1
|
Zhang D, Xie D, Qu Y, Mu D, Wang S. Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives. Gut Microbes 2025; 17:2451071. [PMID: 39826099 DOI: 10.1080/19490976.2025.2451071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential. We further critically examine dysbiotic alterations within the gut microbiota, with a particular focus on imbalances in bacterial and viral communities, which may contribute to the onset of NEC. The intricate interactions among toll-like receptor 4 (TLR4), microvascular integrity, immune activation, and the inflammatory milieu are meticulously summarized, offering a sophisticated understanding of NEC pathophysiology. This academic review aims to enhance the etiological comprehension of NEC, promote the development of targeted therapeutic interventions, and impart the significant impact of perinatal factors on the formulation of preventive and curative strategies for the disease.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongke Xie
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shaopu Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Umar S, Yu W, Xuan H, Ahmed I, Zhong C, Morowitz M, Rogers MB, Attard MI, Sampath V. Neonatal gut microbiota succession in mice mapped over time, site, injury and single immunoglobulin interleukin-1 related receptor genotype. iScience 2025; 28:112243. [PMID: 40248118 PMCID: PMC12005339 DOI: 10.1016/j.isci.2025.112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Abstract
Microbial succession during postnatal gut development in mice is likely impacted by site of sampling, time, intestinal injury, and host genetics. We investigated this in wild-type and Sigirr transgenic mice that encode the p.Y168X mutation identified in a neonate with necrotizing enterocolitis (NEC). Temporal profiling of the ileal and colonic microbiome after birth to weaning revealed a clear pattern of progression from a less diverse, Proteobacteria/Escherichia_Shigella dominant community to a more diverse, Firmicutes/Bacteroidetes dominant community. Formula milk feeding, a risk factor for necrotizing enterocolitis, decreased Firmicutes and increased Proteobacteria leading to enrichment of bacterial genes denoting exaggerated glycolysis and increased production of acetate and lactate. Sigirr transgenic mice exhibited modest baseline differences in microbiota composition but exaggerated formula feeding-induced dysbiosis, mucosal inflammation, and villus injury. Postnatal intestinal microbiota succession in mice resembles human neonates and is shaped by developmental maturity, ileal vs. colonic sampling, formula feeding, and Sigirr genotype.
Collapse
Affiliation(s)
- Shahid Umar
- Department of Surgery, University of Kansas Medical Center, USA
| | - Wei Yu
- Department of Pediatrics/Neonatology, Children’s Mercy Hospital, Kansas City, USA
| | - Hao Xuan
- Department of Electrical Engineering and Computer Science, University of Kansas, USA
| | - Ishfaq Ahmed
- Department of Math, Science and Computer Technology, Kansas City Community College, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, USA
| | - Michael Morowitz
- Division of Pediatric General and Thoracic Surgery, University of Pittsburgh Children’s Hospital, Pittsburgh, PA, USA
| | - Mathew Brian Rogers
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Mark Ivan Attard
- Neonatal Unit, Aberdeen Maternity Hospital, Aberdeen AB25 2ZL, UK
| | - Venkatesh Sampath
- Department of Electrical Engineering and Computer Science, University of Kansas, USA
| |
Collapse
|
3
|
Venkatraman A, Morelli JJ, Sampath V. Guardian of the gut: butyrate-regulated FUT2 protects against experimental NEC. Pediatr Res 2025; 97:25-26. [PMID: 39210051 DOI: 10.1038/s41390-024-03522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Aparna Venkatraman
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - John J Morelli
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
4
|
Garg PP, Weis VG, Shenberger J, Weis JA, McDonald A, Garg PM. Bedside Utilization of Intestinal Pathology in Preterm Infants with Surgical Necrotizing Enterocolitis. Am J Perinatol 2024. [PMID: 39586982 DOI: 10.1055/a-2483-5736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Necrotizing enterocolitis (NEC) is one of the most common conditions requiring emergency surgery in the neonatal intensive care unit and is associated with multiorgan dysfunction, multiple systemic morbidities, and mortality. The resected bowel commonly shows evidence of coagulative necrosis, inflammation, interstitial hemorrhages, and reparative changes on the pathology examination. The severity of these pathological abnormalities may correlate with the disease's severity and pace of progression and may assist in the prediction of clinical outcomes. This review presents current evidence about the clinical utility of intestinal pathology in bedside decision-making, accurate diagnosing, prediction of outcomes, and the prognostication of preterm infants with surgical NEC. Developing refined and validated noninvasive methods to diagnose the extent of bowel injury and monitoring tissue repair throughout disease progression is paramount to mitigate the long-term morbidities in preterm infants with surgical NEC. Improved imaging methods such as targeted bowel ultrasound capable of assessing the inflammation and necrosis in real time will greatly advance care and provide focus for the temporal framework of surgical interventions. KEY POINTS: · The degree and severity of intestinal pathological changes are associated with different outcomes.. · Bedside utilization of the intestinal pathological changes may help improve outcomes.. · Targeted noninvasive methods to diagnose the extent of bowel injury in real time are greatly needed..
Collapse
Affiliation(s)
- Padma P Garg
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Victoria G Weis
- Wake Forest Institute for Regenerative Medicine, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeffrey Shenberger
- Department of Pediatrics/Neonatology, Connecticut Children's, Hartford, Connecticut
| | - Jared A Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anna McDonald
- Department of Pathology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Parvesh M Garg
- Department of Pediatrics/Neonatology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
5
|
Li L, Sun W, Cai Y, Feng Z, Yu Y, Yang Z, Zhu X. The clinical characteristics and risk factors analysis within one week before the onset of necrotizing enterocolitis. Sci Rep 2024; 14:22380. [PMID: 39333703 PMCID: PMC11436905 DOI: 10.1038/s41598-024-73212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
There are considerable researches on risk factors for necrotizing enterocolitis (NEC), focusing primarily on the entire course before onset. However, fewer studies address risk factors within the brief period before NEC occurrence. The current study aims to retrospectively analyze the clinical data of NEC patients while focusing on relevant risk factors in the preceding week of NEC onset. Infants born between January 2019 and December 2021 at Suzhou Municipal Hospital and Suzhou University Children's Hospital with a birth weight < 1500 g or a gestational age < 32 weeks were included. Around 54 NEC patients and 180 controls were recruited in the study. NEC patients satisfying the inclusion criteria formed the case group, while a 1:4 matching principle helped select the control group based on gestational age and birth weight. A statistically significant difference was observed between groups when red blood cell transfusions were compared the week before NEC onset (adjusted OR and 95% CI 2.16 (1.10, 4.24)). Broad-spectrum antibiotic usage before NEC occurrence was significantly lower in the NEC group than in the control group (adjusted OR and 95% CI 0.95 (0.91, 0.99)). A statistically significant difference was observed between groups while comparing patent ductus arteriosus (PDA) (adjusted OR and 95% CI 2.45 (1.23, 4.91)). The indication for packed red blood cell transfusion should be strictly controlled. Moreover, close monitoring of the patient's condition for NEC occurrence should be conducted within one-week post-transfusion. Accurately identifying infections and using broad-spectrum antibiotics can reduce the incidence of NEC.
Collapse
Affiliation(s)
- Lili Li
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Wenqiang Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Cai
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zongtai Feng
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yun Yu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Zuming Yang
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Latkowska M, Cai CL, Mitrou M, Marcelino M, Aranda JV, Beharry KD. Gut microbiome and inflammation in response to increasing intermittent hypoxia in the neonatal rat. Pediatr Res 2024:10.1038/s41390-024-03569-7. [PMID: 39300277 DOI: 10.1038/s41390-024-03569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Intermittent hypoxia (IH) and oxidative stress play key roles in gut dysbiosis and inflammation. We tested the hypothesis that increasing numbers of daily IH episodes cause microbiome dysbiosis and severe gut injury. METHODS Neonatal rats were exposed to hyperoxia (Hx), growth restriction, and IH. For IH, pups were exposed to 2-12 daily episodes from birth (P0) to postnatal day 7 (7D) or P0-P14 (14D), with or without recovery in room air (RA) until P21. Animals raised in RA from P0 to P21 served as normoxia controls. Stool was expressed from the large intestines for microbiome analysis, and tissue samples were assessed for histopathology and biomarkers of inflammation. RESULTS Hx and IH caused a significant reduction in the number and diversity of organisms. The severity of gut injury and levels of inflammatory cytokines and TLR4 increased, while total glutathione (tGSH) declined, with increasing daily IH episodes. The number of organisms correlated with the villi number (p < 0.05) and tGSH depletion (p < 0.001). CONCLUSIONS The critical number of daily IH episodes that the newborn gut may sustain is 6, beyond which irreversible damage occurs. The immature gut is highly susceptible to IH-induced injury, and IH may contribute to pathological outcomes in the immature gut. IMPACT STATEMENT 1. The neonatal gut at birth is highly susceptible to intermittent hypoxia (IH) injury. 2. IH causes gut dysbiosis, inflammation, and glutathione depletion. 3. The severity of gut injury worsens as a function of increasing daily IH episodes. 4. The critical number of daily IH episodes that the newborn gut may sustain is 6, beyond which irreversible damage occurs.
Collapse
Affiliation(s)
- Magdalena Latkowska
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Marina Mitrou
- Department of Pediatrics, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | | | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- SUNY Eye Institute, Brooklyn, NY, USA
- Department of Ophthalmology, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA.
- SUNY Eye Institute, Brooklyn, NY, USA.
- Department of Ophthalmology, Downstate Medical Center, State University of New York, Brooklyn, NY, USA.
| |
Collapse
|
7
|
Nofi CP, Prince JM, Wang P, Aziz M. Chromatin as alarmins in necrotizing enterocolitis. Front Immunol 2024; 15:1403018. [PMID: 38881893 PMCID: PMC11176418 DOI: 10.3389/fimmu.2024.1403018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Collapse
Affiliation(s)
- Colleen P. Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jose M. Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
8
|
Isali I, Wong TR, Batur AF, Wu CHW, Schumacher FR, Pope R, Hijaz A, Sheyn D. Recurrent urinary tract infection genetic risk: a systematic review and gene network analysis. Int Urogynecol J 2024; 35:259-271. [PMID: 37917182 DOI: 10.1007/s00192-023-05671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION AND HYPOTHESIS The development of recurrent urinary tract infections (rUTIs) is not completely understood. This review is aimed at investigating the connection between genetics and rUTIs and summarizing the results of studies that have documented variations in gene expression among individuals with rUTIs compared with healthy individuals. METHODS A systematic search was conducted in Cochrane, Ovid, and PubMed, limiting the results to articles published between 1 January 2000, and 5 July 2022. Only studies comparing the difference in gene expression between individuals with rUTI and healthy individuals utilizing molecular techniques to measure gene expression in blood or urine samples were included in this systematic review. Gene network and pathways analyses were performed using Cytoscape software, with input data obtained from our systematic review of differentially expressed genes in rUTIs. RESULTS Six studies met our criteria for inclusion. The selected studies used molecular biology methods to quantify gene expression data from blood specimens. The analysis revealed that gene expressions of CXCR1 and TLR4 decreased, whereas CXCR2, TRIF, and SIGIRR increased in patients with rUTI compared with healthy controls. The analysis demonstrated that the most significant pathways were associated with TLR receptor signaling and tolerance, I-kappa B kinase/NF-kappa B signaling, and MyD88-independent TLR signaling. CONCLUSIONS This systematic review uncovered gene expression variations in several candidate genes and identified a number of underlying biological pathways associated with rUTIs. These findings could shift the treatment and prevention strategies for rUTIs.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Thomas R Wong
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Ali Furkan Batur
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Chen-Han Wilfred Wu
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fredrick R Schumacher
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel Pope
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Adonis Hijaz
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - David Sheyn
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
9
|
Yang J, Chen X, Liu T, Shi Y. Potential role of bile acids in the pathogenesis of necrotizing enterocolitis. Life Sci 2024; 336:122279. [PMID: 37995935 DOI: 10.1016/j.lfs.2023.122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Necrotizing enterocolitis (NEC) is one of the most common acute gastrointestinal diseases in preterm infants. Recent studies have found that NEC is not only caused by changes in the intestinal environment but also by the failure of multiple systems and organs, including the liver. The accumulation of bile acids (BAs) in the ileum and the disorder of ileal BA transporters are related to the ileum injury of NEC. Inflammatory factors such as tumor necrosis factor (TNF)-α and interleukin (IL)-18 secreted by NEC also play an important role in regulating intrahepatic BA transporters. As an important link connecting the liver and intestinal circulation, the bile acid metabolic pathway plays an important role in the regulation of intestinal microbiota, cell proliferation, and barrier protection. In this review, we focus on how bile acids explore the dynamic changes of bile acid metabolism in necrotizing enterocolitis and the potential therapeutic value of targeting the bile acid signaling pathways.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
10
|
Scheese DJ, Sodhi CP, Hackam DJ. New insights into the pathogenesis of necrotizing enterocolitis and the dawn of potential therapeutics. Semin Pediatr Surg 2023; 32:151309. [PMID: 37290338 PMCID: PMC10330774 DOI: 10.1016/j.sempedsurg.2023.151309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disorder in premature infants that causes significant morbidity and mortality. Research efforts into the pathogenesis of NEC have discovered a pivotal role for the gram-negative bacterial receptor, Toll-like receptor 4 (TLR4), in its development. TLR4 is activated by dysbiotic microbes within the intestinal lumen, which leads to an exaggerated inflammatory response within the developing intestine, resulting in mucosal injury. More recently, studies have identified that the impaired intestinal motility that occurs early in NEC has a causative role in disease development, as strategies to enhance intestinal motility can reverse NEC in preclinical models. There has also been broad appreciation that NEC also contributes to significant neuroinflammation, which we have linked to the effects of gut-derived pro-inflammatory molecules and immune cells which activate microglia in the developing brain, resulting in white matter injury. These findings suggest that the management of the intestinal inflammation may secondarily be neuroprotective. Importantly, despite the significant burden of NEC on premature infants, these and other studies have provided a strong rationale for the development of small molecules with the capability of reducing NEC severity in pre-clinical models, thus guiding the development of specific anti-NEC therapies. This review summarizes the roles of TLR4 signaling in the premature gut in the pathogenesis of NEC, and provides insights into optimal clinical management strategies based upon findings from laboratory studies.
Collapse
Affiliation(s)
- Daniel J Scheese
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - David J Hackam
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| |
Collapse
|
11
|
Sampath V, Martinez M, Caplan M, Underwood MA, Cuna A. Necrotizing enterocolitis in premature infants-A defect in the brakes? Evidence from clinical and animal studies. Mucosal Immunol 2023; 16:208-220. [PMID: 36804483 DOI: 10.1016/j.mucimm.2023.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
A key aspect of postnatal intestinal adaptation is the establishment of symbiotic relationships with co-evolved gut microbiota. Necrotizing enterocolitis (NEC) is the most severe disease arising from failure in postnatal gut adaptation in premature infants. Although pathological activation of intestinal Toll-like receptors (TLRs) is believed to underpin NEC pathogenesis, the mechanisms are incompletely understood. We postulate that unregulated aberrant TLR activation in NEC arises from a failure in intestinal-specific mechanisms that tamponade TLR signaling (the brakes). In this review, we discussed the human and animal studies that elucidate the developmental mechanisms inhibiting TLR signaling in the postnatal intestine (establishing the brakes). We then evaluate evidence from preclinical models and human studies that point to a defect in the inhibition of TLR signaling underlying NEC. Finally, we provided a framework for the assessment of NEC risk by screening for signatures of TLR signaling and for NEC prevention by TLR-targeted therapy in premature infants.
Collapse
Affiliation(s)
- Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA.
| | - Maribel Martinez
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Michael Caplan
- Department of Pediatrics, North Shore University Health System, Evanston, Illinois, USA
| | - Mark A Underwood
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Alain Cuna
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
12
|
Cuna A, Morowitz MJ, Sampath V. Early antibiotics and risk for necrotizing enterocolitis in premature infants: A narrative review. Front Pediatr 2023; 11:1112812. [PMID: 36865691 PMCID: PMC9971631 DOI: 10.3389/fped.2023.1112812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
While prompt initiation of antibiotics at birth due to concerns for early onset sepsis is common, it often leads to many preterm infants being exposed to treatment despite negative blood cultures. Such exposure to early antibiotics can impact the developing gut microbiome putting infants at increased risk of several diseases. Necrotizing enterocolitis (NEC), a devastating inflammatory bowel disease that affects preterm infants, is among the most widely studied neonatal disease that has been linked to early antibiotics. While some studies have demonstrated an increased risk of NEC, other studies have demonstrated seemingly contrary findings of decreased NEC with early antibiotics. Studies using animal models have also yielded differing findings of benefit vs. harm of early antibiotic exposure on subsequent NEC susceptibility. We thus sought to conduct this narrative review to help clarify the relationship between early antibiotics exposure and future risk of NEC in preterm infants. Our objectives are to: (1) summarize findings from human and animal studies that investigated the relationship between early antibiotics and NEC, (2) highlight important limitations of these studies, (3) explore potential mechanisms that can explain why early antibiotics may increase or decrease NEC risk, and (4) identify future directions for research.
Collapse
Affiliation(s)
- Alain Cuna
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MOUnited States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MOUnited States
| | - Michael J. Morowitz
- Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PAUnited States
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MOUnited States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MOUnited States
| |
Collapse
|
13
|
Leiva T, Lueschow S, Burge K, Devette C, McElroy S, Chaaban H. Biomarkers of necrotizing enterocolitis in the era of machine learning and omics. Semin Perinatol 2023; 47:151693. [PMID: 36604292 PMCID: PMC9975050 DOI: 10.1016/j.semperi.2022.151693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Necrotizing enterocolitis (NEC) continues to be a major cause of morbidity and mortality in preterm infants. Despite decades of research in NEC, no reliable biomarkers can accurately diagnose NEC or predict patient prognosis. The recent emergence of multi-omics could potentially shift NEC biomarker discovery, particularly when evaluated using systems biology techniques. Furthermore, the use of machine learning and artificial intelligence in analyzing this 'big data' could enable novel interpretations of NEC subtypes, disease progression, and potential therapeutic targets, allowing for integration with personalized medicine approaches. In this review, we evaluate studies using omics technologies and machine learning in the diagnosis of NEC. Future implications and challenges inherent to the field are also discussed.
Collapse
Affiliation(s)
- Tyler Leiva
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shiloh Lueschow
- Department of Microbiology and Immunology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Kathryn Burge
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, 1200 N. Everett Dr., ETNP 7504, Oklahoma City, OK 73104, USA
| | - Christa Devette
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, 1200 N. Everett Dr., ETNP 7504, Oklahoma City, OK 73104, USA
| | - Steven McElroy
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Hala Chaaban
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, 1200 N. Everett Dr., ETNP 7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
14
|
Green EA, Garrick SP, Peterson B, Berger PJ, Galinsky R, Hunt RW, Cho SX, Bourke JE, Nold MF, Nold-Petry CA. The Role of the Interleukin-1 Family in Complications of Prematurity. Int J Mol Sci 2023; 24:2795. [PMID: 36769133 PMCID: PMC9918069 DOI: 10.3390/ijms24032795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Preterm birth is a major contributor to neonatal morbidity and mortality. Complications of prematurity such as bronchopulmonary dysplasia (BPD, affecting the lung), pulmonary hypertension associated with BPD (BPD-PH, heart), white matter injury (WMI, brain), retinopathy of prematurity (ROP, eyes), necrotizing enterocolitis (NEC, gut) and sepsis are among the major causes of long-term morbidity in infants born prematurely. Though the origins are multifactorial, inflammation and in particular the imbalance of pro- and anti-inflammatory mediators is now recognized as a key driver of the pathophysiology underlying these illnesses. Here, we review the involvement of the interleukin (IL)-1 family in perinatal inflammation and its clinical implications, with a focus on the potential of these cytokines as therapeutic targets for the development of safe and effective treatments for early life inflammatory diseases.
Collapse
Affiliation(s)
- Elys A. Green
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven P. Garrick
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Briana Peterson
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Philip J. Berger
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Robert Galinsky
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Rod W. Hunt
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven X. Cho
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3168, Australia
| | - Marcel F. Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Claudia A. Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
15
|
Yu W, Venkatraman A, Menden HL, Martinez M, Umar S, Sampath V. Short-chain fatty acids ameliorate necrotizing enterocolitis-like intestinal injury through enhancing Notch1-mediated single immunoglobulin interleukin-1-related receptor, toll-interacting protein, and A20 induction. Am J Physiol Gastrointest Liver Physiol 2023; 324:G24-G37. [PMID: 36410023 PMCID: PMC9799135 DOI: 10.1152/ajpgi.00057.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Single immunoglobulin interleukin-1-related receptor (SIGIRR), toll-interacting protein (TOLLIP), and A20 are major inhibitors of toll-like receptor (TLR) signaling induced postnatally in the neonatal intestine. Short-chain fatty acids (SCFAs), fermentation products of indigestible carbohydrates produced by symbiotic bacteria, inhibit intestinal inflammation. Herein, we investigated the mechanisms by which SCFAs regulate SIGIRR, A20, and TOLLIP expression and mitigate experimental necrotizing enterocolitis (NEC). Butyrate induced NOTCH activation by repressing sirtuin 1 (SIRT1)-mediated deacetylation of the Notch intracellular domain (NICD) in human intestinal epithelial cells (HIECs). Overexpression of NICD induced SIGIRR, A20, and TOLLIP expression. Chromatin immunoprecipitation revealed that butyrate-induced NICD binds to the SIGIRR, A20, and TOLLIP gene promoters. Notch1-shRNA suppressed butyrate-induced SIGIRR/A20 upregulation in mouse enteroids and HIEC. Flagellin (TLR5 agonist)-induced inflammation in HIEC was inhibited by butyrate in a SIGIRR-dependent manner. Neonatal mice fed butyrate had increased NICD, A20, SIGIRR, and TOLLIP expression in the ileal epithelium. Butyrate inhibited experimental NEC-induced intestinal apoptosis, cytokine expression, and histological injury. Our data suggest that SCFAs can regulate the expression of the major negative regulators of TLR signaling in the neonatal intestine through Notch1 and ameliorate experimental NEC. Enteral SCFAs supplementation in preterm infants provides a promising bacteria-free, therapeutic option for NEC.NEW & NOTEWORTHY Short-chain fatty acids (SCFAs), such as propionate and butyrate, metabolites produced by symbiotic gut bacteria are known to be anti-inflammatory, but the mechanisms by which they protect against NEC are not fully understood. In this study, we reveal that SCFAs regulate intestinal inflammation by inducing the key TLR and IL1R inhibitors, SIGIRR and A20, through activation of the pluripotent transcriptional factor NOTCH1. Butyrate-mediated SIGIRR and A20 induction represses experimental NEC in the neonatal intestine.
Collapse
MESH Headings
- Infant, Newborn
- Animals
- Mice
- Humans
- Enterocolitis, Necrotizing/drug therapy
- Enterocolitis, Necrotizing/prevention & control
- Enterocolitis, Necrotizing/genetics
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Infant, Premature
- Inflammation/metabolism
- Intestinal Mucosa/metabolism
- Fatty Acids, Volatile/pharmacology
- Fatty Acids, Volatile/metabolism
- Butyrates/metabolism
- Immunoglobulins/metabolism
- Interleukin-1/metabolism
- Receptor, Notch1/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
Collapse
Affiliation(s)
- Wei Yu
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Aparna Venkatraman
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Heather L Menden
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Maribel Martinez
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| |
Collapse
|
16
|
Sodhi CP, Ahmad R, Jia H, Fulton WB, Lopez C, Gonzalez Salazar AJ, Ishiyama A, Sampah M, Steinway S, Wang S, Prindle T, Wang M, Steed DL, Wessel H, Kirshner Z, Brown LR, Lu P, Hackam DJ. The administration of amnion-derived multipotent cell secretome ST266 protects against necrotizing enterocolitis in mice and piglets. Am J Physiol Gastrointest Liver Physiol 2022; 323:G265-G282. [PMID: 35819175 PMCID: PMC9448291 DOI: 10.1152/ajpgi.00364.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in premature infants and is steadily rising in frequency. Patients who develop NEC have a very high mortality, illustrating the importance of developing novel prevention or treatment approaches. We and others have shown that NEC arises in part from exaggerated signaling via the bacterial receptor, Toll-like receptor 4 (TLR4) on the intestinal epithelium, leading to widespread intestinal inflammation and intestinal ischemia. Strategies that limit the extent of TLR4 signaling, including the administration of amniotic fluid, can reduce NEC development in mouse and piglet models. We now seek to test the hypothesis that a secretome derived from amnion-derived cells can prevent or treat NEC in preclinical models of this disease via a process involving TLR4 inhibition. In support of this hypothesis, we show that the administration of this secretome, named ST266, to mice or piglets can prevent and treat experimental NEC. The protective effects of ST266 occurred in the presence of marked TLR4 inhibition in the intestinal epithelium of cultured epithelial cells, intestinal organoids, and human intestinal samples ex vivo, independent of epidermal growth factor. Strikingly, RNA-seq analysis of the intestinal epithelium in mice reveals that the ST266 upregulates critical genes associated with gut remodeling, intestinal immunity, gut differentiation. and energy metabolism. These findings show that the amnion-derived secretome ST266 can prevent and treat NEC, suggesting the possibility of novel therapeutic approaches for patients with this devastating disease.NEW & NOTEWORTHY This work provides hope for children who develop NEC, a devastating disease of premature infants that is often fatal, by revealing that the secreted product of amniotic progenitor cells (called ST266) can prevent or treat NEC in mice, piglet, and "NEC-in-a-dish" models of this disease. Mechanistically, ST266 prevented bacterial signaling, and a detailed transcriptomic analysis revealed effects on gut differentiation, immunity, and metabolism. Thus, an amniotic secretome may offer novel approaches for NEC.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Raheel Ahmad
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Hongpeng Jia
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - William B Fulton
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Carla Lopez
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Andres J Gonzalez Salazar
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Asuka Ishiyama
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Maame Sampah
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Steve Steinway
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Sanxia Wang
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Thomas Prindle
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Menghan Wang
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - David L Steed
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Howard Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Ziv Kirshner
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Larry R Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Peng Lu
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - David J Hackam
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| |
Collapse
|
17
|
Bench to bedside - new insights into the pathogenesis of necrotizing enterocolitis. Nat Rev Gastroenterol Hepatol 2022; 19:468-479. [PMID: 35347256 DOI: 10.1038/s41575-022-00594-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death and disability from gastrointestinal disease in premature infants. Recent discoveries have shed light on a unifying theorem to explain the pathogenesis of NEC, suggesting that specific treatments might finally be forthcoming. A variety of experiments have highlighted how the interaction between bacterial signalling receptors on the premature intestine and an abnormal gut microbiota incites a pro-inflammatory response in the intestinal mucosa and its underlying endothelium that leads to NEC. Central amongst the bacterial signalling receptors implicated in NEC development is the lipopolysaccharide receptor Toll-like receptor 4 (TLR4), which is expressed at higher levels in the premature gut than in the full-term gut. The high prenatal intestinal expression of TLR4 reflects the role of TLR4 in the regulation of normal gut development, and supports additional studies indicating that NEC develops in response to signalling events that occur in utero. This Review provides new evidence explaining the pathogenesis of NEC, explores new findings indicating that NEC development has origins before birth, and discusses future questions and opportunities for discovery in this field.
Collapse
|
18
|
Yuan J, Chen L, Wang J, Xia S, Huang J, Zhou L, Feng C, Hu X, Zhou Z, Ran H. Adenosine A2A Receptor Suppressed Astrocyte-Mediated Inflammation Through the Inhibition of STAT3/YKL-40 Axis in Mice With Chronic Cerebral Hypoperfusion-induced White Matter Lesions. Front Immunol 2022; 13:841290. [PMID: 35237278 PMCID: PMC8882648 DOI: 10.3389/fimmu.2022.841290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
White matter lesions are an important pathological manifestation of cerebral small vessel disease, with inflammation playing a pivotal role in their development. The adenosine A2a receptor (ADORA2A) is known to inhibit the inflammation mediated by microglia, but its effect on astrocytes is unknown. Additionally, although the level of YKL-40 (expressed mainly in astrocytes) has been shown to be elevated in the model of white matter lesions induced by chronic cerebral hypoperfusion, the specific regulatory mechanism involved is not clear. In this study, we established in vivo and in vitro chronic cerebral hypoperfusion models to explore whether the ADORA2A regulated astrocyte-mediated inflammation through STAT3/YKL-40 axis and using immunohistochemical, western blotting, ELISA, PCR, and other techniques to verify the effect of astrocytes ADORA2A on the white matter injury. The in vivo experiments showed that activation of the ADORA2A decreased the expression of both STAT3 and YKL-40 in the astrocytes and alleviated the white matter injury, whereas its inhibition had the opposite effects. Similarly, ADORA2A inhibition significantly increased the expression of STAT3 and YKL-40 in astrocytes in vitro, with more proinflammatory cytokines being released by astrocytes. STAT3 inhibition enhanced the inhibitory effect of ADORA2A on YKL-40 synthesis, whereas its activation reversed the phenomenon. These results suggest that the activation of ADORA2A in astrocytes can inhibit the inflammation mediated by the STAT3/YKL-40 axis and thereby reduce white matter injury in cerebral small vessel disease.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Simin Xia
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jialu Huang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linke Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengjian Feng
- Department of Medical Engineering, 958th Hospital of the People’s Liberation Army, Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Hong Ran, ; Zhenhua Zhou, ; Xiaofei Hu,
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Hong Ran, ; Zhenhua Zhou, ; Xiaofei Hu,
| | - Hong Ran
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Hong Ran, ; Zhenhua Zhou, ; Xiaofei Hu,
| |
Collapse
|
19
|
Supino D, Minute L, Mariancini A, Riva F, Magrini E, Garlanda C. Negative Regulation of the IL-1 System by IL-1R2 and IL-1R8: Relevance in Pathophysiology and Disease. Front Immunol 2022; 13:804641. [PMID: 35211118 PMCID: PMC8861086 DOI: 10.3389/fimmu.2022.804641] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs to a complex family including ligands with agonist activity, receptor antagonists, and an anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R) family, include signaling receptor complexes, decoy receptors, and negative regulators. Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a tight control of inflammatory responses, which ensures a balance between amplification of innate immunity and uncontrolled inflammation. IL-1 family members interact with innate immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid cells, contributing to their differentiation and functional polarization and plasticity. Here we will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their complex impact in pathology, ranging from infections and inflammatory responses, to cancer and neurologic disorders, as well as clinical implications and potential therapeutic exploitation will be presented.
Collapse
Affiliation(s)
- Domenico Supino
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Luna Minute
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Mariancini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Elena Magrini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
20
|
Gordon SM, O'Connell AE. Inborn Errors of Immunity in the Premature Infant: Challenges in Recognition and Diagnosis. Front Immunol 2022; 12:758373. [PMID: 35003071 PMCID: PMC8738084 DOI: 10.3389/fimmu.2021.758373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Due to heightened awareness and advanced genetic tools, inborn errors of immunity (IEI) are increasingly recognized in children. However, diagnosing of IEI in premature infants is challenging and, subsequently, reports of IEI in premature infants remain rare. This review focuses on how common disorders of prematurity, such as sepsis, necrotizing enterocolitis, and bronchopulmonary dysplasia, can clinically overlap with presenting signs of IEI. We present four recent cases from a single neonatal intensive care unit that highlight diagnostic dilemmas facing neonatologists and clinical immunologists when considering IEI in preterm infants. Finally, we present a conceptual framework for when to consider IEI in premature infants and a guide to initial workup of premature infants suspected of having IEI.
Collapse
Affiliation(s)
- Scott M Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Good M, Martin CR. A Promising Genetic Target for a Deadly Disease: Single Immunoglobulin Interleukin 1 (SIGIRR) Mutations in Necrotizing Enterocolitis. Cell Mol Gastroenterol Hepatol 2021; 13:674-675. [PMID: 34740617 PMCID: PMC8776998 DOI: 10.1016/j.jcmgh.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/10/2022]
Affiliation(s)
- Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Camilia R Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|