1
|
Liu S, Wang Y, Lu K, Shi Y, Wang Z, Xu E. Pristimerin ameliorates colitis‑induced intestinal mucosal injury by inhibiting intestinal epithelial necroptosis. Mol Med Rep 2025; 31:153. [PMID: 40211716 PMCID: PMC11997741 DOI: 10.3892/mmr.2025.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Ulcerative colitis (UC) is a non‑specific inflammatory bowel disease characterized by inflammation of the colonic and rectal mucosa and submucosa and has a globally increasing incidence. A compromised intestinal epithelial barrier function has been established as the primary etiological factor in UC, with necroptosis of intestinal epithelial cells exacerbating barrier disruption. Consequently, the inhibition of necroptosis in these cells has the potential to ameliorate colitis severity and preserve intestinal integrity, thereby offering a promising therapeutic approach for UC management. Pristimerin, a naturally occurring pentacyclic triterpenoid derived from Tripterygium wilfordii Hook.f., has been used in the treatment of various diseases. Although pristimerin has been documented to have therapeutic effects on UC, there is a lack of studies exploring its mechanism of action via necroptosis. The present study aimed to elucidate the role of pristimerin in the treatment of UC by examining its inhibitory effects on necroptosis through both in vivo and in vitro experimental approaches. Pristimerin was found to markedly enhance body weight, colon length and intestinal barrier function, while concurrently reducing fecal blood loss in murine models of colitis. Furthermore, both in vivo and in vitro, pristimerin effectively inhibited the phosphorylation of key necroptosis mediators, including receptor‑interacting protein kinase 1, receptor‑interacting protein kinase 3 and mixed lineage kinase domain‑like protein. These findings collectively suggested that the therapeutic effects of pristimerin in UC may be attributed, at least in part, to its ability to suppress necroptosis, thereby improving intestinal barrier integrity.
Collapse
Affiliation(s)
- Siqi Liu
- Collaborative Innovation Center of Research and Development on The Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yuanyuan Wang
- Collaborative Innovation Center of Research and Development on The Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Keyi Lu
- Collaborative Innovation Center of Research and Development on The Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yifan Shi
- Collaborative Innovation Center of Research and Development on The Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, P.R. China
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on The Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
2
|
Rong Y, Zhang Z, de Jonge HR, Lin R, Yu H, Sarker R, Boffelli D, Zwick RK, Klein OD, Tse CM, Donowitz M, Singh V. Partially differentiated ileal and distal-colonic human F508del-cystic fibrosis-enteroids secrete fluid in response to forskolin and linaclotide. iScience 2025; 28:112453. [PMID: 40395669 PMCID: PMC12090326 DOI: 10.1016/j.isci.2025.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025] Open
Abstract
Constipation causes significant morbidity in patients with cystic fibrosis (CF). Using CF patient (F508del) derived ex vivo ileal and distal colonic/rectal enteroids as a model and the Forskolin Induced Swelling Assay (FIS), we compared CFTR mediated fluid secretion in human enterocytes across the crypt-villus axis. CFTR expression and FIS decreased as enterocytes differentiated from crypt to become partially differentiated and then mature villus cells. While there was no FIS response in undifferentiated (crypt enterocytes) F508del-CF enteroids, partially differentiated F508del-CF enteroids had a swelling response to forskolin (cAMP) and linaclotide (cGMP), which was ∼48%, and ∼67% of the response in healthy enteroids, respectively, and was prevented by a CFTR inhibitor. Also, linaclotide and a general phosphodiesterase (PDE) inhibitor independently enhanced the combined CFTR-modulator-induced FIS response from partially differentiated F508del-CF enteroids. These findings demonstrate that partially differentiated ileal and distal colonic F508del-CFTR enteroids can be stimulated to secrete fluid by cAMP and cGMP.
Collapse
Affiliation(s)
- Yan Rong
- Division of Gastroenterology & Hepatology, Department of Medicine, Baltimore, MD 21205, USA
| | - Zixin Zhang
- Division of Gastroenterology & Hepatology, Department of Medicine, Baltimore, MD 21205, USA
| | - Hugo R. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P. O. Box 2040, 3000CA Rotterdam, the Netherlands
| | - Ruxian Lin
- Division of Gastroenterology & Hepatology, Department of Medicine, Baltimore, MD 21205, USA
| | - Huimin Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Baltimore, MD 21205, USA
| | - Rafiq Sarker
- Division of Gastroenterology & Hepatology, Department of Medicine, Baltimore, MD 21205, USA
| | - Dario Boffelli
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, CA 94143, USA
| | - Rachel K. Zwick
- Program in Craniofacial Biology and Department of Orofacial Science, University of California, San Francisco, CA 94143, USA
| | - Ophir D. Klein
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, CA 94143, USA
- Program in Craniofacial Biology and Department of Orofacial Science, University of California, San Francisco, CA 94143, USA
| | - Chung-Ming Tse
- Division of Gastroenterology & Hepatology, Department of Medicine, Baltimore, MD 21205, USA
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Department of Medicine, Baltimore, MD 21205, USA
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Varsha Singh
- Division of Gastroenterology & Hepatology, Department of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Zhao H, Abbas S, Ren J, Huang H, Song Y, Su X, Wu Q, Ma Y, Tang H, Gao YZ, Li Y, Gu X, Feng J, Hou J, Cheng Y, Li Z, Ma W. Dextran from human feces-derived Weissella cibaria facilitates intestinal mucosal barrier function by modulating gut bacteria and propionate levels. Carbohydr Polym 2025; 354:123300. [PMID: 39978893 DOI: 10.1016/j.carbpol.2025.123300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
The disruption of the intestinal mucosal barrier is strongly associated with the onset of various diseases, including inflammatory bowel disease. Exopolysaccharides (EPS) support the functionality of the intestinal barrier. Weissella Cibaria (W. cibaria), belonging to the lactic acid bacteria, exhibits a significant capacity for EPS production. However, the specific mechanisms by which the EPS produced by W. cibaria confers intestinal barrier protection remain unexplored. Here, we characterized the polysaccharide, EPS-2, produced by W. cibaria isolated from the feces of healthy infants. EPS-2 was a novel dextran composed of α-(1 → 6) and α-(1 → 3,6) glycosidic linkages with a molecular weight of 845 kDa. EPS-2 alleviates intestinal mucosal barrier dysfunction in a mouse model of colitis, via a mechanism specifically reliant on the gut microbiota and their metabolic products, which is different from the well-known direct protective effects of other EPS on the intestinal barrier. EPS-2 reversed colitis-induced reductions in Muribaculaceae and propionate levels, thereby enhancing colonic goblet cell function and mucin content. Additionally, EPS-2 decreased the number of LPS-producing bacteria, such as Escherichia_Shigella. EPS-2 alleviated dextran sulfate sodium-induced intestinal inflammation and barrier damage. Therefore, EPS-2 shows promise as a postbiotic treatment for diseases associated with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Huan Zhao
- Oncology department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Sakandar Abbas
- Oncology department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Jing Ren
- Oncology department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Haibin Huang
- Oncology department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Ying Song
- Oncology department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Xiaoning Su
- Oncology department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Qiuyang Wu
- Oncology department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Yane Ma
- Department of Gynecological Oncology Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
| | - Yi-Zhou Gao
- The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanzhe Li
- Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaoming Gu
- Department of Colon and Rectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Jingjing Hou
- Oncology department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Yan Cheng
- Department of Gynecological Oncology Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.
| | - Wang Ma
- Oncology department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
4
|
Gustafsson JK, Hansson GC. Immune Regulation of Goblet Cell and Mucus Functions in Health and Disease. Annu Rev Immunol 2025; 43:169-189. [PMID: 39752567 DOI: 10.1146/annurev-immunol-101721-065224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cell secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine. The respiratory tract mucus system clears particles and microorganisms from healthy lungs but causes disease if reorganized to an attached mucus that cannot be efficiently transported. Similarly, transformation of large intestine mucus from impenetrable to penetrable causes chronic inflammation directed toward the intestinal microbiota. Mucus-producing goblet cells are regulated by and responsive to signals from immune cells, and at the same time signal back to the immune system. In this review we focus on the relationship of immune cells with intestinal goblet cells and mucus, making parallels to the respiratory tract.
Collapse
Affiliation(s)
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden;
| |
Collapse
|
5
|
Nagesh VK, Pulipaka SP, Bhuju R, Martinez E, Badam S, Nageswaran GA, Tran HHV, Elias D, Mansour C, Musalli J, Bhattarai S, Shobana LS, Sethi T, Sethi R, Nikum N, Trivedi C, Jarri A, Westman C, Ahmed N, Philip S, Weissman S, Weinberger J, Bangolo AI. Management of gastrointestinal bleed in the intensive care setting, an updated literature review. World J Crit Care Med 2025; 14:101639. [DOI: 10.5492/wjccm.v14.i1.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/11/2024] Open
Abstract
Gastrointestinal (GI) bleeding is a critical and potentially life-threatening condition frequently observed in the intensive care unit (ICU). This literature review consolidates current insights on the epidemiology, etiology, management, and outcomes of GI bleeding in critically ill patients. GI bleeding remains a significant concern, especially among patients with underlying risk factors such as coagulopathy, mechanical ventilation, and renal failure. Managing GI bleeding in the ICU requires a multidisciplinary approach, including resuscitation, endoscopic intervention, pharmacologic therapy, and sometimes surgical procedures. Even with enhanced management strategies, GI bleeding in the ICU is associated with considerable morbidity and mortality, particularly when complicated by multi-organ failure. This review reiterates the need for adequate resuscitation and interventions in managing GI bleeding in critically ill patients, aiming to enhance survival rates and improve the quality of care within the ICU setting.
Collapse
Affiliation(s)
- Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ruchi Bhuju
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Emelyn Martinez
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shruthi Badam
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Gomathy Aarthy Nageswaran
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Daniel Elias
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Charlene Mansour
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Jaber Musalli
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sanket Bhattarai
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Lokeash Subramani Shobana
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tannishtha Sethi
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ritvik Sethi
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Namrata Nikum
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Chinmay Trivedi
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Amer Jarri
- Department of Pulmonology and Critical Care, HCA Florida Bayonet Point Hospital, Hudson, FL 34667, United States
| | - Colin Westman
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Nazir Ahmed
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Shawn Philip
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Simcha Weissman
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Jonathan Weinberger
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Ayrton I Bangolo
- Department of Hematology & Oncology, John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ 07601, United States
| |
Collapse
|
6
|
Du X, Liu L, Yang L, Zhang Y, Dong K, Li Y, Chen Y, Yang Q, Zhu X, Li Q. Cumulative experience meets modern science: Remarkable effects of TongXieYaoFang formula on facilitating intestinal mucosal healing and secretory function. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119370. [PMID: 39826789 DOI: 10.1016/j.jep.2025.119370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TongXieYaoFang (TXYF), a classical formula used in Traditional Chinese Medicine, is renowned for its efficacy in treating chronic abdominal pain and diarrhoea. Modern research suggests that fundamental relief from these symptoms depends on complete intestinal mucosal healing, which normalises gut secretory functions. Consensus between traditional and modern medical theories indicates that TXYF is particularly suitable for treating the remission phase of ulcerative colitis (UC). Unfortunately, its potential in the remission phase has not received sufficient attention, and its use has been largely limited to a supportive role during the acute phase. AIM OF THE STUDY This study aimed to elucidate the efficacy of TXYF in promoting intestinal mucosal healing and enhancing gut secretory function during the non-acute damage phase, as well as to identify the underlying mechanisms contributing to its effects. METHODS A mouse model of dextran sulphate sodium salt (DSS)-induced colitis was optimised to specifically evaluate the effects of TXYF on mucosal healing during the repair phase. The effects of TXYF on murine colon function were assessed by measuring faecal pellet count and water content, and further evaluated through immunohistochemical analyses. The underlying mechanisms of action of TXYF were elucidated using mouse intestinal organoid cultures, intestinal stem cell (ISCs) transplantation, immunofluorescence, and western blotting. Active components of TXYF were identified via LC-MS/MS analysis and integrated with network pharmacology for bioinformatics assessment. RESULTS TXYF significantly promoted mucosal healing, as reflected by reduced disease activity scores, increased colon length, enhanced epithelial proliferation, and decreased histological damage. Furthermore, TXYF enhanced the recovery of critical intestinal functions, including barrier integrity, absorption, secretion, and motility. Notably, the improvement in the secretory function was particularly pronounced. Mechanistically, these therapeutic effects were mediated by the upregulation of the Atonal homolog 1/SAM pointed domain containing ETS transcription factor/Mucin 2 pathway, which facilitates the differentiation and maturation of ISCs into goblet cells, thereby contributing to both mucosal repair and enhanced secretory function. CONCLUSIONS Our study demonstrated that TXYF significantly promotes intestinal mucosal healing and enhances secretory function. These findings offer a solid basis for exploring the potential applications of TXYF in UC management during the remission phase.
Collapse
Affiliation(s)
- Xinke Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lina Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yang Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Keshan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Rong Y, Zhang Z, de Jonge HR, Lin R, Yu H, Sarker R, Boffelli D, Zwick RK, Klein OD, Tse M, Donowitz M, Singh V. Partially differentiated enterocytes in ileal and distal-colonic human F508del-CF-enteroids secrete fluid in response to forskolin and linaclotide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636268. [PMID: 39975121 PMCID: PMC11838475 DOI: 10.1101/2025.02.03.636268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Constipation causes significant morbidity in Cystic Fibrosis (CF) patients. Using CF patient (F508del) derived ex vivo ileal and distal colonic/rectal enteroids as a model and the Forskolin Induced Swelling Assay (FIS), we compared CFTR mediated fluid secretion in human enterocytes across the crypt-villus axis. CFTR expression and FIS decreased as enterocytes differentiated from crypt to become partially differentiated and then mature villus cells . While there was no FIS response in undifferentiated (crypt enterocytes) F508del-CF enteroids, partially differentiated F508del-CF enteroids had a swelling response to forskolin (cAMP) and linaclotide (cGMP) which was ∼48%, and ∼67% of the response in healthy enteroids, respectively and was prevented by a CFTR inhibitor. Also, linaclotide and a general PDE inhibitor independently enhanced combined CFTR-modulator-induced FIS response from partially differentiated F508del-CF enteroids. These findings demonstrate that partially differentiated ileal and distal colonic F508del-CFTR enteroids can be stimulated to secrete fluid by cAMP and cGMP.
Collapse
|
8
|
Casini A, Vivacqua G, Ceci L, Leone S, Vaccaro R, Tagliafierro M, Bassi FM, Vitale S, Bocci E, Pannarale L, Carotti S, Franchitto A, Mancini P, Sferra R, Vetuschi A, Latella G, Onori P, Gaudio E, Mancinelli R. TNBS colitis induces architectural changes and alpha-synuclein overexpression in mouse distal colon: A morphological study. Cell Tissue Res 2025; 399:247-265. [PMID: 39656240 PMCID: PMC11787265 DOI: 10.1007/s00441-024-03932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 02/02/2025]
Abstract
Alpha-synuclein (α-syn) is widely expressed in presynaptic neuron terminals, and its structural alterations play an important role in the pathogenesis of Parkinson's disease (PD). Aggregated α-syn has been found in brain, in the peripheral nerves of the enteric nervous system (ENS) and in the intestinal neuroendocrine cells during synucleinopathies and inflammatory bowel disorders. In the present study, we evaluated the histomorphological features of murine colon with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, a common model of colitis. Thereafter, we investigated the expression of α-syn, Toll-like receptor 4 (TLR4), choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and calcitonin-like receptor (CALCR). Finally, we investigated the presence of phosphorylated α-syn (pS129 α-syn) aggregates and their relationship with inflammatory cells. Colon from TNBS mice showed an increase in inflammatory cells infiltrate and significative changes in the architecture of the intestinal mucosa. α-Syn expression was significantly higher in inflamed colon. VIP was increased in both the mucosa and muscularis externa of TNBS mice, while TH, CGRP, and CALCR were significantly reduced in TNBS mice. Amyloid aggregates of pS129 α-syn were detectable in the ENS, as in the macrophages around the glands of the mucosa correlating with the markers of inflammation. This study describes - for the first time - the altered expression of α-syn and the occurrence of amyloid α-syn aggregates in the inflammatory cells under colitis, supporting the critical role of bowel inflammation in synucleinopathies and the involvement of α-syn in IBD.
Collapse
Affiliation(s)
- Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome, Italy
| | - Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Marco Tagliafierro
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Filippo Maria Bassi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Sara Vitale
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Emanuele Bocci
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome, Italy
| | - Antonio Franchitto
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health & Environmental Sciences, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy.
| |
Collapse
|
9
|
Qiao Y, He C, Xia Y, Ocansey DKW, Mao F. Intestinal mucus barrier: A potential therapeutic target for IBD. Autoimmun Rev 2025; 24:103717. [PMID: 39662652 DOI: 10.1016/j.autrev.2024.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Intestinal mucus, a viscoelastic medium with mucin2 (MUC2) as its main component, covers the surface of intestinal epithelial cells and protects the intestine from invasion, forming the first barrier of the intestinal tract. Unlike the small intestine, where the mucus layer is a single layer, the colonic mucus layer can be divided into a sterile inner layer and an outer layer with bacterial colonization. Many of the substances in the mucus layer have beneficial effects on the intestinal epithelium, but the mucus layer is often affected by a variety of factors, mainly microbiological, dietary, and immunological. Inflammatory bowel disease (IBD) is a disease of increasing morbidity worldwide, with a complex etiology and a high relapse rate. In recent years, the mucus barrier in IBD has received increasing attention and is considered a key factor in the pathogenesis of IBD. Loss of goblet cells (GCs) and changes in the composition and properties of the mucus layer material are commonly found in the colon of IBD patients. Damage to the mucus layer may make it easier for microorganisms to access the intestinal epithelium and cause inflammation. There are currently a number of herbs and other therapies that can be used to treat IBD and repair the damaged mucus barrier. This review highlights the important role of the mucus layer in IBD and the therapies that target the mucus layer in IBD.
Collapse
Affiliation(s)
- Yaru Qiao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Changer He
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212399, Jiangsu, PR China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Ghana
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Ham N, Park M, Bae YA, Yeo EJ, Jung Y. Differential pathological changes in colon microenvironments in acute and chronic mouse models of inflammatory bowel disease. Anim Cells Syst (Seoul) 2025; 29:100-112. [PMID: 39839656 PMCID: PMC11748878 DOI: 10.1080/19768354.2025.2451408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Inflammatory bowel disease is a chronic condition characterized by inflammation of the gastrointestinal tract, resulting from an abnormal immune response to normal stimuli, such as food and intestinal flora. Since the etiology of this disease remains largely unknown, murine models induced by the consumption of dextran-sodium sulfate serve as a pivotal tool for studying colon inflammation. In this study, we employed both acute and chronic colitis mouse models induced by varying durations of dextran-sodium sulfate consumption to investigate the pathological and immunologic characteristics throughout the disease course. During the acute phase, activated innate inflammation marked by M1 macrophage infiltration was prominent. In contrast, the chronic phase was characterized by tissue remodeling, with a significant increase in M2 macrophages and lymphocytes. RNA-sequencing revealed genetic changes in acute and chronic colitis, marked by the maintenance of genomic integrity in the acute phase and extracellular matrix dynamics in the chronic phase. These phase-specific alterations reflect the multifaceted physiological processes involved in the initiation and progression of inflammation in the large intestine, underscoring the necessity for distinct experimental approaches for each phase. The findings demonstrate that the factors shaping the large intestinal immune microenvironment change specifically during the acute and chronic phases of experimental inflammatory bowel disease, highlighting the importance of developing therapeutic strategies that align with the disease course.
Collapse
Affiliation(s)
- NaYeon Ham
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, South Korea
| | - Minji Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, South Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute Incheon, Gachon University, Incheon, South Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute Incheon, Gachon University, Incheon, South Korea
| | - YunJae Jung
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, South Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, South Korea
- Department of Microbiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute Incheon, Gachon University, Incheon, South Korea
| |
Collapse
|
11
|
Jiménez E, Vázquez A, González S, Sacedón R, Fernández-Sevilla LM, Varas A, Subiza JL, Valencia J, Vicente Á. Mucosal Bacterial Immunotherapy Attenuates the Development of Experimental Colitis by Reducing Inflammation Through the Regulation of Myeloid Cells. Int J Mol Sci 2024; 25:13629. [PMID: 39769391 PMCID: PMC11728189 DOI: 10.3390/ijms252413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Ulcerative colitis is a chronic relapsing-remitting and potentially progressive form of inflammatory bowel disease in which there is extensive inflammation and mucosal damage in the colon and rectum as a result of an abnormal immune response. MV130 is a mucosal-trained immunity-based vaccine used to prevent respiratory tract infections in various clinical settings. Additionally, MV130 may induce innate immune cells that acquire anti-inflammatory properties and promote tolerance, which could have important implications for chronic inflammatory diseases such as ulcerative colitis. This work demonstrated that the prophylactic administration of MV130 substantially mitigated colitis in a mouse model of acute colitis induced by dextran sulphate sodium. MV130 downregulated systemic and local inflammatory responses, maintained the integrity of the intestinal barrier by preserving the enterocyte layer and goblet cells, and reduced the oedema and fibrosis characteristic of the disease. Mechanistically, MV130 significantly reduced the infiltration of neutrophils and pro-inflammatory macrophages in the intestinal wall of the diseased animals and favoured the appearance of M2-polarised macrophages. These results suggest that MV130 might have therapeutic potential for the treatment of ulcerative colitis, reducing the risk of relapse and the progression of disease.
Collapse
Affiliation(s)
- Eva Jiménez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Alberto Vázquez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
| | - Sara González
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lidia M. Fernández-Sevilla
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| |
Collapse
|
12
|
Wang L, Long S, Zeng Q, Dong W, Li Y, Su J, Chen Y, Zhou G. Staphylea bumalda Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Regulating Inflammatory Cytokines, Oxidative Stress, and Maintaining Gut Homeostasis. Molecules 2024; 29:5030. [PMID: 39519671 PMCID: PMC11547842 DOI: 10.3390/molecules29215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Staphylea bumalda is a rare medicine and edible shrub native to the temperate regions of Asia, possessing significant medicinal potential. In this study, the components of S. bumalda tender leaves and buds extract (SBE) were analyzed and identified by HPLC and LC/MS method, and the safety of SBE was evaluated through mouse acute toxicity models. The protective effects of SBE on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated in terms of inflammatory factor levels, oxidative stress, and gut microorganisms. Results showed that hyperoside, kaempferol-3-O-rutinoside, isorhoifolin, and rutin were the main components of the extract, and SBE demonstrated good safety in experimental mice. SBE could alleviate weight losing, disease activity index (DAI) raising, and colon shortening in mice. Pathological section results showed that the inflammatory cell infiltration decreased significantly, and the number of goblet cells increased significantly in the SBE group. After SBE treatment, interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels in serum were significantly decreased, and the levels of myeloperoxidase (MPO) and nitric oxide (NO) in colon tissues were significantly decreased. SBE inhibited gut inflammation by increasing Lactobacillus. In summary, SBE played a therapeutic role in UC mice by relieving colon injury, reducing inflammatory factor levels, and maintaining gut flora homeostasis. SBE is expected to become an auxiliary means to participate in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Lu Wang
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Sha Long
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Qi Zeng
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Wanrong Dong
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Yaoyao Li
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Jiangtao Su
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Yuxin Chen
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Gao Zhou
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
- Post-Doctoral Research Center of Mayinglong Pharmaceutical Group Co., Ltd., Wuhan 430064, China
| |
Collapse
|
13
|
Parente IA, Chiara L, Bertoni S. Exploring the potential of human intestinal organoids: Applications, challenges, and future directions. Life Sci 2024; 352:122875. [PMID: 38942359 DOI: 10.1016/j.lfs.2024.122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The complex and dynamic environment of the gastrointestinal tract shapes one of the fastest renewing tissues in the human body, the intestinal epithelium. Considering the lack of human preclinical studies, reliable models that mimic the intestinal environment are increasingly explored. Patient-derived intestinal organoids are powerful tools that recapitulate in vitro many pathophysiological features of the human intestine. In this review, the possible applications of human intestinal organoids in different research fields are highlighted. From physiologically relevant to intestinal disease modeling, regenerative medicine, and toxicology studies, the potential of intestinal organoids will be here presented and discussed. Despite the remarkable opportunities offered, limitations related to ethical concerns, tissue collection, reproducibility, and methodologies may hinder the full exploitation of this cell-based model into high throughput studies and clinical practice. Currently, distinct approaches can be used to overcome the numerous challenges found along the way and to allow the full implementation of this ground-breaking technology.
Collapse
Affiliation(s)
- Inês A Parente
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Linda Chiara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Simona Bertoni
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
14
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Donowitz M, Tse CM, Sarker R, Lin R, Dokladny K, Rawat M, Horwitz I, Ye C, McNamara G, In J, Kell A, Guo C, JuiTsai S, Vong T, Karaba A, Singh V, Sachithanandham J, Pekosz A, Cox A, Bradfute S, Zachos NC, Gould S, Kovbasnjuk O. COVID-19 Diarrhea Is Inflammatory, Caused by Direct Viral Effects Plus Major Role of Virus-induced Cytokines. Cell Mol Gastroenterol Hepatol 2024; 18:101383. [PMID: 39089626 PMCID: PMC11404158 DOI: 10.1016/j.jcmgh.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS Diarrhea occurs in up to 50% of cases of COVID-19. Nonetheless, the pathophysiologic mechanism(s) have not been determined. METHODS This was examined using normal human enteroid monolayers exposed apically to live SARS-CoV-2 or non-replicating virus-like particles (VLPs) bearing the 4 SARS-CoV-2 structural proteins or irradiated virus, all of which bound and entered enterocytes. RESULTS Live virus and VLPs incrieased secretion of multiple cytokines and reduced mRNAs of ACE2, NHE3, and DRA. Interleukin (IL)-6 plus IL-8 alone reduced NHE3 mRNA and protein and DRA mRNA and protein. Neither VLPs nor IL-6 plus IL-8 alone altered Cl- secretion, but together they caused Cl- secretion, which was Ca2+-dependent, CFTR-independent, blocked partially by a specific TMEM16A inhibitor, and entirely by a general TMEM16 family inhibitor. VLPs and irradiated virus, but not IL-6 plus IL-8, produced Ca2+ waves that began within minutes of VLP exposure, lasted for at least 60 minutes, and were prevented by pretreatment with apyrase, a P2Y1 receptor antagonist, and general TMEM16 family inhibitor but not by the specific TMEM16A inhibitor. CONCLUSIONS The pathophysiology of COVID-19 diarrhea appears to be a unique example of a calcium-dependent inflammatory diarrhea that is caused by direct viral effects plus the virus-induced intestinal epithelial cytokine secretion.
Collapse
Affiliation(s)
- Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Chung-Ming Tse
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafiq Sarker
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruxian Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ivy Horwitz
- University of New Mexico Center for Global Health, Albuquerque, New Mexico
| | - ChunYan Ye
- University of New Mexico Center for Global Health, Albuquerque, New Mexico
| | - George McNamara
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie In
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Alison Kell
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Chenxu Guo
- Department of Biological Chemistry, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shang JuiTsai
- Department of Biological Chemistry, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tyrus Vong
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Karaba
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Varsha Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaiprasath Sachithanandham
- Department of Microbiology and Immunology, Bloomberg School of Public Health of the Johns Hopkins University, Baltimore, Maryland
| | - Andrew Pekosz
- Department of Microbiology and Immunology, Bloomberg School of Public Health of the Johns Hopkins University, Baltimore, Maryland
| | - Andrea Cox
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico; University of New Mexico Center for Global Health, Albuquerque, New Mexico
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven Gould
- Department of Biological Chemistry, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olga Kovbasnjuk
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
16
|
Repici A, Hasan A, Capra AP, Scuderi SA, Paterniti I, Campolo M, Ardizzone A, Esposito E. Marine Algae and Deriving Biomolecules for the Management of Inflammatory Bowel Diseases: Potential Clinical Therapeutics to Decrease Gut Inflammatory and Oxidative Stress Markers? Mar Drugs 2024; 22:336. [PMID: 39195452 DOI: 10.3390/md22080336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
The term "inflammatory bowel disease" (IBD) describes a class of relapse-remitting conditions that affect the gastrointestinal (GI) tract. Among these, Crohn's disease (CD) and ulcerative colitis (UC) are two of the most globally prevalent and debilitating conditions. Several articles have brought attention to the significant role that inflammation and oxidative stress cooperatively play in the development of IBD, offering a different viewpoint both on its etiopathogenesis and on strategies for the effective treatment of these conditions. Marine ecosystems may be a significant source of physiologically active substances, supporting the search for new potential clinical therapeutics. Based on this evidence, this review aims to comprehensively evaluate the activity of marine algae and deriving biomolecules in decreasing pathological features of CD and UC. To match this purpose, a deep search of the literature on PubMed (MEDLINE) and Google Scholar was performed to highlight primary biological mechanisms, the modulation of inflammatory and oxidative stress biochemical parameters, and potential clinical benefits deriving from marine species. From our findings, both macroalgae and microalgae have shown potential as therapeutic solutions for IBD due to their bioactive compounds and their anti-inflammatory and antioxidant activities which are capable of modulating markers such as cytokines, the NF-κB pathway, reactive oxidative and nitrosative species (ROS and RNS), trefoil factor 3 (TFF3), lactoferrin, SIRT1, etc. However, while we found promising preclinical evidence, more extensive and long-term clinical studies are necessary to establish the efficacy and safety of marine algae for IBD treatment.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
- School of Advanced Studies, Center of Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
17
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Zhu J, Ren X, He S, Mi C, Zhang L, Zhou D, Luo M. Noise is a Risk Factor for Patients with Ulcerative Colitis and Anxiety. Noise Health 2024; 26:320-324. [PMID: 39345071 PMCID: PMC11539993 DOI: 10.4103/nah.nah_51_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND This work aimed to explore anxiety-associated risk factors in patients diagnosed with ulcerative colitis (UC). METHODS Clinical data from patients diagnosed with UC and hospitalized at the First Affiliated Hospital of Xi'an Jiaotong University between May 2019 and June 2022 were retrospectively analyzed. A total of 260 patients were included and divided into UC with anxiety (n = 86) and UC without anxiety (n = 174) groups according to the Self-Rating Anxiety Scale score. The quality of life and disease activity in patients with UC were assessed using the Inflammatory Bowel Disease Questionnaire and Mayo Score, respectively. Clinical data, disease characteristics, quality of life, disease activity, and noise exposure were compared between the groups, and factors contributing to anxiety in patients with UC were explored through multivariate logistic regression analysis. RESULTS No significant difference was found between the groups in terms of disease duration (P = 0.73), distribution of disease (P = 0.86), or medication use (P = 0.86). However, compared to UC patients without anxiety, those with anxiety were older (P < 0.05), predominantly female (P < 0.05), had lower quality of life (P < 0.05), experienced higher disease activity (P < 0.05), and had greater noise exposure (P < 0.05). The quality of life [odds ratio (OR) = 0.558, 95% confidence interval (CI) = 0.348-0.895, P = 0.02] was a protective factor for anxiety in patients with UC. Disease activity (OR = 1.680, 95% CI = 1.103-2.561, P = 0.02) and noise exposure (OR = 2.148, 95% CI = 1.084-4.106, P = 0.01) were significant risk factors for anxiety in patients with UC. CONCLUSION Noise exposure and disease activity were associated with an increased risk of anxiety in patients with UC, whereas higher quality of life was protective against anxiety in UC patients.
Collapse
Affiliation(s)
- Jiao Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’An 710061, Shaanxi, China
| | - Xiaoyang Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’An 710061, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’An 710061, Shaanxi, China
| | - Chen Mi
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’An 710061, Shaanxi, China
| | - Li Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’An 710061, Shaanxi, China
| | - Dan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’An 710061, Shaanxi, China
| | - Miaosha Luo
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’An 710061, Shaanxi, China
| |
Collapse
|
19
|
Erbay IH, Alexiadis A, Rochev Y. Computational insights into colonic motility: Mechanical role of mucus in homeostasis and inflammation. Comput Biol Med 2024; 176:108540. [PMID: 38728996 DOI: 10.1016/j.compbiomed.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Colonic motility plays a vital role in maintaining proper digestive function. The rhythmic contractions and relaxations facilitate various types of motor functions that generate both propulsive and non-propulsive motility modes which in turn generate shear stresses on the epithelial surface. However, the interplay between colonic mucus, shear stress, and epithelium remains poorly characterized. Here, we present a colonic computational model that describes the potential roles of mucus and shear stress in both homeostasis and ulcerative colitis (UC). Our model integrates several key features, including the properties of the mucus bilayer and faeces, intraluminal pressure, and crypt characteristics to predict the time-space mosaic of shear stress. We show that the mucus thickness which could vary based on the severity of UC, may significantly reduce the amount of shear stress applied to the colonic crypts and effect faecal velocity. Our model also reveals an important spatial shear stress variance in homeostatic colonic crypts that suggests shear stress may have a modulatory role in epithelial cell migration, differentiation, apoptosis, and immune surveillance. Together, our study uncovers the rather neglected roles of mucus and shear stress in intestinal cellular processes during homeostasis and inflammation.
Collapse
Affiliation(s)
- I H Erbay
- School of Physics, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - A Alexiadis
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Y Rochev
- School of Physics, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
20
|
Bharadiya V, Rong Y, Zhang Z, Lin R, Guerrerio AL, Tse CM, Donowitz M, Singh V. Type 1 diabetes human enteroid studies reveal major changes in the intestinal epithelial compartment. Sci Rep 2024; 14:11911. [PMID: 38789719 PMCID: PMC11126659 DOI: 10.1038/s41598-024-62282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Lack of understanding of the pathophysiology of gastrointestinal (GI) complications in type 1 diabetes (T1D), including altered intestinal transcriptomes and protein expression represents a major gap in the management of these patients. Human enteroids have emerged as a physiologically relevant model of the intestinal epithelium but establishing enteroids from individuals with long-standing T1D has proven difficult. We successfully established duodenal enteroids using endoscopic biopsies from pediatric T1D patients and compared them with aged-matched enteroids from healthy subjects (HS) using bulk RNA sequencing (RNA-seq), and functional analyses of ion transport processes. RNA-seq analysis showed significant differences in genes and pathways associated with cell differentiation and proliferation, cell fate commitment, and brush border membrane. Further validation of these results showed higher expression of enteroendocrine cells, and the proliferating cell marker Ki-67, significantly lower expression of NHE3, lower epithelial barrier integrity, and higher fluid secretion in response to cAMP and elevated calcium in T1D enteroids. Enteroids established from pediatric T1D duodenum identify characteristics of an abnormal intestinal epithelium and are distinct from HS. Our data supports the use of pediatric enteroids as an ex-vivo model to advance studies of GI complications and drug discovery in T1D patients.
Collapse
Affiliation(s)
- Vishwesh Bharadiya
- Divisions of Gastroenterology and Hepatology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yan Rong
- Divisions of Gastroenterology and Hepatology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zixin Zhang
- Divisions of Gastroenterology and Hepatology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ruxian Lin
- Divisions of Gastroenterology and Hepatology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | - C Ming Tse
- Divisions of Gastroenterology and Hepatology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mark Donowitz
- Divisions of Gastroenterology and Hepatology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Varsha Singh
- Divisions of Gastroenterology and Hepatology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Gaur P, Rajendran Y, Srivastava B, Markandey M, Fishbain-Yoskovitz V, Mohapatra G, Suhail A, Chaudhary S, Tyagi S, Yadav SC, Pandey AK, Merbl Y, Bajaj A, Ahuja V, Srikanth C. Rab7-dependent regulation of goblet cell protein CLCA1 modulates gastrointestinal homeostasis. eLife 2024; 12:RP89776. [PMID: 38593125 PMCID: PMC11003743 DOI: 10.7554/elife.89776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Inflammation in ulcerative colitis is typically restricted to the mucosal layer of distal gut. Disrupted mucus barrier, coupled with microbial dysbiosis, has been reported to occur prior to the onset of inflammation. Here, we show the involvement of vesicular trafficking protein Rab7 in regulating the colonic mucus system. We identified a lowered Rab7 expression in goblet cells of colon during human and murine colitis. In vivo Rab7 knocked down mice (Rab7KD) displayed a compromised mucus layer, increased microbial permeability, and depleted gut microbiota with enhanced susceptibility to dextran sodium-sulfate induced colitis. These abnormalities emerged owing to altered mucus composition, as revealed by mucus proteomics, with increased expression of mucin protease chloride channel accessory 1 (CLCA1). Mechanistically, Rab7 maintained optimal CLCA1 levels by controlling its lysosomal degradation, a process that was dysregulated during colitis. Overall, our work establishes a role for Rab7-dependent control of CLCA1 secretion required for maintaining mucosal homeostasis.
Collapse
Affiliation(s)
- Preksha Gaur
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for BiotechnologyFaridabadIndia
| | - Yesheswini Rajendran
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for BiotechnologyFaridabadIndia
| | | | - Manasvini Markandey
- Department of Gastroenterology, All India Institute of Medical SciencesDelhiIndia
| | | | | | - Aamir Suhail
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Shikha Chaudhary
- Department of Anatomy, All India Institute of Medical SciencesNew DelhiIndia
| | - Shaifali Tyagi
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology InstituteFaridabadIndia
| | | | - Amit Kumar Pandey
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology InstituteFaridabadIndia
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Avinash Bajaj
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for BiotechnologyFaridabadIndia
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical SciencesDelhiIndia
| | - Chittur Srikanth
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for BiotechnologyFaridabadIndia
| |
Collapse
|
22
|
Hassan SA, Kapur N, Sheikh F, Fahad A, Jamal S. Disease clearance in ulcerative colitis: A new therapeutic target for the future. World J Gastroenterol 2024; 30:1801-1809. [PMID: 38659483 PMCID: PMC11036494 DOI: 10.3748/wjg.v30.i13.1801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/03/2024] Open
Abstract
Advancements in murine modeling systems for ulcerative colitis have diversified our understanding of the pathophysiological factors involved in disease onset and progression. This has fueled the identification of molecular targets, resulting in a rapidly expanding therapeutic armamentarium. Subsequently, management strategies have evolved from symptomatic resolution to well-defined objective endpoints, including clinical remission, endoscopic remission and mucosal healing. While the incorporation of these assessment modalities has permitted targeted intervention in the context of a natural disease history and the prevention of complications, studies have consistently depicted discrepancies associated with ascertaining disease status through clinical and endoscopic measures. Current recommendations lack consideration of histological healing. The simultaneous achievement of clinical, endoscopic, and histologic remission has not been fully investigated. This has laid the groundwork for a novel therapeutic outcome termed disease clearance (DC). This article summarizes the concept of DC and its current evidence.
Collapse
Affiliation(s)
- Syed Adeel Hassan
- Division of Digestive Disease and Nutrition, University of Kentucky, Lexington, KY 40536, United States
| | - Neeraj Kapur
- Division of Digestive Disease and Nutrition, University of Kentucky, Lexington, KY 40536, United States
| | - Fahad Sheikh
- Department of Pathology and Laboratory Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Anam Fahad
- Division of Primary Care, Essen Healthcare, New York, NY 10457, United States
| | - Somia Jamal
- Department of Internal Medicine, Karachi Medical and Dental College, Karachi 74700, Sindh, Pakistan
| |
Collapse
|
23
|
Li W, Lin J, Zhou J, He S, Wang A, Hu Y, Li H, Zou L, Liu Y. Hyaluronic acid-functionalized DDAB/PLGA nanoparticles for improved oral delivery of magnolol in the treatment of ulcerative colitis. Int J Pharm 2024; 653:123878. [PMID: 38325622 DOI: 10.1016/j.ijpharm.2024.123878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Dysfunction of the mucosal barrier as well as local inflammation are major challenges in the treatment of ulcerative colitis (UC). Mag, a natural compound derived from traditional Chinese medicine, has been shown to have anti-inflammatory and mucosal protection properties. However, its poor gastrointestinal stability as well as its insufficient accumulation in inflamed colonic lesions limit its potential use as an alternative therapeutic drug in UC. The present research involved the design and preparation of a hybrid nanoparticle system (LPNs) specifically targeting macrophages at the colonic site. This was achieved by electrostatically adsorbing HA onto positively charged lipid-polymer hybrid nanoparticles (HA-LPNs). The prepared HA-LPNs exhibited a rounded morphology and a narrow size distribution. In vitro, the anti-inflammatory efficacy of Mag-HA-LPNs (which control levels of the pro-inflammatory cytokines NO, IL-6 and TNF-α) was assessed in RAW 264.7 cells. Analysis by flow cytometry and fluorescence microscopy demonstrated increased cellular uptake through HA/CD44 interaction. As expected, Mag-HA-LPNs was found to effectively increased colon length and reduced DAI scores in DSS-treated mice. This effect was achieved by regulating the inflammatory cytokines level and promoting the restoration of the colonic mucosal barrier through increased expression of Claudin-1, ZO-1 and Occludin. In this study, we developed an efficient and user-friendly delivery method for the preparation of HA-functionalized PLGA nanoparticles, which are intended for oral delivery of Mag. The findings suggest that these HA-LPNs possess the potential to serve as a promising approach for direct drug delivery to the colon for effective treatment of UC.
Collapse
Affiliation(s)
- Wei Li
- School of Basic Medicine, Chengdu University, Chengdu 610106, People's Republic of China
| | - Jie Lin
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu 610081, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jie Zhou
- School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Siqi He
- School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Anqi Wang
- School of Basic Medicine, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yingfan Hu
- School of Basic Medicine, Chengdu University, Chengdu 610106, People's Republic of China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China.
| | - Ya Liu
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu 610081, People's Republic of China.
| |
Collapse
|
24
|
Hensel IV, Éliás S, Steinhauer M, Stoll B, Benfatto S, Merkt W, Krienke S, Lorenz HM, Haas J, Wildemann B, Resnik-Docampo M. SLE serum induces altered goblet cell differentiation and leakiness in human intestinal organoids. EMBO Mol Med 2024; 16:547-574. [PMID: 38316934 PMCID: PMC10940301 DOI: 10.1038/s44321-024-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Human intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients. However, it remains unexplored how the barrier is affected. Here, we present an in vitro model specifically designed to examine the effects of SLE on epithelial cells. We utilize human colon organoids that are stimulated with serum from SLE patients. Combining transcriptomic with functional analyses revealed that SLE serum induced an expression profile marked by a reduction of goblet cell markers and changed mucus composition. In addition, organoids exhibited imbalanced cellular composition along with enhanced permeability, altered mitochondrial function, and an interferon gene signature. Similarly, transcriptomic analysis of SLE colon biopsies revealed a downregulation of secretory markers. Our work uncovers a crucial connection between SLE and intestinal homeostasis that might be promoted in vivo through the blood, offering insights into the causal connection of barrier dysfunction and autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Wolfgang Merkt
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Krienke
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
25
|
Leoncini G, Cari L, Ronchetti S, Donato F, Caruso L, Calafà C, Villanacci V. Mucin Expression Profiles in Ulcerative Colitis: New Insights on the Histological Mucosal Healing. Int J Mol Sci 2024; 25:1858. [PMID: 38339134 PMCID: PMC10855303 DOI: 10.3390/ijms25031858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A structural weakness of the mucus barrier (MB) is thought to be a cause of ulcerative colitis (UC). This study aims to investigate the mucin (MUC) composition of MB in normal mucosa and UC. Ileocolonic biopsies were taken at disease onset and after treatment in 40 patients, including 20 with relapsing and 20 with remitting UC. Ileocolonic biopsies from 10 non-IBD patients were included as controls. Gut-specific MUC1, MUC2, MUC4, MUC5B, MUC12, MUC13, MUC15, and MUC17 were evaluated immunohistochemically. The promoters of mucin genes were also examined. Normal mucosa showed MUC2, MUC5B, and MUC13 in terminal ileum and colon, MUC17 in ileum, and MUC1, MUC4, MUC12, and MUC15 in colon. Membranous, cytoplasmic and vacuolar expressions were highlighted. Overall, the mucin expression was abnormal in UC. Derangements in MUC1, MUC4, and MUC5B were detected both at onset and after treatment. MUC2 and MUC13 were unaffected. Sequence analysis revealed glucocorticoid-responsive elements in the MUC1 promoter, retinoic-acid-responsive elements in the MUC4 promoter, and butyrate-responsive elements in the MUC5B promoter. In conclusion, MUCs exhibited distinct expression patterns in the gut. Their expression was disrupted in UC, regardless of the treatment protocols. Abnormal MUC1, MUC4, and MUC5B expression marked the barrier dysfunction in UC.
Collapse
Affiliation(s)
- Giuseppe Leoncini
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Luigi Cari
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesco Donato
- Unit of Hygiene, Epidemiology and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Laura Caruso
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | - Cristina Calafà
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | | |
Collapse
|
26
|
Flood P, Hanrahan N, Nally K, Melgar S. Human intestinal organoids: Modeling gastrointestinal physiology and immunopathology - current applications and limitations. Eur J Immunol 2024; 54:e2250248. [PMID: 37957831 DOI: 10.1002/eji.202250248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/15/2023]
Abstract
Human intestinal organoids are an ideal model system for studying gastrointestinal physiology and immunopathology. Altered physiology and mucosal immune response are hallmarks of numerous intestinal functional and inflammatory diseases, including inflammatory bowel disease (IBD), coeliac disease, irritable bowel syndrome (IBS), and obesity. These conditions impact the normal epithelial functions of the intestine, such as absorption, barrier function, secretion, and host-microbiome communication. They are accompanied by characteristic intestinal symptoms and have significant societal, economic, and healthcare burdens. To develop new treatment options, cutting-edge research is required to investigate their etiology and pathology. Human intestinal organoids derived from patient tissue recapitulate the key physiological and immunopathological aspects of these conditions, providing a promising platform for elucidating disease mechanisms. This review will summarize recent reports on patient-derived human small intestinal and colonic organoids and highlight how these models have been used to study intestinal epithelial functions in the context of inflammation, altered physiology, and immune response. Furthermore, it will elaborate on the various organoid systems in use and the techniques/assays currently available to study epithelial functions. Finally, it will conclude by discussing the limitations and future perspectives of organoid technology.
Collapse
Affiliation(s)
- Peter Flood
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
- Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Zhang T, Cheng T, Geng S, Mao K, Li X, Gao J, Han J, Sang Y. Synbiotic Combination between Lactobacillus paracasei VL8 and Mannan-Oligosaccharide Repairs the Intestinal Barrier in the Dextran Sulfate Sodium-Induced Colitis Model by Regulating the Intestinal Stem Cell Niche. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2214-2228. [PMID: 38237048 DOI: 10.1021/acs.jafc.3c08473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Previously, Lactobacillus paracasei VL8, a lactobacillus strain isolated from the traditional Finnish fermented dairy product Viili, demonstrated immunomodulatory and antibacterial effects. The prebiotic mannan-oligosaccharide (MOS) further promoted its antibacterial activity and growth performance, holding promise for maintaining intestinal health. However, this has not been verified in vivo. In this study, we elucidated the process by which L. paracasei VL8 and its synbiotc combination (SYN) with MOS repair the intestinal barrier function in dextran sodium sulfate (DSS)-induced colitis mice. SYN surpasses VL8 or MOS alone in restoring goblet cells and improving the tight junction structure. Omics analysis on gut microbiota reveals SYN's ability to restore Lactobacillus spp. abundance and promote tryptophan metabolism. SYN intervention also inhibits the DSS-induced hyperactivation of the Wnt/β-catenin pathway. Tryptophan metabolites from Lactobacillus induce intestinal organoid differentiation. Co-housing experiments confirm microbiota transferability, replicating intestinal barrier repair. In conclusion, our study highlights the potential therapeutic efficacy of the synbiotic combination of Lactobacillus paracasei VL8 and MOS in restoring the damaged intestinal barrier and offers new insights into the complex crosstalk between the gut microbiota and intestinal stem cells.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Tiantian Cheng
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Shuo Geng
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Kemin Mao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Xiyu Li
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Jie Gao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Jun Han
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Yaxin Sang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| |
Collapse
|
28
|
Pateras IS, Igea A, Nikas IP, Leventakou D, Koufopoulos NI, Ieronimaki AI, Bergonzini A, Ryu HS, Chatzigeorgiou A, Frisan T, Kittas C, Panayiotides IG. Diagnostic Challenges during Inflammation and Cancer: Current Biomarkers and Future Perspectives in Navigating through the Minefield of Reactive versus Dysplastic and Cancerous Lesions in the Digestive System. Int J Mol Sci 2024; 25:1251. [PMID: 38279253 PMCID: PMC10816510 DOI: 10.3390/ijms25021251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.
Collapse
Affiliation(s)
- Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Ana Igea
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Mobile Genomes, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Danai Leventakou
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Nektarios I. Koufopoulos
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Argyro Ioanna Ieronimaki
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Anna Bergonzini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52 Stockholm, Sweden;
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Christos Kittas
- Department of Histopathology, Biomedicine Group of Health Company, 156 26 Athens, Greece;
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| |
Collapse
|
29
|
Florio M, Crudele L, Moschetta A, Gadaleta RM. Discovering the Nutrition-Microbiota Interplay in Inflammatory Bowel Disease: Are We There Yet? Endocrinology 2024:333-371. [DOI: 10.1007/978-3-031-35064-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Ding W, Marx OM, Mankarious MM, Koltun WA, Yochum GS. Disease Severity Impairs Generation of Intestinal Organoid Cultures From Inflammatory Bowel Disease Patients. J Surg Res 2024; 293:187-195. [PMID: 37776721 DOI: 10.1016/j.jss.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/02/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Chronic inflammation of the intestinal epithelium is an underlying cause of the two main types of inflammatory bowel disease (IBD), ulcerative colitis (UC), and Crohn's disease (CD). Ex vivo organoids derived from the intestinal epithelium are a useful model to study IBD. Whether such cultures can be established from surgically resected diseased IBD intestinal tissues has not been fully explored. In this study, we tested our ability to establish organoids from nondiseased and diseased IBD intestinal tissues. MATERIALS AND METHODS From 12 UC patients (n = 54 tissues) and 20 CD patients (n = 49 tissues), tissues were collected from multiple colonic regions, and for CD, the terminal ileum was also surveyed. Organoids were cultured in Matrigel domes using defined media. In primary tissues, we conducted immunohistochemical analysis for mucin 2 (MUC2) and Alcian blue staining for goblet cells. Organoids were stained for Ki67, E-cadherin, and MUC2. RESULTS For UC, we were highly successful establishing organoids from nondiseased tissue (n = 12 of 13, 92%). This success rates dropped from tissues with mild (n = 6 of 9, 67%), moderate (n = 2 of 9, 22%), or severe disease (n = 1 of 23, 4%). The rates from nondiseased CD tissues were reduced (n = 11 of 23, 48%) in comparison to such tissues from UC patients. In UC, goblet cells and MUC2 were reduced in diseased tissues and these phenotypes were retained in organoids. CONCLUSIONS Organoids can be readily derived from nondiseased surgically resected IBD tissues. While more work is needed to improve their derivation from diseased tissue, our study supports the use of organoids to study IBD pathophysiology.
Collapse
Affiliation(s)
- Wei Ding
- Division of Colon & Rectal Surgery, Department of Surgery, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Olivia M Marx
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Marc M Mankarious
- Division of Colon & Rectal Surgery, Department of Surgery, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Walter A Koltun
- Division of Colon & Rectal Surgery, Department of Surgery, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Gregory S Yochum
- Division of Colon & Rectal Surgery, Department of Surgery, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania; Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
31
|
Posta E, Fekete I, Gyarmati E, Stündl L, Zold E, Barta Z. The Effects of Artificial Sweeteners on Intestinal Nutrient-Sensing Receptors: Dr. Jekyll or Mr. Hyde? Life (Basel) 2023; 14:10. [PMID: 38276259 PMCID: PMC10817473 DOI: 10.3390/life14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The consumption of artificial and low-calorie sweeteners (ASs, LCSs) is an important component of the Western diet. ASs play a role in the pathogenesis of metabolic syndrome, dysbiosis, inflammatory bowel diseases (IBDs), and various inflammatory conditions. Intestinal nutrient-sensing receptors act as a crosstalk between dietary components, the gut microbiota, and the regulation of immune, endocrinological, and neurological responses. This narrative review aimed to summarize the possible effects of ASs and LCSs on intestinal nutrient-sensing receptors and their related functions. Based on the findings of various studies, long-term AS consumption has effects on the gut microbiota and intestinal nutrient-sensing receptors in modulating incretin hormones, antimicrobial peptides, and cytokine secretion. These effects contribute to the regulation of glucose metabolism, ion transport, gut permeability, and inflammation and modulate the gut-brain, and gut-kidney axes. Based on the conflicting findings of several in vitro, in vivo, and randomized and controlled studies, artificial sweeteners may have a role in the pathogenesis of IBDs, functional bowel diseases, metabolic syndrome, and cancers via the modulation of nutrient-sensing receptors. Further studies are needed to explore the exact mechanisms underlying their effects to decide the risk/benefit ratio of sugar intake reduction via AS and LCS consumption.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (I.F.); (L.S.)
| | - Eva Gyarmati
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
- Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (I.F.); (L.S.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond Str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
| |
Collapse
|
32
|
Prame Kumar K, Ooi JD, Goldberg R. The interplay between the microbiota, diet and T regulatory cells in the preservation of the gut barrier in inflammatory bowel disease. Front Microbiol 2023; 14:1291724. [PMID: 38107848 PMCID: PMC10722198 DOI: 10.3389/fmicb.2023.1291724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming more common in the Western world due to changes in diet-related microbial dysbiosis, genetics and lifestyle. Incidences of gut permeability can predate IBD and continued gut barrier disruptions increase the exposure of bacterial antigens to the immune system thereby perpetuating chronic inflammation. Currently, most of the approved IBD therapies target individual pro-inflammatory cytokines and pathways. However, they fail in approximately 50% of patients due to their inability to overcome the redundant pro inflammatory immune responses. There is increasing interest in the therapeutic potential of T regulatory cells (Tregs) in inflammatory conditions due to their widespread capability to dampen inflammation, promote tolerance of intestinal bacteria, facilitate healing of the mucosal barrier and ability to be engineered for more targeted therapy. Intestinal Treg populations are inherently shaped by dietary molecules and gut microbiota-derived metabolites. Thus, understanding how these molecules influence Treg-mediated preservation of the intestinal barrier will provide insights into immune tolerance-mediated mucosal homeostasis. This review comprehensively explores the interplay between diet, gut microbiota, and immune system in influencing the intestinal barrier function to attenuate the progression of colitis.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
33
|
Yang WH, Aziz PV, Heithoff DM, Kim Y, Ko JY, Cho JW, Mahan MJ, Sperandio M, Marth JD. Innate mechanism of mucosal barrier erosion in the pathogenesis of acquired colitis. iScience 2023; 26:107883. [PMID: 37752945 PMCID: PMC10518488 DOI: 10.1016/j.isci.2023.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
The colonic mucosal barrier protects against infection, inflammation, and tissue ulceration. Composed primarily of Mucin-2, proteolytic erosion of this barrier is an invariant feature of colitis; however, the molecular mechanisms are not well understood. We have applied a recurrent food poisoning model of acquired inflammatory bowel disease using Salmonella enterica Typhimurium to investigate mucosal barrier erosion. Our findings reveal an innate Toll-like receptor 4-dependent mechanism activated by previous infection that induces Neu3 neuraminidase among colonic epithelial cells concurrent with increased Cathepsin-G protease secretion by Paneth cells. These anatomically separated host responses merge with the desialylation of nascent colonic Mucin-2 by Neu3 rendering the mucosal barrier susceptible to increased proteolytic breakdown by Cathepsin-G. Depletion of Cathepsin-G or Neu3 function using pharmacological inhibitors or genetic-null alleles protected against Mucin-2 proteolysis and barrier erosion and reduced the frequency and severity of colitis, revealing approaches to preserve and potentially restore the mucosal barrier.
Collapse
Affiliation(s)
- Won Ho Yang
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases Center; La Jolla, CA 92037, USA
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Peter V. Aziz
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases Center; La Jolla, CA 92037, USA
| | - Douglas M. Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yeolhoe Kim
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong Yeon Ko
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jin Won Cho
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Michael J. Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany
| | - Jamey D. Marth
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases Center; La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Zou W, Fu Z, Guo X, Yao L, Hong H, Luo Y, Tan Y. Whey Protein Hydrolysate Exerts Anti-Inflammatory Effects to Alleviate Dextran Sodium Sulfate (DSS)-Induced Colitis via Microbiome Restoration. Nutrients 2023; 15:4393. [PMID: 37892468 PMCID: PMC10610201 DOI: 10.3390/nu15204393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Whey protein hydrolysate (WPH) has been shown to have a variety of bioactivities. This study aimed to investigate the preventive effect of WPH on dextran sodium sulfate (DSS)-induced colitis in C57BL/6J mice. The results indicated that WPH intervention for 37 days was effective in delaying the development of colonic inflammation, and high doses of WPH significantly inhibited weight loss (9.16%, n = 8, p < 0.05), protected the colonic mucosal layer, and significantly reduced the levels of inflammatory factors TNF-α, IL-6, and IL-1β in mice with colitis (n = 8, p < 0.05). In addition, WPH intervention was able to up-regulate the short-chain fatty acids secretion and restore the gut microbiome imbalance in mice with colitis. Notably, high-dose WPH intervention increased the relative abundance of norank_f_Muribaculaceae by 1.52-fold and decreased the relative abundance of Romboutsia and Enterobacter by 3.77-fold and 2.45-fold, respectively, compared with the Model group. WPH intervention protected colitis mice mainly by reversing the microbiome imbalance and regulating the major histocompatibility complex (MHC) class I pathway. This study showed that WPH has anti-inflammatory activity and a promising colitis management future.
Collapse
Affiliation(s)
- Wenrong Zou
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Zixin Fu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Xiaohong Guo
- Department of Product and Development, Hebei Dongkang Dairy Co., Ltd., Shijiazhuang 052165, China; (X.G.); (L.Y.)
| | - Lei Yao
- Department of Product and Development, Hebei Dongkang Dairy Co., Ltd., Shijiazhuang 052165, China; (X.G.); (L.Y.)
| | - Hui Hong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Yongkang Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Yuqing Tan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| |
Collapse
|
35
|
Atanga R, Romero AS, Hernandez AJ, Peralta-Herrera E, Merkley SD, In JG, Castillo EF. Inflammatory macrophages prevent colonic goblet and enteroendocrine cell differentiation through Notch signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547119. [PMID: 37425818 PMCID: PMC10327198 DOI: 10.1101/2023.06.29.547119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Inflammatory macrophages in the intestine are a key pathogenic factor driving inflammatory bowel disease (IBD). Here, we report the role of inflammatory macrophage-mediated notch signaling on secretory lineage differentiation in the intestinal epithelium. Utilizing IL-10-deficient (Il10-/-) mice, a model of spontaneous colitis, we found an increase in Notch activity in the colonic epithelium as well as an increase in intestinal macrophages expressing Notch ligands, which are increased in macrophages upon inflammatory stimuli. Furthermore, a co-culture system of inflammatory macrophages and intestinal stem and proliferative cells during differentiation reduced goblet and enteroendocrine cells. This was recapitulated when utilizing a Notch agonist on human colonic organoids (colonoids). In summary, our findings indicate that inflammatory macrophages upregulate notch ligands that activate notch signaling in ISC via cell-cell interactions, which in turn inhibits secretory lineage differentiation in the gastrointestinal (GI) tract.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | - Anthony Jimenez Hernandez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | | | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences, Albuquerque, NM
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences, Albuquerque, NM
| |
Collapse
|
36
|
Tse CM, Zhang Z, Lin R, Sarker R, Donowitz M, Singh V. The Air-Liquid Interface Reorganizes Membrane Lipids and Enhances the Recruitment of Slc26a3 to Lipid-Rich Domains in Human Colonoid Monolayers. Int J Mol Sci 2023; 24:8273. [PMID: 37175979 PMCID: PMC10179158 DOI: 10.3390/ijms24098273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Cholesterol-rich membrane domains, also called lipid rafts (LRs), are specialized membrane domains that provide a platform for intracellular signal transduction. Membrane proteins often cluster in LRs that further aggregate into larger platform-like structures that are enriched in ceramides and are called ceramide-rich platforms (CRPs). The role of CRPs in the regulation of intestinal epithelial functions remains unknown. Down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3- antiporter that is enriched in LRs. However, little is known regarding the mechanisms involved in the regulation of DRA activity. The air-liquid interface (ALI) was created by removing apical media for a specified number of days; from 12-14 days post-confluency, Caco-2/BBe cells or a colonoid monolayer were grown as submerged cultures. Confocal imaging was used to examine the dimensions of membrane microdomains that contained DRA. DRA expression and activity were enhanced in Caco-2/BBe cells and human colonoids using an ALI culture method. ALI causes an increase in acid sphingomyelinase (ASMase) activity, an enzyme responsible for enhancing ceramide content in the plasma membrane. ALI cultures expressed a larger number of DRA-containing platforms with dimensions >2 µm compared to cells grown as submerged cultures. ASMase inhibitor, desipramine, disrupted CRPs and reduced the ALI-induced increase in DRA expression in the apical membrane. Exposing normal human colonoid monolayers to ALI increased the ASMase activity and enhanced the differentiation of colonoids along with basal and forskolin-stimulated DRA activities. ALI increases DRA activity and expression by increasing ASMase activity and platform formation in Caco-2/BBe cells and by enhancing the differentiation of colonoids.
Collapse
Affiliation(s)
- C. Ming Tse
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| | - Zixin Zhang
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| | - Ruxian Lin
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| | - Rafiquel Sarker
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
- Department of Cellular and Molecular Physiology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Varsha Singh
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Lechuga S, Braga-Neto MB, Naydenov NG, Rieder F, Ivanov AI. Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 2023; 14:1108289. [PMID: 36875103 PMCID: PMC9983034 DOI: 10.3389/fimmu.2023.1108289] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Manuel B. Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
38
|
ERdj5 protects goblet cells from endoplasmic reticulum stress-mediated apoptosis under inflammatory conditions. Exp Mol Med 2023; 55:401-412. [PMID: 36759578 PMCID: PMC9981579 DOI: 10.1038/s12276-023-00945-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
Endoplasmic reticulum stress is closely associated with the onset and progression of inflammatory bowel disease. ERdj5 is an endoplasmic reticulum-resident protein disulfide reductase that mediates the cleavage and degradation of misfolded proteins. Although ERdj5 expression is significantly higher in the colonic tissues of patients with inflammatory bowel disease than in healthy controls, its role in inflammatory bowel disease has not yet been reported. In the current study, we used ERdj5-knockout mice to investigate the potential roles of ERdj5 in inflammatory bowel disease. ERdj5 deficiency causes severe inflammation in mouse colitis models and weakens gut barrier function by increasing NF-κB-mediated inflammation. ERdj5 may not be indispensable for goblet cell function under steady-state conditions, but its deficiency induces goblet cell apoptosis under inflammatory conditions. Treatment of ERdj5-knockout mice with the chemical chaperone ursodeoxycholic acid ameliorated severe colitis by reducing endoplasmic reticulum stress. These findings highlight the important role of ERdj5 in preserving goblet cell viability and function by resolving endoplasmic reticulum stress.
Collapse
|
39
|
Wang Y, Huang X, Zhou G, Han J, Xie Z, Zhang M, Li X, Wu QR, Li L, Ye Z, Chen M, Qiu Y, Zhang S. A Novel Nomogram Combining Mucus Barrier Index for Predicting Treatment Failures in Ulcerative Colitis. J Inflamm Res 2023; 16:1879-1894. [PMID: 37152865 PMCID: PMC10162100 DOI: 10.2147/jir.s410057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Background Treatment failures (TFs) generally exist in the course of ulcerative colitis (UC), while early reliable predictors of TFs are still lacking. We aimed to generate nomograms for the prediction of TFs. Methods In this retrospective case-control study, the endpoint was the occurrence of TFs, which included medically associated treatment failures and surgery-associated treatment failures (colectomy). Clinical features and mucus integrity evident by goblet cells (GCs) number, expression levels of MUC2 and SLC26A3 were enrolled in the univariate analysis. Nomogram performance was evaluated by discrimination and calibration. Results We identified 256 UC patients at our center from January 2010 to June 2022. Fourteen variables for TFs and 9 for colectomy were identified by univariate analysis. Five baseline indices were incorporated into the nomogram for the prediction of TFs: area of GCs, age at diagnosis, disease duration, hemoglobin, and Mayo score. The model was presented with decent discrimination (C index of 0.822) and well calibration. In addition, the colectomy predictive nomogram was built using MUC2 intensity, age at onset, and Mayo score with a good discrimination (C index of 0.92). Conclusion Nomograms based on comprehensive factors including mucus barrier function were developed to predict TFs in UC patients with great discrimination, which may serve as practical tools aiming to identify high-risk subgroups warrant timely intervention.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xuanzhi Huang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Gaoshi Zhou
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jing Han
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhuo Xie
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Mudan Zhang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiaoling Li
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qi-rui Wu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Li Li
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ziyin Ye
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Minhu Chen
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shenghong Zhang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Correspondence: Shenghong Zhang; Yun Qiu, Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou Province, 510080, People’s Republic of China, Tel/Fax +86-20-87332916, Email ;
| |
Collapse
|
40
|
Yan S, Wang P, Wei H, Jia R, Zhen M, Li Q, Xue C, Li J. Treatment of ulcerative colitis with Wu-Mei-Wan by inhibiting intestinal inflammatory response and repairing damaged intestinal mucosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154362. [PMID: 35947900 DOI: 10.1016/j.phymed.2022.154362] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/17/2022] [Accepted: 07/26/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Wu-Mei-Wan (WMW), a traditional Chinese medicine, has been applied in the treatment of gastrointestinal diseases with long-term diarrhea and mucopurulent bloody stool as the main symptoms since ancient times. Studies have shown that WMW inhibits intestinal inflammation, repairs damaged intestinal mucosa, resists colon necrosis, and resists intestinal fibrosis. However, the specific mechanism of action is not yet clear. OBJECTIVE Ulcerative colitis (UC), an intestinal disease with intestinal inflammation and injury as the main pathological manifestations, is one of the high-risk factors for colon cancer. Inhibiting the inflammatory response and promoting colonic epithelial repair are critical to the treatment of UC. However, there is still a lack of remedies with satisfactory curative effects. In this study, the role of WMW in dextran sulfate sodium (DSS)-induced colitis in mice and its related mechanisms are discussed from two aspects: intestinal inflammation and tissue repair. METHODS DSS was used to induce colitis in mice and the therapeutic effect of WMW was analyzed by disease activity score, histopathological score, colon length measurement, serum cytokine detection, and flow cytometry. Macrophage activation and colonic stem cell proliferation were observed by immunohistochemistry. The expression of critical molecules in macrophage activation and colonic stem cell proliferation signaling pathways in colon tissue was detected with immunohistochemistry, immunofluorescence staining, RT-qPCR, and Western blot. RESULTS WMW could significantly alleviate DSS-induced colitis. We showed that WMW could reduce disease activity, reduce pathological scores, limit weight loss, inhibit colon shortening, inhibit inflammatory factor secretion, attenuate inflammatory response, and promote the repair of damaged colonic epithelium. WMW inhibited the activation of colonic macrophages, and its mechanism might be inhibiting the Notch/NF-κB/NLRP3 pathway; WMW promoted the proliferation of colonic stem cells, and its mechanism was associated with the regulation of the Hippo/YAP signaling pathway. CONCLUSION The results of this study suggested that WMW could treat UC via a mechanism that inhibited the intestinal inflammatory response and repaired damaged intestinal mucosa.
Collapse
Affiliation(s)
- Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China
| | - Ping Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hailiang Wei
- Department of General Surgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Rui Jia
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China
| | - Meijia Zhen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China
| | - Qian Li
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046
| | - Chang Xue
- Department of Chinese Medicine, Ankang Central Hospital, Ankang 725099, China.
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Xianyang 712046, China; Department of infectious disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
41
|
Gut Microbiota and Dietary Factors as Modulators of the Mucus Layer in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms221910224. [PMID: 34638564 PMCID: PMC8508624 DOI: 10.3390/ijms221910224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
The gastrointestinal tract is optimized to efficiently absorb nutrients and provide a competent barrier against a variety of lumen environmental compounds. Different regulatory mechanisms jointly collaborate to maintain intestinal homeostasis, but alterations in these mechanisms lead to a dysfunctional gastrointestinal barrier and are associated to several inflammatory conditions usually found in chronic pathologies such as inflammatory bowel disease (IBD). The gastrointestinal mucus, mostly composed of mucin glycoproteins, covers the epithelium and plays an essential role in digestive and barrier functions. However, its regulation is very dynamic and is still poorly understood. This review presents some aspects concerning the role of mucus in gut health and its alterations in IBD. In addition, the impact of gut microbiota and dietary compounds as environmental factors modulating the mucus layer is addressed. To date, studies have evidenced the impact of the three-way interplay between the microbiome, diet and the mucus layer on the gut barrier, host immune system and IBD. This review emphasizes the need to address current limitations on this topic, especially regarding the design of robust human trials and highlights the potential interest of improving our understanding of the regulation of the intestinal mucus barrier in IBD.
Collapse
|