1
|
Zarei P, Sedeh PA, Vaez A, Keshteli AH. Using metabolomics to investigate the relationship between the metabolomic profile of the intestinal microbiota derivatives and mental disorders in inflammatory bowel diseases: a narrative review. Res Pharm Sci 2025; 20:1-24. [PMID: 40190827 PMCID: PMC11972020 DOI: 10.4103/rps.rps_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 04/09/2025] Open
Abstract
Individuals with inflammatory bowel disease (IBD) are at a higher risk of developing mental disorders, such as anxiety and depression. The imbalance between the intestinal microbiota and its host, known as dysbiosis, is one of the factors, disrupting the balance of metabolite production and their signaling pathways, leading to disease progression. A metabolomics approach can help identify the role of gut microbiota in mental disorders associated with IBD by evaluating metabolites and their signaling comprehensively. This narrative review focuses on metabolomics studies that have comprehensively elucidated the altered gut microbial metabolites and their signaling pathways underlying mental disorders in IBD patients. The information was compiled by searching PubMed, Web of Science, Scopus, and Google Scholar from 2005 to 2023. The findings indicated that intestinal microbial dysbiosis in IBD patients leads to mental disorders such as anxiety and depression through disturbances in the metabolism of carbohydrates, sphingolipids, bile acids, neurotransmitters, neuroprotective, inflammatory factors, and amino acids. Furthermore, the reduction in the production of neuroprotective factors and the increase in inflammation observed in these patients can also contribute to the worsening of psychological symptoms. Analyzing the metabolite profile of the patients and comparing it with that of healthy individuals using advanced technologies like metabolomics, aids in the early diagnosis and prevention of mental disorders. This approach allows for the more precise identification of the microbes responsible for metabolite production, enabling the development of tailored dietary and pharmaceutical interventions or targeted manipulation of microbiota.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi Sedeh
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Vaez
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
2
|
Lee J, Oh SJ, Ha E, Shin GY, Kim HJ, Kim K, Lee CK. Gut microbial and human genetic signatures of inflammatory bowel disease increase risk of comorbid mental disorders. NPJ Genom Med 2024; 9:52. [PMID: 39472439 PMCID: PMC11522461 DOI: 10.1038/s41525-024-00440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
The high prevalence of comorbid mental disorders (CMDs) in patients with inflammatory bowel disease (IBD) is well-documented. This study delves into the intricate CMD-IBD relationship through comprehensive analyses using human variants, gut microbiome, and anxiety/depression estimates from a cohort of 507 IBD patients and 75 controls. Notably, patients with IBD, especially those with CMD, exhibited lower diversity than controls. We identified 106 differentially abundant taxa (DATs) in IBD patients compared to controls and 21 DATs distinguishing CMD-affected from CMD-free IBD patients. Microbial IBD-risk scores, reflecting an individual's microbial burden for IBD, revealed a significant enrichment of IBD-risk signatures in CMD-affected patients compared to CMD-free patients. Additionally, there was an IBD-risk variant potentially regulating the abundance of an IBD/CMD-associated DAT, suggesting an interplay between IBD-risk variants and dysbiosis in CMD. Our investigation underscores the pivotal role of IBD-associated gut dysbiosis in predisposing IBD patients to CMD, partially through genetic variant-mediated mechanisms.
Collapse
Affiliation(s)
- Junho Lee
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Shin Ju Oh
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Eunji Ha
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Ga Young Shin
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jong Kim
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| | - Chang Kyun Lee
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Bonaz B, Sinniger V, Pellissier S. Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 2024; 18:1458918. [PMID: 39319312 PMCID: PMC11420137 DOI: 10.3389/fnins.2024.1458918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Numerous preclinical and clinical studies have shown that stress is one of the main environmental factor playing a significant role in the pathogeny and life-course of bowel diseases. However, stressful events that occur early in life, even during the fetal life, leave different traces within the central nervous system, in area involved in stress response and autonomic network but also in emotion, cognition and memory regulation. Early-life stress can disrupt the prefrontal-amygdala circuit thus favoring an imbalance of the autonomic nervous system and the hypothalamic-pituitary adrenal axis, resulting in anxiety-like behaviors. The down regulation of vagus nerve and cholinergic anti-inflammatory pathway favors pro-inflammatory conditions. Recent data suggest that emotional abuse at early life are aggravating risk factors in inflammatory bowel disease. This review aims to unravel the mechanisms that explain the consequences of early life events and stress in the pathophysiology of inflammatory bowel disease and their mental co-morbidities. A review of therapeutic potential will also be covered.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Sonia Pellissier
- Université Savoie Mont Blanc, Université Grenoble Alpes, LIP/PC2S, Chambéry, France
| |
Collapse
|
4
|
Li Y, Wang Y, Sun Q, Li MY, Xu JZ, Li YQ, Zhang H. Inhibiting the activation of enteric glial cells alleviates intestinal inflammation and comorbid anxiety- and depressive-like behaviors in the ulcerative colitis mice. Neurochem Int 2024; 178:105789. [PMID: 38852824 DOI: 10.1016/j.neuint.2024.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Ulcerative colitis (UC) is a common inflammatory bowel disease with a complex origin in clinical settings. It is frequently accompanied by negative emotional responses, including anxiety and depression. Enteric glial cells (EGCs) are important components of the gut-brain axis and are involved in the development of the enteric nervous system (ENS), intestinal neuroimmune, and regulation of intestinal motor functions. Since there is limited research encompassing the regulatory function of EGCs in anxiety- and depression-like behaviors induced by UC, this study aims to reveal their regulatory role in such behaviors and associated intestinal inflammation. This study applied morphological, molecular biological, and behavioral methods to observe the morphological and functional changes of EGCs in UC mice. The results indicated a significant activation of EGCs in the ENS of dextran sodium sulfate -induced UC mice. This activation was evidenced by morphological alterations, such as elongation or terminal swelling of processes. Besides EGCs activation, UC mice exhibited significantly elevated expression levels of pro-inflammatory cytokines in the peripheral blood, accompanied by anxiety- and depression-like behaviors. The inhibition of EGCs activity within the ENS can ameliorate the anxiety- and depression-like behaviors caused by UC. Our data suggest that UC and its resulting behaviors may be related to the activation of EGCs within the ENS. Moreover, the modulation of intestinal inflammation through inhibition of EGCs activation emerges as a promising clinical approach for alleviating UC-induced anxiety- and depression-like behaviors.
Collapse
Affiliation(s)
- Yan Li
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yan Wang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning, 530000, China
| | - Qian Sun
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Meng-Ying Li
- Department of Endocrinology, Xijing Hospital, The Fourth Medical University, Xi'an, 710032, China
| | - Jia-Zhou Xu
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi, 563006, China
| | - Yun-Qing Li
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi, 563006, China; Department of Anatomy, Basic Medical College, Dali University, Dali, 671000, China.
| | - Hua Zhang
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
5
|
Burton EA, Argenziano M, Cook K, Ridler M, Lu S, Su C, Manduchi E, Littleton SH, Leonard ME, Hodge KM, Wang LS, Schellenberg GD, Johnson ME, Pahl MC, Pippin JA, Wells AD, Anderson SA, Brown CD, Grant SF, Chesi A. Variant-to-function mapping of late-onset Alzheimer's disease GWAS signals in human microglial cell models implicates RTFDC1 at the CASS4 locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609230. [PMID: 39229212 PMCID: PMC11370593 DOI: 10.1101/2024.08.22.609230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Late-onset Alzheimer's disease (LOAD) research has principally focused on neurons over the years due to their known role in the production of amyloid beta plaques and neurofibrillary tangles. In contrast, recent genomic studies of LOAD have implicated microglia as culprits of the prolonged inflammation exacerbating the neurodegeneration observed in patient brains. Indeed, recent LOAD genome-wide association studies (GWAS) have reported multiple loci near genes related to microglial function, including TREM2, ABI3, and CR1. However, GWAS alone cannot pinpoint underlying causal variants or effector genes at such loci, as most signals reside in non-coding regions of the genome and could presumably confer their influence frequently via long-range regulatory interactions. We elected to carry out a combination of ATAC-seq and high-resolution promoter-focused Capture-C in two human microglial cell models (iPSC-derived microglia and HMC3) in order to physically map interactions between LOAD GWAS-implicated candidate causal variants and their corresponding putative effector genes. Notably, we observed consistent evidence that rs6024870 at the GWAS CASS4 locus contacted the promoter of nearby gene, RTFDC1. We subsequently observed a directionallly consistent decrease in RTFDC1 expression with the the protective minor A allele of rs6024870 via both luciferase assays in HMC3 cells and expression studies in primary human microglia. Through CRISPR-Cas9-mediated deletion of the putative regulatory region harboring rs6024870 in HMC3 cells, we observed increased pro-inflammatory cytokine secretion and decreased DNA double strand break repair related, at least in part, to RTFDC1 expression levels. Our variant-to-function approach therefore reveals that the rs6024870-harboring regulatory element at the LOAD 'CASS4' GWAS locus influences both microglial inflammatory capacity and DNA damage resolution, along with cumulative evidence implicating RTFDC1 as a novel candidate effector gene.
Collapse
Affiliation(s)
- Elizabeth A. Burton
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- CAMB Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariana Argenziano
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kieona Cook
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly Ridler
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sheridan H. Littleton
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- CAMB Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle E. Leonard
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Li-San Wang
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerard D. Schellenberg
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E. Johnson
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry and Behavioral Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D. Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Trang KB, Sharma P, Cook L, Mount Z, Thomas RM, Kulkarni NN, Pahl MC, Pippin JA, Su C, Kaestner KH, O'Brien JM, Wagley Y, Hankenson KD, Jermusyk A, Hoskins JW, Amundadottir LT, Xu M, Brown KM, Anderson SA, Yang W, Titchenell PM, Seale P, Zemel BS, Chesi A, Romberg N, Levings MK, Grant SFA, Wells AD. 3D chromatin-based variant-to-gene maps across 57 human cell types reveal the cellular and genetic architecture of autoimmune disease susceptibility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311676. [PMID: 39185517 PMCID: PMC11343244 DOI: 10.1101/2024.08.12.24311676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A portion of the genetic basis for many common autoimmune disorders has been uncovered by genome-wide association studies (GWAS), but GWAS do not reveal causal variants, effector genes, or the cell types impacted by disease-associated variation. We have generated 3D genomic datasets consisting of promoter-focused Capture-C, Hi-C, ATAC-seq, and RNA-seq and integrated these data with GWAS of 16 autoimmune traits to physically map disease-associated variants to the effector genes they likely regulate in 57 human cell types. These 3D maps of gene cis-regulatory architecture are highly powered to identify the cell types most likely impacted by disease-associated genetic variation compared to 1D genomic features, and tend to implicate different effector genes than eQTL approaches in the same cell types. Most of the variants implicated by these cis-regulatory architectures are highly trait-specific, but nearly half of the target genes connected to these variants are shared across multiple autoimmune disorders in multiple cell types, suggesting a high level of genetic diversity and complexity among autoimmune diseases that nonetheless converge at the level of target gene and cell type. Substantial effector gene sharing led to the common enrichment of similar biological networks across disease and cell types. However, trait-specific pathways representing potential areas for disease-specific intervention were identified. To test this, we pharmacologically validated squalene synthase, a cholesterol biosynthetic enzyme encoded by the FDFT1 gene implicated by our approach in MS and SLE, as a novel immunomodulatory drug target controlling inflammatory cytokine production by human T cells. These data represent a comprehensive resource for basic discovery of gene cis-regulatory mechanisms, and the analyses reported reveal mechanisms by which autoimmune-associated variants act to regulate gene expression, function, and pathology across multiple, distinct tissues and cell types.
Collapse
Affiliation(s)
- Khanh B Trang
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Prabhat Sharma
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Cook
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Zachary Mount
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rajan M Thomas
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nikhil N Kulkarni
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan M O'Brien
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Disease
| | - Yadav Wagley
- Department of Orthopedic Surgery University of Michigan Medical School Ann Arbor, MI, USA
| | - Kurt D Hankenson
- Department of Orthopedic Surgery University of Michigan Medical School Ann Arbor, MI, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stewart A Anderson
- Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenli Yang
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
He Z, Zhou Q, Du J, Huang Y, Wu B, Xu Z, Wang C, Cheng X. Integrated single-cell and bulk RNA sequencing reveals CREM is involved in the pathogenesis of ulcerative colitis. Heliyon 2024; 10:e27805. [PMID: 38496850 PMCID: PMC10944264 DOI: 10.1016/j.heliyon.2024.e27805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory bowel disease characterized by persistent colonic inflammation. Here, we performed a systematic analysis to gain better insights into UC pathogenesis. Methods We analyzed two UC-related datasets extracted from the gene expression omnibus database using several bioinformatics tools. The primary cell types and key subgroups of primary cells associated with UC and differentially expressed genes (DEGs) between UC and control samples were identified. The molecular regulation of the key genes was also predicted. The gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses of marker genes of key cell subgroups and model genes were performed. The expression of key enriched genes was validated in 10 clinical samples using real-time quantitative polymerase chain reaction (RT-qPCR). Results Monocytes were identified as the major cell type. Ten differentially expressed marker genes were obtained by intersecting the 3121 DEGs, 38 marker genes in major cell types, and 104 marker genes in key cell subgroups. Four essential genes, associated with immune response, were obtained using support vector machine recursive feature elimination and least absolute shrinkage and selection operator analyses. The four essential genes were highly expressed in Cluster 0 during differentiation. Validation of the four key genes in colonic mucosal biopsy specimens from 10 normal and 10 UC patients revealed that CREM was highly expressed in both the lesion-free sites and lesion sites colonic mucosa of UC patients compared with normal adults. Conclusions We identified CREM involved in UC pathogenesis, which is expected to provide a new therapeutic target for UC.
Collapse
Affiliation(s)
- Zongqi He
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Qing Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, PR China
| | - Jun Du
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Yuyu Huang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Bensheng Wu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Zhizhong Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Chao Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Xudong Cheng
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| |
Collapse
|
8
|
Yang C, Veenstra J, Bartz TM, Pahl MC, Hallmark B, Chen YDI, Westra J, Steffen LM, Brown CD, Siscovick D, Tsai MY, Wood AC, Rich SS, Smith CE, O'Connor TD, Mozaffarian D, Grant SFA, Chilton FH, Tintle NL, Lemaitre RN, Manichaikul A. Genome-wide association studies and fine-mapping identify genomic loci for n-3 and n-6 polyunsaturated fatty acids in Hispanic American and African American cohorts. Commun Biol 2023; 6:852. [PMID: 37587153 PMCID: PMC10432561 DOI: 10.1038/s42003-023-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 and n-6 PUFAs in European Americans from the CHARGE Consortium have documented strong genetic signals in/near the FADS locus on chromosome 11. We performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) and African American (n = 2278) participants from three CHARGE cohorts. Applying a genome-wide significance threshold of P < 5 × 10-8, we confirmed association of the FADS signal and found evidence of two additional signals (in DAGLA and BEST1) within 200 kb of the originally reported FADS signal. Outside of the FADS region, we identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near genes including TMX2, SLC29A2, ANKRD13D and POLD4, and spanning a > 9 Mb region on chromosome 11 (57.5 Mb ~ 67.1 Mb). Among these novel signals, we found associations unique to Hispanic Americans, including rs28364240, a POLD4 missense variant for AA that is common in CHARGE Hispanic Americans but absent in other race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of investigating complex trait genetics across diverse ancestry populations.
Collapse
Affiliation(s)
- Chaojie Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jenna Veenstra
- Departments of Biology and Statistics, Dordt University, Sioux Center, IA, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian Hallmark
- Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Timothy D O'Connor
- Institute for Genome Sciences; Program in Personalized and Genomic Medicine; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science & Policy, Tufts University, Tufts School of Medicine and Division of Cardiology, Tufts Medical Center, Boston, MA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA
- University of Illinois, Chicago, Chicago, IL, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Zheng G, Pang S, Wang J, Wang F, Wang Q, Yang L, Ji M, Xie D, Zhu S, Chen Y, Zhou Y, Higgins GA, Wiley JW, Hou X, Lin R. Glucocorticoid receptor-mediated Nr1d1 chromatin circadian misalignment in stress-induced irritable bowel syndrome. iScience 2023; 26:107137. [PMID: 37404374 PMCID: PMC10316663 DOI: 10.1016/j.isci.2023.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Stress-elevated glucocorticoids cause circadian disturbances and gut-brain axis (GBA) disorders, including irritable bowel syndrome (IBS). We hypothesized that the glucocorticoid receptor (GR/NR3C1) might cause chromatin circadian misalignment in the colon epithelium. We observed significantly decreased core circadian gene Nr1d1 in water avoidance stressed (WAS) BALB/c colon epithelium, like in IBS patients. WAS decreased GR binding at the Nr1d1 promoter E-box (enhancer box), and GR could suppress Nr1d1 via this site. Stress also altered GR binding at the E-box sites along the Ikzf3-Nr1d1 chromatin and remodeled circadian chromatin 3D structures, including Ikzf3-Nr1d1 super-enhancer, Dbp, and Npas2. Intestinal deletion of Nr3c1 specifically abolished these stress-induced transcriptional alternations relevant to IBS phenotypes in BALB/c mice. GR mediated Ikzf3-Nr1d1 chromatin disease related circadian misalignment in stress-induced IBS animal model. This animal model dataset suggests that regulatory SNPs of human IKZF3-NR1D1 transcription through conserved chromatin looping have translational potential based on the GR-mediated circadian-stress crosstalk.
Collapse
Affiliation(s)
- Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junbao Wang
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Fangyu Wang
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Qi Wang
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lili Yang
- Central Laboratory of Yan’an Hospital Affiliated to Kunming Medical University, Kunming Medical University, Kunming 650500, China
| | - Mengdie Ji
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dejian Xie
- Beijing Research Center, Wuhan Frasergen Bioinformatics Co., Ltd, Beijing 100081, China
| | - Shengtao Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Zhou
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor 48109, MI, USA
| | - John W. Wiley
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor 48109, MI, USA
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Yang C, Veenstra J, Bartz T, Pahl M, Hallmark B, Chen YDI, Westra J, Steffen L, Brown C, Siscovick D, Tsai M, Wood A, Rich S, Smith C, O'Connor T, Mozaffarian D, Grant S, Chilton F, Tintle N, Lemaitre R, Manichaikul A. Genome-Wide Association Studies and fine-mapping of genomic loci for n-3 and n-6 Polyunsaturated Fatty Acids in Hispanic American and African American Cohorts. RESEARCH SQUARE 2023:rs.3.rs-2073736. [PMID: 36865120 PMCID: PMC9980229 DOI: 10.21203/rs.3.rs-2073736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 and n-6 PUFAs in European Americans from the CHARGE Consortium have documented strong genetic signals in/near the FADS locus on chromosome 11. We performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) and African American (n = 2278) participants from three CHARGE cohorts. Applying a genome-wide significance threshold of P < 5 x 10 - 8 , we confirmed association of the FADS signal and found evidence of two additional signals (in DAGLA and BEST1 ) within 200 kb of the originally reported FADS signal. Outside of the FADS region, we identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near genes including TMX2 , SLC29A2 , ANKRD13D and POLD4, and spanning a > 9 Mb region on chromosome 11 (57.5Mb ~ 67.1Mb). Among these novel signals, we found associations unique to Hispanic Americans, including rs28364240, a POLD4 missense variant for AA that is common in CHARGE Hispanic Americans but absent in other race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of investigating complex trait genetics across diverse ancestry populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Yii-Der Ida Chen
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | | | | | | | | | | | | | | | - Struan Grant
- Children's Hospital of Philadelphia Research Institute
| | | | | | - Rozenn Lemaitre
- Cardiovascular Health Research Unit, University of Washington
| | | |
Collapse
|
11
|
Affiliation(s)
- Susan T Harbison
- Laboratory of Systems Genetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Lasconi C, Pahl MC, Pippin JA, Su C, Johnson ME, Chesi A, Boehm K, Manduchi E, Ou K, Golson ML, Wells AD, Kaestner KH, Grant SFA. Variant-to-gene-mapping analyses reveal a role for pancreatic islet cells in conferring genetic susceptibility to sleep-related traits. Sleep 2022; 45:zsac109. [PMID: 35537191 PMCID: PMC9366645 DOI: 10.1093/sleep/zsac109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the potential role of sleep-trait associated genetic loci in conferring a degree of their effect via pancreatic α- and β-cells, given that both sleep disturbances and metabolic disorders, including type 2 diabetes and obesity, involve polygenic contributions and complex interactions. We determined genetic commonalities between sleep and metabolic disorders, conducting linkage disequilibrium genetic correlation analyses with publicly available GWAS summary statistics. Then we investigated possible enrichment of sleep-trait associated SNPs in promoter-interacting open chromatin regions within α- and β-cells, intersecting public GWAS reports with our own ATAC-seq and high-resolution promoter-focused Capture C data generated from both sorted human α-cells and an established human beta-cell line (EndoC-βH1). Finally, we identified putative effector genes physically interacting with sleep-trait associated variants in α- and EndoC-βH1cells running variant-to-gene mapping and establish pathways in which these genes are significantly involved. We observed that insomnia, short and long sleep-but not morningness-were significantly correlated with type 2 diabetes, obesity and other metabolic traits. Both the EndoC-βH1 and α-cells were enriched for insomnia loci (p = .01; p = .0076), short sleep loci (p = .017; p = .022) and morningness loci (p = 2.2 × 10-7; p = .0016), while the α-cells were also enriched for long sleep loci (p = .034). Utilizing our promoter contact data, we identified 63 putative effector genes in EndoC-βH1 and 76 putative effector genes in α-cells, with these genes showing significant enrichment for organonitrogen and organophosphate biosynthesis, phosphatidylinositol and phosphorylation, intracellular transport and signaling, stress responses and cell differentiation. Our data suggest that a subset of sleep-related loci confer their effects via cells in pancreatic islets.
Collapse
Affiliation(s)
- Chiara Lasconi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elisabetta Manduchi
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,USA
| | - Kristy Ou
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Sadik A, Dardani C, Pagoni P, Havdahl A, Stergiakouli E, Khandaker GM, Sullivan SA, Zammit S, Jones HJ, Davey Smith G, Dalman C, Karlsson H, Gardner RM, Rai D. Parental inflammatory bowel disease and autism in children. Nat Med 2022; 28:1406-1411. [PMID: 35654906 PMCID: PMC9307481 DOI: 10.1038/s41591-022-01845-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 04/28/2022] [Indexed: 01/30/2023]
Abstract
Evidence linking parental inflammatory bowel disease (IBD) with autism in children is inconclusive. We conducted four complementary studies to investigate associations between parental IBD and autism in children, and elucidated their underlying etiology. Conducting a nationwide population-based cohort study using Swedish registers, we found evidence of associations between parental diagnoses of IBD and autism in children. Polygenic risk score analyses of the Avon Longitudinal Study of Parents and Children suggested associations between maternal genetic liability to IBD and autistic traits in children. Two-sample Mendelian randomization analyses provided evidence of a potential causal effect of genetic liability to IBD, especially ulcerative colitis, on autism. Linkage disequilibrium score regression did not indicate a genetic correlation between IBD and autism. Triangulating evidence from these four complementary approaches, we found evidence of a potential causal link between parental, particularly maternal, IBD and autism in children. Perinatal immune dysregulation, micronutrient malabsorption and anemia may be implicated.
Collapse
Affiliation(s)
- Aws Sadik
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bath, UK
| | - Christina Dardani
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Panagiota Pagoni
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alexandra Havdahl
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Evie Stergiakouli
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Golam M Khandaker
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bath, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Sarah A Sullivan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Stan Zammit
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Hannah J Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Christina Dalman
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Renee M Gardner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Dheeraj Rai
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bath, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Pahl MC, Le Coz C, Su C, Sharma P, Thomas RM, Pippin JA, Cruz Cabrera E, Johnson ME, Leonard ME, Lu S, Chesi A, Sullivan KE, Romberg N, Grant SFA, Wells AD. Implicating effector genes at COVID-19 GWAS loci using promoter-focused Capture-C in disease-relevant immune cell types. Genome Biol 2022; 23:125. [PMID: 35659055 PMCID: PMC9164584 DOI: 10.1186/s13059-022-02691-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SARS-CoV-2 infection results in a broad spectrum of COVID-19 disease, from mild or no symptoms to hospitalization and death. COVID-19 disease severity has been associated with some pre-existing conditions and the magnitude of the adaptive immune response to SARS-CoV-2, and a recent genome-wide association study (GWAS) of the risk of critical illness revealed a significant genetic component. To gain insight into how human genetic variation attenuates or exacerbates disease following SARS-CoV-2 infection, we implicated putatively functional COVID risk variants in the cis-regulatory landscapes of human immune cell types with established roles in disease severity and used high-resolution chromatin conformation capture to map these disease-associated elements to their effector genes. RESULTS This functional genomic approach implicates 16 genes involved in viral replication, the interferon response, and inflammation. Several of these genes (PAXBP1, IFNAR2, OAS1, OAS3, TNFAIP8L1, GART) were differentially expressed in immune cells from patients with severe versus moderate COVID-19 disease, and we demonstrate a previously unappreciated role for GART in T cell-dependent antibody-producing B cell differentiation in a human tonsillar organoid model. CONCLUSIONS This study offers immunogenetic insight into the basis of COVID-19 disease severity and implicates new targets for therapeutics that limit SARS-CoV-2 infection and its resultant life-threatening inflammation.
Collapse
Affiliation(s)
- Matthew C Pahl
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Carole Le Coz
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Chun Su
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Prabhat Sharma
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Rajan M Thomas
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - James A Pippin
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Emylette Cruz Cabrera
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Michelle E Leonard
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Sumei Lu
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Neil Romberg
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Andrew D Wells
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Tseng CC, Lin YZ, Lin CH, Hwang DY, Li RN, Tsai WC, Ou TT, Wu CC, Lin YC, Sung WY, Chen KY, Chang SJ, Yen JH. Genetic and epigenetic alterations of cyclic AMP response element modulator in rheumatoid arthritis. Eur J Clin Invest 2022; 52:e13715. [PMID: 34783021 DOI: 10.1111/eci.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Genetic and epigenetic factors are strongly associated with the autoimmune disease rheumatoid arthritis (RA). Cyclic AMP response element modulator (CREM), a gene related to immune system regulation, has been implicated in various immune-mediated inflammatory processes, although it remains unknown whether CREM is involved in RA. METHODS This study enrolled 278 RA patients and 262 controls. Three variants [rs12765063, rs17499247, rs1213386] were identified through linkage disequilibrium and expression quantitative trait locus analysis, and CREM transcript abundance was determined by quantitative real-time polymerase chain reaction. The identified variants were genotyped using the TaqMan Allelic Discrimination assay, and CREM promoter methylation was assessed by bisulphite sequencing. Differences between groups and correlations between variables were assessed with Student's t-tests and Pearson's correlation coefficients. Associations between phenotypes and genotypes were evaluated with logistic regression. RESULTS Rheumatoid arthritis patients exhibited increased CREM expression (p < .0001), which was decreased by methotrexate (p = .0223) and biologics (p = .0001), but could not be attributed to CREM variants. Interestingly, rs17499247 displayed a significant association with serositis (p = .0377), and rs1213386 increased the risk of lymphadenopathy (p = .0398). Furthermore, seven CpG sites showed decreased methylation in RA (p = .0477~ p < .0001). CONCLUSIONS Collectively, our results indicate that CREM hypomethylation and CREM upregulation occur in RA and that CREM variants are involved in the development of serositis and lymphadenopathy in RA. This study highlights the novel roles of CREM in RA pathophysiology.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuan-Zhao Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hui Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Chih Lin
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Humanities and Education, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuan-Yu Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Mickael ME, Bhaumik S, Chakraborti A, Umfress AA, van Groen T, Macaluso M, Totenhagen J, Sorace AG, Bibb JA, Standaert DG, Basu R. RORγt-Expressing Pathogenic CD4 + T Cells Cause Brain Inflammation during Chronic Colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2054-2066. [PMID: 35379749 PMCID: PMC10103644 DOI: 10.4049/jimmunol.2100869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/11/2022] [Indexed: 01/09/2023]
Abstract
Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4+ T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease. To better understand how CD4+ T lymphocytes contribute to brain pathology in chronic intestinal inflammation, we investigated the development of brain inflammation in the T cell transfer model of chronic colitis. Our findings demonstrate that CD4+ T cells infiltrate the brain of colitic Rag1 -/- mice in proportional levels to colitis severity. Colitic mice developed hypothalamic astrogliosis that correlated with neurobehavioral disorders. Moreover, the brain-infiltrating CD4+ T cells expressed Th17 cell transcription factor retinoic acid-related orphan receptor γt (RORγt) and displayed a pathogenic Th17 cellular phenotype similar to colonic Th17 cells. Adoptive transfer of RORγt-deficient naive CD4+ T cells failed to cause brain inflammation and neurobehavioral disorders in Rag1 -/- recipients, with significantly less brain infiltration of CD4+ T cells. The finding is mirrored in chronic dextran sulfate sodium-induced colitis in Rorcfl/fl Cd4-Cre mice that showed lower frequency of brain-infiltrating CD4+ T cells and astrogliosis despite onset of significantly more severe colitis compared with wild-type mice. These findings suggest that pathogenic RORγt+CD4+ T cells that aggravate colitis migrate preferentially into the brain, contributing to brain inflammation and neurobehavioral disorders, thereby linking colitis severity to neuroinflammation.
Collapse
Affiliation(s)
| | - Suniti Bhaumik
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Ayanabha Chakraborti
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Alan A Umfress
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew Macaluso
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL; and
| | - James A Bibb
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Rajatava Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL;
| |
Collapse
|
17
|
Dal Buono A, Caldirola D, Allocca M. Genetic susceptibility to inflammatory bowel disease: should we be looking to the hypothalamus? Expert Rev Clin Immunol 2021; 17:803-806. [PMID: 34047240 DOI: 10.1080/1744666x.2021.1933443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Arianna Dal Buono
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Hospital - IRCCS, Milan, Italy
| | - Daniela Caldirola
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Mariangela Allocca
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Hospital - IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
18
|
Banfi D, Moro E, Bosi A, Bistoletti M, Cerantola S, Crema F, Maggi F, Giron MC, Giaroni C, Baj A. Impact of Microbial Metabolites on Microbiota-Gut-Brain Axis in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:1623. [PMID: 33562721 PMCID: PMC7915037 DOI: 10.3390/ijms22041623] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The complex bidirectional communication system existing between the gastrointestinal tract and the brain initially termed the "gut-brain axis" and renamed the "microbiota-gut-brain axis", considering the pivotal role of gut microbiota in sustaining local and systemic homeostasis, has a fundamental role in the pathogenesis of Inflammatory Bowel Disease (IBD). The integration of signals deriving from the host neuronal, immune, and endocrine systems with signals deriving from the microbiota may influence the development of the local inflammatory injury and impacts also more distal brain regions, underlying the psychophysiological vulnerability of IBD patients. Mood disorders and increased response to stress are frequently associated with IBD and may affect the disease recurrence and severity, thus requiring an appropriate therapeutic approach in addition to conventional anti-inflammatory treatments. This review highlights the more recent evidence suggesting that alterations of the microbiota-gut-brain bidirectional communication axis may concur to IBD pathogenesis and sustain the development of both local and CNS symptoms. The participation of the main microbial-derived metabolites, also defined as "postbiotics", such as bile acids, short-chain fatty acids, and tryptophan metabolites in the development of IBD-associated gut and brain dysfunction will be discussed. The last section covers a critical evaluation of the main clinical evidence pointing to the microbiome-based therapeutic approaches for the treatment of IBD-related gastrointestinal and neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Davide Banfi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| |
Collapse
|