 was increased in the LEA and HEA groups, but the iNOS expression was decreased. Conclusion The protective effects of EA on the networks of ICC may rely on the HO-1 positive macrophages to mediate anti-inflammatory and antioxidative stress effects.
Collapse
|
18
|
Miller KE, Bajzer Ž, Hein SS, Phillips JE, Syed S, Wright AM, Cipriani G, Gibbons SJ, Szurszewski JH, Farrugia G, Ordog T, Linden DR. High temporal resolution gastric emptying breath tests in mice. Neurogastroenterol Motil 2018; 30:e13333. [PMID: 29575442 PMCID: PMC6157017 DOI: 10.1111/nmo.13333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric emptying is a complex physiological process regulating the division of a meal into smaller partitions for the small intestine. Disrupted gastric emptying contributes to digestive disease, yet current measures may not reflect different mechanisms by which the process can be altered. METHODS We have developed high temporal resolution solid and liquid gastric emptying breath tests in mice using [13 C]-octanoic acid and off axis- integrated cavity output spectroscopy (OA-ICOS). Stretched gamma variate and 2-component stretched gamma variate models fit measured breath excretion data. KEY RESULTS These assays detect acceleration and delay using pharmacological (7.5 mg/kg atropine) or physiological (nutrients, cold exposure stress, diabetes) manipulations and remain stable over time. High temporal resolution resolved complex excretion curves with 2 components, which was more prevalent in mice with delayed gastric emptying following streptozotocin-induced diabetes. There were differences in the gastric emptying of Balb/c vs C57Bl6 mice, with slower gastric emptying and a greater occurrence of two-phase gastric emptying curves in the latter strain. Gastric emptying of C57Bl6 could be accelerated by halving the meal size, but with no effect on the occurrence of two-phase gastric emptying curves. A greater proportion of two-phase gastric emptying was induced in Balb/c mice with the administration of PYY (8-80 nmol) 60 min following meal ingestion. CONCLUSIONS AND INFERENCES Collectively, these results demonstrate the utility of high temporal resolution gastric emptying assays. Two-phase gastric emptying is more prevalent than previously reported, likely involves intestinal feedback, but contributes little to the overall rate of gastric emptying.
Collapse
Affiliation(s)
- Katie E. Miller
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Željko Bajzer
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic
College of Medicine, Rochester, MN 55905 USA
| | - Stephanie S. Hein
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Jessica E. Phillips
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Sabriya Syed
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic
College of Medicine, Rochester, MN 55905 USA
| | - Alec M. Wright
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Gianluca Cipriani
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Simon J. Gibbons
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Joseph H. Szurszewski
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - David R. Linden
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| |
Collapse
|
19
|
Gibbons SJ, Grover M, Choi KM, Wadhwa A, Zubair A, Wilson LA, Wu Y, Abell TL, Hasler WL, Koch KL, McCallum RW, Nguyen LAB, Parkman HP, Sarosiek I, Snape WJ, Tonascia J, Hamilton FA, Pasricha PJ, Farrugia G. Repeat polymorphisms in the Homo sapiens heme oxygenase-1 gene in diabetic and idiopathic gastroparesis. PLoS One 2017; 12:e0187772. [PMID: 29161307 PMCID: PMC5697813 DOI: 10.1371/journal.pone.0187772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/25/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Idiopathic and diabetic gastroparesis in Homo sapiens cause significant morbidity. Etiology or risk factors have not been clearly identified. Failure to sustain elevated heme oxygenase-1 (HO1) expression is associated with delayed gastric emptying in diabetic mice and polymorphisms in the HO1 gene (HMOX1, NCBI Gene ID:3162) are associated with worse outcomes in other diseases. AIM Our hypothesis was that longer polyGT alleles are more common in the HMOX1 genes of individuals with gastroparesis than in controls without upper gastrointestinal motility disorders. METHODS Repeat length was determined in genomic DNA. Controls with diabetes (84 type 1, 84 type 2) and without diabetes (n = 170) were compared to diabetic gastroparetics (99 type 1, 72 type 2) and idiopathic gastroparetics (n = 234). Correlations of repeat lengths with clinical symptom sub-scores on the gastroparesis cardinal symptom index (GCSI) were done. Statistical analyses of short (<29), medium and long (>32) repeat alleles and differences in allele length were used to test for associations with gastroparesis. RESULTS The distribution of allele lengths was different between groups (P = 0.016). Allele lengths were longest in type 2 diabetics with gastroparesis (29.18±0.35, mean ± SEM) and longer in gastroparetics compared to non-diabetic controls (28.50±0.14 vs 27.64±0.20 GT repeats/allele, P = 0.0008). Type 2 diabetic controls had longer alleles than non-diabetic controls. In all gastroparetic groups, allele lengths were longer in African Americans compared to other racial groups, differences in the proportion of African Americans in the groups accounted for the differences between gastroparetics and controls. Diabetic gastroparetics with 1 or 2 long alleles had worse GCSI nausea sub-scores (3.30±0.23) as compared to those with 0 long alleles (2.66±0.12), P = 0.022. CONCLUSIONS Longer poly-GT repeats in the HMOX1 gene are more common in African Americans with gastroparesis. Nausea symptoms are worse in subjects with longer alleles.
Collapse
Affiliation(s)
- Simon J. Gibbons
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Madhusudan Grover
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Kyoung Moo Choi
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Akhilesh Wadhwa
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Adeel Zubair
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Laura A. Wilson
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yanhong Wu
- Mayo Clinic, Medical Genomics Program, Rochester, Minnesota, United States of America
| | - Thomas L. Abell
- University of Louisville, Louisville, Kentucky, United States of America
| | - William L. Hasler
- University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth L. Koch
- Wake Forest University, Winston-Salem, North Carolina, United States of America
| | | | | | - Henry P. Parkman
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Irene Sarosiek
- Texas Tech University, El Paso, Texas, United States of America
| | - William J. Snape
- California Pacific Medical Center, San Francisco, California, United States of America
| | - James Tonascia
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Frank A. Hamilton
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Pankaj J. Pasricha
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Gianrico Farrugia
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| |
Collapse
|
20
|
Hayashi Y, Toyomasu Y, Saravanaperumal SA, Bardsley MR, Smestad JA, Lorincz A, Eisenman ST, Cipriani G, Nelson Holte MH, Al Khazal FJ, Syed SA, Gajdos GB, Choi KM, Stoltz GJ, Miller KE, Kendrick ML, Rubin BP, Gibbons SJ, Bharucha AE, Linden DR, Maher LJ, Farrugia G, Ordog T. Hyperglycemia Increases Interstitial Cells of Cajal via MAPK1 and MAPK3 Signaling to ETV1 and KIT, Leading to Rapid Gastric Emptying. Gastroenterology 2017; 153:521-535.e20. [PMID: 28438610 PMCID: PMC5526732 DOI: 10.1053/j.gastro.2017.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Depletion of interstitial cells of Cajal (ICCs) is common in diabetic gastroparesis. However, in approximately 20% of patients with diabetes, gastric emptying (GE) is accelerated. GE also occurs faster in obese individuals, and is associated with increased blood levels of glucose in patients with type 2 diabetes. To understand the fate of ICCs in hyperinsulinemic, hyperglycemic states characterized by rapid GE, we studied mice with mutation of the leptin receptor (Leprdb/db), which in our colony had accelerated GE. We also investigated hyperglycemia-induced signaling in the ICC lineage and ICC dependence on glucose oxidative metabolism in mice with disruption of the succinate dehydrogenase complex, subunit C gene (Sdhc). METHODS Mice were given breath tests to analyze GE of solids. ICCs were studied by flow cytometry, intracellular electrophysiology, isometric contractility measurement, reverse-transcription polymerase chain reaction, immunoblot, immunohistochemistry, enzyme-linked immunosorbent assays, and metabolite assays; cells and tissues were manipulated pharmacologically and by RNA interference. Viable cell counts, proliferation, and apoptosis were determined by methyltetrazolium, Ki-67, proliferating cell nuclear antigen, bromodeoxyuridine, and caspase-Glo 3/7 assays. Sdhc was disrupted in 2 different strains of mice via cre recombinase. RESULTS In obese, hyperglycemic, hyperinsulinemic female Leprdb/db mice, GE was accelerated and gastric ICC and phasic cholinergic responses were increased. Female KitK641E/+ mice, which have genetically induced hyperplasia of ICCs, also had accelerated GE. In isolated cells of the ICC lineage and gastric organotypic cultures, hyperglycemia stimulated proliferation by mitogen-activated protein kinase 1 (MAPK1)- and MAPK3-dependent stabilization of ets variant 1-a master transcription factor for ICCs-and consequent up-regulation of v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) receptor tyrosine kinase. Opposite changes occurred in mice with disruption of Sdhc. CONCLUSIONS Hyperglycemia increases ICCs via oxidative metabolism-dependent, MAPK1- and MAPK3-mediated stabilization of ets variant 1 and increased expression of KIT, causing rapid GE. Increases in ICCs might contribute to the acceleration in GE observed in some patients with diabetes.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Yoshitaka Toyomasu
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Siva Arumugam Saravanaperumal
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michael R. Bardsley
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - John A. Smestad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Andrea Lorincz
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Fatimah J. Al Khazal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sabriya A. Syed
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Gabriella B. Gajdos
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Kyoung Moo Choi
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
| | - Gary J. Stoltz
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Katie E. Miller
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | - Brian P. Rubin
- Departments of Anatomic Pathology and Cancer Biology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Lerner Research Institute and Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Simon J. Gibbons
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Adil E. Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | | - Tamas Ordog
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
21
|
Malysz J, Gibbons SJ, Saravanaperumal SA, Du P, Eisenman ST, Cao C, Oh U, Saur D, Klein S, Ordog T, Farrugia G. Conditional genetic deletion of Ano1 in interstitial cells of Cajal impairs Ca 2+ transients and slow waves in adult mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2017; 312:G228-G245. [PMID: 27979828 PMCID: PMC5401988 DOI: 10.1152/ajpgi.00363.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/31/2023]
Abstract
Myenteric plexus interstitial cells of Cajal (ICC-MY) in the small intestine are Kit+ electrical pacemakers that express the Ano1/TMEM16A Ca2+-activated Cl- channel, whose functions in the gastrointestinal tract remain incompletely understood. In this study, an inducible Cre-LoxP-based approach was used to advance the understanding of Ano1 in ICC-MY of adult mouse small intestine. KitCreERT2/+;Ano1Fl/Fl mice were treated with tamoxifen or vehicle, and small intestines (mucosa free) were examined. Quantitative RT-PCR demonstrated ~50% reduction in Ano1 mRNA in intestines of conditional knockouts (cKOs) compared with vehicle-treated controls. Whole mount immunohistochemistry showed a mosaic/patchy pattern loss of Ano1 protein in ICC networks. Ca2+ transients in ICC-MY network of cKOs displayed reduced duration compared with highly synchronized controls and showed synchronized and desynchronized profiles. When matched, the rank order for Ano1 expression in Ca2+ signal imaged fields of view was as follows: vehicle controls>>>cKO(synchronized)>cKO(desynchronized). Maintenance of Ca2+ transients' synchronicity despite high loss of Ano1 indicates a large functional reserve of Ano1 in the ICC-MY network. Slow waves in cKOs displayed reduced duration and increased inter-slow-wave interval and occurred in regular- and irregular-amplitude oscillating patterns. The latter activity suggested ongoing interaction by independent interacting oscillators. Lack of slow waves and depolarization, previously reported for neonatal constitutive knockouts, were also seen. In summary, Ano1 in adults regulates gastrointestinal function by determining Ca2+ transients and electrical activity depending on the level of Ano1 expression. Partial Ano1 loss results in Ca2+ transients and slow waves displaying reduced duration, while complete and widespread absence of Ano1 in ICC-MY causes lack of slow wave and desynchronized Ca2+ transients.NEW & NOTEWORTHY The Ca2+-activated Cl- channel, Ano1, in interstitial cells of Cajal (ICC) is necessary for normal gastrointestinal motility. We knocked out Ano1 to varying degrees in ICC of adult mice. Partial knockout of Ano1 shortened the widths of electrical slow waves and Ca2+ transients in myenteric ICC but Ca2+ transient synchronicity was preserved. Near-complete knockout was necessary for transient desynchronization and loss of slow waves, indicating a large functional reserve of Ano1 in ICC.
Collapse
Affiliation(s)
- John Malysz
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | - Simon J Gibbons
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | | | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Seth T Eisenman
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | - Chike Cao
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | - Uhtaek Oh
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University, Seoul, Republic of Korea; and
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Sabine Klein
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Tamas Ordog
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|