1
|
Ma Y, Jiang J, Yang Z, Li Y, Bai H, Liu Z, Zhang S, Zhi Z, Yang Q. Changes of gastric microflora and metabolites in patients with chronic atrophic gastritis. J Transl Med 2025; 23:537. [PMID: 40361215 PMCID: PMC12070603 DOI: 10.1186/s12967-025-06458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/06/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is related to the body's microbial and metabolic systems. Combined studies of microbiome and metabolomics can clarify the mechanisms of disease occurrence and progression. We used 16S rRNA sequencing, metagenomics sequencing and metabolomics sequencing to depict the landscapes of bacterium and metabolites, construct correlation networks of different bacterium and metabolites describe potential pathogenic mechanisms of chronic atrophic gastritis. METHODS The gastric juices of 30 non-atrophic gastritis (NAG) patients and 30 CAG patients were collected. Gastric microflora was analyzed by 16S rRNA sequencing and metagenomics sequencing. Gastric metabolites were analyzed by LC-MS analysis. Different bioinformatics methods were used to analyze the data of microbiome and metabolome, and to analyze the relationship between them. RESULTS In atrophic gastritis, bacteria diversity decreased. The genera with a mean decrease in Gini greater than 1.5 included peptostreptococcus, fusobacterium, prevotella, sphingomonas and bacteroides. KEGG pathway included renal cell carcinoma, proximal tubule bicarbonate reclamation, citrate cycle and aldosterone synthesis and secretion with significant enrichment of differential metabolites. Peptostreptococcus, fusobacterium, prevotella and sphingomonas were in pivot positions of the correlation network of differential metabolites and differential bacterium. Viral carcinogenesis, glycine serine and threonine metabolism, RNA polymerase, galactose metabolism and retinol metabolism were enriched in chronic atrophic gastritis based on the metagenomic sequencing data. CONCLUSION Peptostreptococcus, fusobacterium, prevotella, sphingomonas and bacteroides were the essential features that distinguish atrophic gastritis from non-atrophic gastritis, and caused disease by altering various metabolic pathways. Viral carcinogenesis, glycine serine and threonine metabolism, RNA polymerase, galactose metabolism and retinol metabolism may be related to the occurrence and progression of CAG.
Collapse
Affiliation(s)
- Yumei Ma
- Department of Reserch Center, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Jianming Jiang
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Reserch Center of Turbidity Toxin Theory, Hebei University of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Zhufeng Yang
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Department of Gastroscopy Room, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Yongzhang Li
- Department of Reserch Center, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Hebei Technology Innovation Center of TCM Spleen and Kidney Diseases, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Haiyan Bai
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Zongxiu Liu
- Department of Reserch Center, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Shuo Zhang
- Department of Reserch Center, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Zheng Zhi
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
| | - Qian Yang
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
2
|
Yuan H, Li Y, Wu H, Zhang J, Xia T, Li B, Wu C. HIF-1α-Induced GPR171 Expression Mediates CCL2 Secretion by Mast Cells to Promote Gastric Inflammation During Helicobacter pylori Infection. Helicobacter 2025; 30:e70042. [PMID: 40320649 PMCID: PMC12050395 DOI: 10.1111/hel.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is one of the most important risk factors for chronic gastritis, gastric ulcers, and gastric cancer. Mast cells act as a crucial regulator in bacterial infection. The mechanisms underlying mast cell activation and their role in H. pylori infection remain poorly understood. MATERIALS AND METHODS In gastric mucosal tissue, the number of mast cells, G-protein-coupled receptor 171 (GPR171) and CCL2 expression were detected by immunohistochemistry (IHC) or immunofluorescence between H. pylori-negative and H. pylori-positive patients. Mast cells were co-cultured with H. pylori, and transcriptome sequencing, RT-qPCR, and Western blotting (WB) were performed to identify receptors involved in mast cell activation. WB, chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays were conducted to investigate the molecular mechanism by which HIF-1α regulates GPR171 expression. Lentiviral knockdown, ELISA, WB, and IHC were used to evaluate the role of GPR171 during H. pylori infection. An in vivo mouse model of H. pylori infection was employed to assess the effects of GPR171 blockade on CCL2 expression and gastric mucosal inflammation. RESULTS In the study, we found that mast cell numbers were greatly increased and correlated with the severity of inflammation in H. pylori-infected patients. We found a new receptor, GPR171, was upregulated and involved in mast cell activation upon H. pylori infection. Furthermore, H. pylori infection induced the expression of GPR171 by promoting the activation of hypoxia-inducible factor 1 alpha (HIF-1α), which directly bound to hypoxia response elements in the GPR171 promoter and regulated its transcriptional activity. Blockade or loss of GPR171 in mast cells partially inhibited CCL2 secretion via the ERK1/2 signaling pathway. In the human gastric mucosa, CCL2 derived from mast cells was associated with gastric inflammation during H. pylori infection. In vivo murine studies indicated that H. pylori infection significantly upregulated CCL2 expression, while GPR171 inhibition partially reduced CCL2 levels and alleviated gastric mucosal inflammation. CONCLUSIONS We provide a novel mechanism that H. pylori activates mast cells to promote gastric inflammation.
Collapse
Affiliation(s)
- Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Yuetong Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Jin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Tingting Xia
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
3
|
Lospinoso Severini F, Falco G, Notarangelo T. Role of Soluble Cytokine Receptors in Gastric Cancer Development and Chemoresistance. Int J Mol Sci 2025; 26:2534. [PMID: 40141175 PMCID: PMC11942508 DOI: 10.3390/ijms26062534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Gastric cancer is among the top five most important malignancies in the world due to the high burden of the disease and its lethality. Indeed, it is the fourth most common cause of death worldwide, characterized by a poor prognosis and low responsiveness to chemotherapy. Multidrug resistance limits the clinical management of the patient. Among these, the role of chronic activation of inflammatory pathways underlying gastric tumorigenesis should be highlighted. Furthermore, the gastric immunosuppressive TME influences the response to therapy. This review discusses the role of soluble cytokine receptors in the development and chemoresistance of gastric cancer, considered as a molecular marker and target of strategies to overcome resistance.
Collapse
Affiliation(s)
- Francesca Lospinoso Severini
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, PZ, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80138 Napoli, NA, Italy
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, AV, Italy
| | - Tiziana Notarangelo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, PZ, Italy
| |
Collapse
|
4
|
Liu B, Bukhari I, Li F, Ren F, Xia X, Hu B, Liu H, Meyer TF, Marshall BJ, Tay A, Fu Y, Wu W, Tang Y, Mi Y, Zheng PY. Enhanced LRP8 expression induced by Helicobacter pylori drives gastric cancer progression by facilitating β-Catenin nuclear translocation. J Adv Res 2025; 69:299-312. [PMID: 38609049 PMCID: PMC11954824 DOI: 10.1016/j.jare.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to β-catenin, thereby promoting nuclear translocation and transcriptional activity of β-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/β-catenin complex. This complex further amplifies H. pylori-induced β-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.
Collapse
Affiliation(s)
- Bin Liu
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ihtisham Bukhari
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fazhan Li
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Feifei Ren
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xue Xia
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Baitong Hu
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany; Laboratory of Infection Oncology, Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts University of Kiel, Kiel, Germany
| | - Barry J Marshall
- Helicobacter Pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands 6009, Australia
| | - Alfred Tay
- Helicobacter Pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands 6009, Australia
| | - Yuming Fu
- Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wanqing Wu
- Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Youcai Tang
- Department of Pediatrics, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Peng-Yuan Zheng
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
5
|
Zhang Y, Yan Z, Jiao Y, Feng Y, Zhang S, Yang A. Innate Immunity in Helicobacter pylori Infection and Gastric Oncogenesis. Helicobacter 2025; 30:e70015. [PMID: 40097330 PMCID: PMC11913635 DOI: 10.1111/hel.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Helicobacter pylori is an extremely common cause of gastritis that can lead to gastric adenocarcinoma over time. Approximately half of the world's population is infected with H. pylori, making gastric cancer the fourth leading cause of cancer-related deaths worldwide. Innate immunity significantly contributes to systemic and local immune responses, maintains homeostasis, and serves as the vital link to adaptive immunity, and in doing so, mediates H. pylori infection outcomes and consequent cancer risk and development. The gastric innate immune system, composed of gastric epithelial and myeloid cells, is uniquely challenged by its need to interact simultaneously and precisely with commensal microbiota, exogenous pathogens, ingested substances, and endogenous exfoliated cells. Additionally, innate immunity can be detrimental by promoting chronic infection and fibrosis, creating an environment conducive to tumor development. This review summarizes and discusses the complex role of innate immunity in H. pylori infection and subsequent gastric oncogenesis, and in doing so, provides insights into how these pathways can be exploited to improve prevention and treatment.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Eight‐Year Medical Doctor Program, Peking Union Medical CollegeChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yunlu Feng
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Shengyu Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Chen Y, Tang Z, Tang Z, Fu L, Liang G, Zhang Y, Tao C, Wang B. Identification of core immune-related genes CTSK, C3, and IFITM1 for diagnosing Helicobacter pylori infection-associated gastric cancer through transcriptomic analysis. Int J Biol Macromol 2025; 287:138645. [PMID: 39667460 DOI: 10.1016/j.ijbiomac.2024.138645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES To identify diagnostic genes and mechanisms linking Helicobacter pylori (H. pylori) infection to gastric cancer. METHODS Gene expression profiles from GEO were analyzed using differential expression gene (DEG) analysis, weighted gene co-expression network analysis (WGCNA), and functional enrichment. A random forest (RF) model assessed immune-related diagnostic genes, examining their expression, diagnostic performance, prognostic value, and immune cell relationships. Expression patterns of core genes were evaluated with single-cell RNA sequencing (scRNA-seq), and a regulatory network involving miRNA, mRNA, and transcription factors was built. RESULTS We identified 75 genes and developed an RF model including 15 immune-related genes, notably CTSK, NR4A3, C3, and IFITM1. Except for NR4A3, these genes showed higher expression in datasets, confirmed by in vitro tests. Their diagnostic performance had an AUC > 0.7, enhancing to >0.85 in a multi-gene model. Survival analysis linked gene upregulation to poorer prognosis, and scRNA-seq and immune cell infiltration analysis underscored their roles in immune dysregulation and pathogenicity in H. pylori-related gastric cancer. CONCLUSIONS CTSK, C3, and IFITM1 are crucial in H. pylori-related gastric cancer, forming a robust diagnostic model and guiding future diagnostic and therapeutic research.
Collapse
Affiliation(s)
- Yuzuo Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Tang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhuoyun Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifa Fu
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ge Liang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yanrong Zhang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Maiorana F, Neschuk M, Caronia MV, Elizondo K, Schneider A, Veron G, Zapata PD, Barreyro FJ. Helicobacter pylori cagA/vacAs1-m1 strain is associated with high risk of fibrosis in metabolic-dysfunction-associated steatotic liver disease. Ann Hepatol 2024; 29:101541. [PMID: 39214252 DOI: 10.1016/j.aohep.2024.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION AND OBJECTIVES Recent studies have suggested an association between H. pylori and metabolic dysfunction associated steatotic liver disease (MASLD). We aim to evaluate the association of H. pylori virulence genes with non-invasive markers of liver injury and fibrosis in MASLD subjects. PATIENTS AND METHODS A total of 362 dyspeptic patients who underwent gastroscopy were selected. Biochemical, clinical parameters, ultrasound, FIB-4 score, liver stiffness measurement (LSM) by vibration-controlled transient elastography (VCTE), gastric biopsies, and H. pylori virulence genes (cagA, vacA) were evaluated. RESULTS A cohort comprised of 61 % women and 39 % men with a median age of 52 (40-60) years. MASLD was observed in 42 %, and H. pylori-positive in 45 %. No differences were observed regarding H. pylori status at co-morbid metabolic conditions. In MASLD cohort, H. pylori-positive was associated with higher AST, ALT, FIB-4 and LSM. Indeed, carriers of cagA/vacA-s1/m1-positive allelic combination were associated with higher AST, ALT, FIB-4 and LSM but not cagA/vacA-s1/m1-negative. The OR for high-risk of significant/advanced- fibrosis by VCTE (≥8 kPa) with H. pylori-positive was 2.56 (95 % CI, 1.2-5.75) and for cagA/vacA-s1/-m1-positive allelic carriers was 4.01 (95 % CI, 1.38-11.56), but non-significant association in cagA/vacA-s1/-m1-negative. After adjusting for age, gender, diabetes, BMI and hypertension the OR for VCTE ≥8 kPa with H. pylori-positive was 2.43 (95 % CI, 1.88-12.44), and cagA/vacA-s1/m1-positive allelic carriers was 4.06 (95 % CI, 1.22-14.49). CONCLUSIONS In our cohort of functional dyspepsia (FD) patients with MASLD, H. pylori was associated with non-invasive markers of liver injury and fibrosis. Carriers of cagA/vacA-s1/m1-positive allelic combination showed an independent risk of significant/advanced fibrosis by VCTE.
Collapse
Affiliation(s)
- Facundo Maiorana
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
| | - Magali Neschuk
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
| | - María Virginia Caronia
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
| | - Karina Elizondo
- Fundación HA Barceló, Instituto Universitario en Ciencias de la Salud. Santo Tomé, Corrientes, Argentina
| | - Adolfo Schneider
- Fundación HA Barceló, Instituto Universitario en Ciencias de la Salud. Santo Tomé, Corrientes, Argentina
| | - Georgina Veron
- Fundación HA Barceló, Instituto Universitario en Ciencias de la Salud. Santo Tomé, Corrientes, Argentina
| | - Pedro D Zapata
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina; CONICET, Buenos Aires, Argentina
| | - Fernando Javier Barreyro
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina; CONICET, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Maiorana F, Neschuk M, Caronia MV, Elizondo K, Robledo ML, Schneider A, Veron G, Zapata PD, Barreyro FJ. The interplay between Helicobacter pylori infection and rs738409 PNPLA3 in metabolic dysfunction-associated steatotic liver disease. PLoS One 2024; 19:e0310361. [PMID: 39312529 PMCID: PMC11419387 DOI: 10.1371/journal.pone.0310361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Recent studies have suggested an association between H. pylori and metabolic-disfunction associated fatty liver disease (MASLD). However, epidemiologic studies have yielded inconsistent results. We aim to evaluate the association of H. pylori and G-allele PNPLA3 in MASLD diagnosis, and markers of severity. METHODS A multi-center cross-sectional study was conducted. A total 224 functional dyspepsia (FD) patients cohort who underwent gastroscopy was selected. Biochemical, clinical parameters, ultrasound, FIB-4 score, LSM by VCTE, gastric biopsies, H. pylori status, and rs738409 PNPLA3 were evaluated. A second retrospective cohort of 86 patients with biopsy-proven MASLD who underwent gastroscopy with gastric biopsies was analyzed. RESULTS In the FD cohort MASLD was observed in 52%, and H. pylori-positive in 51%. H. pylori infection was associated with MASLD prevalence, but in multivariate analyses adjusted for G-allele PNPLA3, it became not significant. Then in MASLD-only dyspeptic cohort, H. pylori infection was significantly linked to elevated serum AST levels and increased liver stiffness measurements, suggesting a potential role in liver injury and fibrosis. Histopathological analysis in biopsy-proven MASLD patients further supported these findings, showing a significant association between H. pylori infection and increased NAS score, fibrosis stage, and prevalence of MASH. Notably, the combination of H. pylori infection and G-allele PNPLA3 appeared to exacerbate MASLD severity beyond individual effects. CONCLUSIONS Our results suggest that H. pylori infection may play a role in the progression of liver injury and fibrosis in patients with MASLD, especially in those with specific genetic predispositions.
Collapse
Affiliation(s)
- Facundo Maiorana
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones “Dra. María Ebbe Reca” (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
| | - Magali Neschuk
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones “Dra. María Ebbe Reca” (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
| | - María Virginia Caronia
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones “Dra. María Ebbe Reca” (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
| | - Karina Elizondo
- Fundación HA Barceló, Instituto Universitario en Ciencias de la Salud, Santo Tomé, Corrientes, Argentina
| | - María Laura Robledo
- Área de Biología Molecular, Servicio de Patología, Hospital de Pediatría “Prof. Dr. Juan P Garrahan”, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Adolfo Schneider
- Fundación HA Barceló, Instituto Universitario en Ciencias de la Salud, Santo Tomé, Corrientes, Argentina
| | - Georgina Veron
- Fundación HA Barceló, Instituto Universitario en Ciencias de la Salud, Santo Tomé, Corrientes, Argentina
| | - Pedro Dario Zapata
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones “Dra. María Ebbe Reca” (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Fernando Javier Barreyro
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones “Dra. María Ebbe Reca” (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Teng Y, Dong Q, Zhang S, Chen S, Li C. Clinical analysis of the effect of helicobacter pylori infection on immune function in children with peptic ulcer. Pak J Med Sci 2024; 40:1063-1066. [PMID: 38952501 PMCID: PMC11190406 DOI: 10.12669/pjms.40.6.7820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/06/2023] [Accepted: 02/21/2024] [Indexed: 07/03/2024] Open
Abstract
Objective To study whether children with peptic ulcer would have abnormalities in cellular and humoral immune functions, and whether Helicobacter pylori (Hp) infection would affect the immune function of children with peptic ulcer. Methods This is a retrospective study. The subjects of study were 72 children with diagnosed and cured peptic ulcer (ulcer group), and 50 healthy children with physical examination (control group) at Baoding Hospital, Beijing Children's Hospital Affiliated to Capital Medical University from June 2020 to December 2022. Further detection was conducted on T lymphocyte subsets (CD3+, CD4+, CD8+, and CD4+/CD8+ ratio) and immunoglobulin levels. Results Of the 72 children with peptic ulcer, 53(73.6%) were positive for Hp (Hp-positive group) and 19 (26.4%) were negative (Hp-negative group). The levels of CD3+, CD4+, and CD4+/CD8+ ratio in the control group were significantly higher than those in the ulcer group, with statistically significant difference (P<0.05); while the level of IgG in the control group was lower than that in the ulcer group, with statistically significant difference (P<0.05). Meanwhile, there were statistically significant differences in that the levels of CD3+, CD4+ and CD8+ were increased in Hp-positive group than those in Hp-negative group before treatment (P<0.05); while CD4+/CD8+ ratio was lower in the former group than that in the latter group, with statistically significant difference (P<0.05). Conclusion Hp infection can induce the elevation of T lymphocyte subsets. The development of peptic ulcer has an intimate association with the disorder of cellular and humoral immune functions.
Collapse
Affiliation(s)
- Yongnan Teng
- Yongnan Teng, Department of Gastroenterology, Baoding Hospital, Beijing Children’s Hospital Affiliated to Capital Medical University, Baoding, Hebei, 071000, P.R. China; Key Laborary of Clinical, Research on Respiratory Digestive Disease, Hebei Baoding, 071000, China
| | - Qingwei Dong
- Qingwei Dong, Department of Gastroenterology, Baoding Hospital, Beijing Children’s Hospital Affiliated to Capital Medical University, Baoding, Hebei, 071000, P.R. China; Key Laborary of Clinical, Research on Respiratory Digestive Disease, Hebei Baoding, 071000, China
| | - Sisi Zhang
- Sisi Zhang, Department of Gastroenterology, Baoding Hospital, Beijing Children’s Hospital Affiliated to Capital Medical University, Baoding, Hebei, 071000, P.R. China; Key Laborary of Clinical, Research on Respiratory Digestive Disease, Hebei Baoding, 071000, China
| | - Songsong Chen
- Songsong Chen, Department of Gastroenterology, Baoding Hospital, Beijing Children’s Hospital Affiliated to Capital Medical University, Baoding, Hebei, 071000, P.R. China; Key Laborary of Clinical, Research on Respiratory Digestive Disease, Hebei Baoding, 071000, China
| | - Chen Li
- Chen Li, Department of Gastroenterology, Baoding Hospital, Beijing Children’s Hospital Affiliated to Capital Medical University, Baoding, Hebei, 071000, P.R. China; Key Laborary of Clinical, Research on Respiratory Digestive Disease, Hebei Baoding, 071000, China
| |
Collapse
|
10
|
Liu S, Zhuang Y, Fu Q, Zhang Z, Hang K, Tao T, Liu L, Wu J, Liu Y, Wang J. Prognostic value analysis and survival model construction of different treatment methods for advanced intestinal type gastric adenocarcinoma. Heliyon 2024; 10:e32238. [PMID: 38912455 PMCID: PMC11190592 DOI: 10.1016/j.heliyon.2024.e32238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background Intestinal-type gastric adenocarcinoma, representing 95 % of gastric malignancies, originates from the malignant transformation of gastric gland cells. Despite its prevalence, existing methods for prognosis evaluation of this cancer subtype are inadequate. This study aims to enhance patient-specific prognosis evaluation by analyzing the clinicopathological characteristics and prognostic risk factors of intestinal-type gastric adenocarcinoma patients using data from the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute (NCI). Methods We extracted clinical data for patients diagnosed with intestinal-type gastric adenocarcinoma between 2010 and 2015 from the SEER database, selecting 257 cases based on predefined inclusion and exclusion criteria. Independent risk factors for overall survival (OS) and cancer-specific survival (CSS) were identified using a Cox regression model. A nomogram model for predicting OS or CSS was developed from the Cox risk regression analysis and validated through the consistency index (C-index), ROC curve, and calibration curve. Results Age, primary tumor resection, chemotherapy, lymph node metastasis, and tumor size were identified as independent prognostic factors for OS and CSS (P < 0.05). The nomogram model, constructed from these indicators, demonstrated superior predictive consistency for OS and CSS compared to the AJCC-TNM staging system. ROC curve analysis confirmed the model's higher accuracy, and calibration curve analysis indicated good agreement between the nomogram's predictions and actual observed outcomes. Conclusion The nomogram model derived from SEER database analyses accurately predicts OS and CSS for patients with intestinal-type gastric adenocarcinoma. This model promises to facilitate more tailored treatments in clinical practice.
Collapse
Affiliation(s)
- Shuangai Liu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Children's Hospital, Zunyi, China
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yizhou Zhuang
- Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
| | - Qibo Fu
- National Clinical Trial Institute, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhongyuan Zhang
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kai Hang
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ting Tao
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lei Liu
- Department of Pathology, Children's Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Jiheng Wu
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, China
- National Clinical Trial Institute, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuanmei Liu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Children's Hospital, Zunyi, China
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinhu Wang
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Zheng W, Gan Y, Yang Y, Peng K, Li F, Zhao H, Gu W, Jiang M. Clinicopathological features and mucosal microbiota in gastric mucosal damage between nodular and non-nodular gastritis in children with Helicobacter pylori infection. Int Immunopharmacol 2024; 131:111813. [PMID: 38493689 DOI: 10.1016/j.intimp.2024.111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
AIMS Nodular gastritis (NG) represents a frequently observed clinical presentation of Helicobacter pylori (H. pylori) infection in pediatric patients. This investigation aimed to explore the microbiota and histological features of the gastric mucosa in children with H. pylori colonized NG. MAIN METHODS The current investigation examined a sample of 120 children who underwent gastroscopy due to symptoms of gastrointestinal distress, which showed that 64 were patients with H. pylori infection. Endoscopic procedures were conducted to acquire mucosal biopsies for the purpose of DNA extraction and histopathological analysis. The 16S rRNA profiling was utilized to examine the gastric mucosal microbiota. KEY FINDINGS In conjunction with endoscopic evaluation, 26 of 64 patients were diagnosed with NG. The NG group had significantly higher inflammation scores and activity scores on histological assessment than the non-NG group. The NG group exhibited a significant reduction in the richness levels of the five genera. In terms of the predicted functions, the pathways of synthesis and degradation of ketone bodies and phagosome in the NG group were less abundant compared with the non-NG group, while the Wnt signaling pathway was significantly enriched. NG does not increase a microbial community that possesses genotoxic potential within the gastric mucosa. SIGNIFICANCE In conclusion, NG group exhibited significant severe inflammation and reduced abundance levels of several bacterial genera compared to the non-NG group. However, individuals with NG did not have a dysregulated microbial community with genotoxic potential.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yongjie Gan
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yaofeng Yang
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Kerong Peng
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Fubang Li
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Hong Zhao
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China; Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China.
| |
Collapse
|
12
|
Barrett KA, Kassama FJ, Surks W, Mulholland AJ, Moulton KD, Dube DH. Helicobacter pylori glycan biosynthesis modulates host immune cell recognition and response. Front Cell Infect Microbiol 2024; 14:1377077. [PMID: 38572314 PMCID: PMC10987845 DOI: 10.3389/fcimb.2024.1377077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The pathogenic bacterium Helicobacter pylori has evolved glycan-mediated mechanisms to evade host immune defenses. This study tests the hypothesis that genetic disruption of H. pylori glycan biosynthesis alters immune recognition and response by human gastric epithelial cells and monocyte-derived dendritic cells. Methods To test this hypothesis, human cell lines were challenged with wildtype H. pylori alongside an array of H. pylori glycosylation mutants. The relative levels of immune response were measured via immature dendritic cell maturation and cytokine secretion. Results Our findings indicate that disruption of lipopolysaccharide biosynthesis diminishes gastric cytokine production, without disrupting dendritic cell recognition and activation. In contrast, variable immune responses were observed in protein glycosylation mutants which prompted us to test the hypothesis that phase variation plays a role in regulating bacterial cell surface glycosylation and subsequent immune recognition. Lewis antigen presentation does not correlate with extent of immune response, while the extent of lipopolysaccharide O-antigen elaboration does. Discussion The outcomes of this study demonstrate that H. pylori glycans modulate the host immune response. This work provides a foundation to pursue immune-based tailoring of bacterial glycans towards modulating immunogenicity of microbial pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
13
|
Cheng M, Zheng Y, Fan Y, Yan P, Zhao W. The contribution of IL-17A-dependent low LCN2 levels to Helicobacter pylori infection: Insights from clinical and experimental studies. Int Immunopharmacol 2023; 124:110960. [PMID: 37722259 DOI: 10.1016/j.intimp.2023.110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is a common bacterial infection that is widespread globally. It is crucial to comprehend the molecular mechanisms that underlie the infection caused by H. pylori in order to devise successful therapeutic approaches. The objective of this study was to examine the involvement of Lipocalin-2 (LCN2) in the development of H. pylori infection. METHODS LCN2 expression levels in human gastric mucosa and H. pylori-infected mouse models were analyzed using quantitative PCR and immunohistochemistry methods. The effects of LCN2 on the attachment of H. pylori to gastric mucosa cells were assessed using bacterial culture and fluorescence intensity tests. To investigate the correlation between LCN2, CCL20, and IL-17A, we performed gene expression analysis and measured serum levels. RESULTS The findings indicated an increase in LCN2 levels in the gastric mucosa of both patients and mice infected with H. pylori. Blocking the natural LCN2 resulted in an increased attachment of H. pylori to cells in the gastric mucosa. In addition, we noticed that reduced levels of LCN2 promoted the attachment of H. pylori to cells in the gastric mucosa. Furthermore, H. pylori-infected patients exhibited increased expression of both LCN2 and CCL20, and there was a positive correlation between serum levels of CCL20 and LCN2. LCN2 expression was found to depend on the presence of IL-17A, and inhibiting IL-17A led to a higher H. pylori colonization. CONCLUSION The persistence of H. pylori infection is facilitated by the presence of low levels of LCN2, which is dependent on IL-17A. This finding offers valuable perspectives for the development of novel therapeutic approaches for H. pylori infection.
Collapse
Affiliation(s)
- Mingjing Cheng
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Yong Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Yujuan Fan
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Ping Yan
- Department of Gastroenterology, First Affiliated Hospital of Dali University, Dali, Yunnan, China.
| | - Weidong Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China; Department of Clinical Laboratory, Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| |
Collapse
|
14
|
Barreyro FJ, Maiorana F, Caronia MV, Elizondo K, Schneider A, Zapata PD. Association between genetic polymorphisms of NOD1, Interleukin-1B, and cagA strain with low-grade duodenal eosinophilia in Helicobacter pylori-related dyspepsia. Helicobacter 2023; 28:e13002. [PMID: 37350445 DOI: 10.1111/hel.13002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Functional dyspepsia (FD) is a multifactorial disorder. Helicobacter pylori (H. pylori)-related dyspepsia (HpD) may be considered a separate entity. Duodenal eosinophilia is a potential pathogenic mechanism in FD. However, the impact of duodenal eosinophilia and host genetic polymorphism of innate and pro-inflammatory cascade, nucleotide-binding oligomerization domain 1 (NOD-1), and interleukin-1 beta (IL-1β) in HpD was not explored. AIM To evaluate the association of NOD1-796G>A and IL-1B-511C>T gene variants and low-grade duodenal eosinophilia in HpD. METHODS A multicenter cross-sectional study was conducted. A total of 253 patients who met Rome-IV criteria were selected before upper endoscopy and 98 patients were included after unremarkable upper endoscopy and positive H. pylori in gastric biopsies were assessed. Clinical parameters, H. pylori cagA and duodenal histology, were evaluated. RESULTS Sixty-four (65%) patients had epigastric pain syndrome (EPS), 24 (25%) postprandial distress syndrome (PDS), and 10 (10%) EPS/PDS overlap. FD subtypes were not associated with NOD1-796G>A and IL-1B-511C>T gene variants. Low-grade duodenal eosinophilia was significantly increased in NOD1-796 GG versus single A-allele, but not in IL-1B-511 single T-allele or CC-allele. This association is dependent of cagA infection, since harboring cagA strain was significantly associated with low-grade duodenal eosinophilia with isolated variants NOD1-796 GG and IL-1B-511 single T-allele, but not without cagA. When we performed combined polymorphism analysis with NOD1-796 GG/IL-1B-511 single T-allele, a synergistic effect on low-grade duodenal eosinophilia was found between these two loci irrespective of cagA strain status in HpD. CONCLUSION Our findings suggest that low-grade duodenal eosinophilia is significantly associated with NOD1-796 GG allele specially in cagA strain and with allelic combination NOD1-796 GG/IL-1B-511 single T-allele independent of cagA strain infection in HpD patients.
Collapse
Affiliation(s)
- Fernando Javier Barreyro
- Laboratorio de Biotecnología Molecular (BIOTECMOL)., Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca" (InBioMis). Facultad de Ciencias Exactas Químicas y Naturales. Universidad Nacional de Misiones, Posadas, Argentina
- CONICET, Buenos Aires, Argentina
| | - Facundo Maiorana
- Laboratorio de Biotecnología Molecular (BIOTECMOL)., Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca" (InBioMis). Facultad de Ciencias Exactas Químicas y Naturales. Universidad Nacional de Misiones, Posadas, Argentina
| | - Maria Virginia Caronia
- Laboratorio de Biotecnología Molecular (BIOTECMOL)., Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca" (InBioMis). Facultad de Ciencias Exactas Químicas y Naturales. Universidad Nacional de Misiones, Posadas, Argentina
| | - Karina Elizondo
- Instituto Universitario en Ciencias de la Salud, Fundación HA Barceló, Santo Tomé, Argentina
| | - Adolfo Schneider
- Instituto Universitario en Ciencias de la Salud, Fundación HA Barceló, Santo Tomé, Argentina
| | - Pedro Darío Zapata
- Laboratorio de Biotecnología Molecular (BIOTECMOL)., Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca" (InBioMis). Facultad de Ciencias Exactas Químicas y Naturales. Universidad Nacional de Misiones, Posadas, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Chen L, Wei S, He Y, Wang X, He T, Zhang A, Jing M, Li H, Wang R, Zhao Y. Treatment of Chronic Gastritis with Traditional Chinese Medicine: Pharmacological Activities and Mechanisms. Pharmaceuticals (Basel) 2023; 16:1308. [PMID: 37765116 PMCID: PMC10537303 DOI: 10.3390/ph16091308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic gastritis (CG) is a common clinical digestive system disease, which is not easyily cured and is prone to recurrence. Traditional Chinese medicine (TCM) plays a significant role in the treatment of CG and has attracted increasing attention for clinical applications. In recent years, a large number of reports have shown that TCM has good therapeutic effect on CG. The aim of this paper is to investigate the pharmacological activities and mechanism of action of TCM in the treatment of CAG. Therefore, by searching the databases of Pubmed, China National Knowledge Infrastructure, Wanfang, and Baidu academic databases, this paper has summarized the molecular mechanisms of TCM in improving CG. The results show that the improvement of GC by TCM is closely related to a variety of molecular mechanisms, including the inhibition of Helicobacter pylori (Hp) infection, alleviation of oxidative stress, improvement of gastric function, repair of gastric mucosa, inhibition of inflammatory response, and apoptosis. More importantly, IRF8-IFN-γ, IL-4-STAT6, Hedgehog, pERK1/2, MAPK, PI3K-Akt, NF-κB, TNFR-c-Src-ERK1/2-c-Fos, Nrf2/HO-1, and HIF-1α/VEGF signaling pathways are considered as important molecular targets for TCM in the treatment of GC. These important findings will provide a direction and a basis for further exploring the pathogenesis of GC and tapping the potential of TCM in clinical treatment. This review also puts forward a bright prospect for future research of TCM in the treatment of CG.
Collapse
Affiliation(s)
- Lisheng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
- Department of Pharmacy, General Hospital of PLA, Beijing 100039, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Yong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Xin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Tingting He
- Division of Integrative Medicine, The Fifth Medical Center, General Hospital of PLA, Beijing 100039, China; (T.H.); (A.Z.); (R.W.)
| | - Aozhe Zhang
- Division of Integrative Medicine, The Fifth Medical Center, General Hospital of PLA, Beijing 100039, China; (T.H.); (A.Z.); (R.W.)
| | - Manyi Jing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Haotian Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Ruilin Wang
- Division of Integrative Medicine, The Fifth Medical Center, General Hospital of PLA, Beijing 100039, China; (T.H.); (A.Z.); (R.W.)
| | - Yanling Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
- Department of Pharmacy, General Hospital of PLA, Beijing 100039, China
| |
Collapse
|
16
|
Jeong H, Park J, Kang JH, Sabaté del Río J, Kong S, Park T. Organoid-Based Human Stomach Micro-Physiological System to Recapitulate the Dynamic Mucosal Defense Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300164. [PMID: 37525340 PMCID: PMC10520631 DOI: 10.1002/advs.202300164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Several stomach diseases are attributed to the dysregulation of physiological function of gastric mucosal barrier by pathogens. Gastric organoids are a promising tool to develop treatment strategies for gastric infections. However, their functional features of in vivo gastric mucosal barrier and host-microbe interactions are limited due to the lack of physiological stimuli. Herein, a human stomach micro-physiological system (hsMPS) with physiologically relevant gastric mucosal defense system is described based on the combination of organoid and MPS technology. A fluid flow enhanced epithelial-mesenchymal interaction in the hsMPS enables functional maturation of gastric epithelial cells, which allows for the recreation of mesh-like mucus layer containing high level of mucus protective peptides and well-developed epithelial junctional complexes. Furthermore, gastroprotection mechanisms against Helicobacter pylori (H. pylori) are successfully demonstrated in this system. Therefore, hsMPS represents a new in vitro tool for research where gastric mucosal defense mechanism is pivotal for developing therapeutic strategies.
Collapse
Affiliation(s)
- Hye‐Jin Jeong
- Department of Biomedical EngineeringUlsan National Institute of Science and TechnologyUlsan44919Republic of Korea
| | - Ji‐Hyeon Park
- Department of SurgerySeoul National University HospitalSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of SurgeryGachon University Gil Medical CenterIncheon21565Republic of Korea
| | - Joo H. Kang
- Department of Biomedical EngineeringUlsan National Institute of Science and TechnologyUlsan44919Republic of Korea
| | - Jonathan Sabaté del Río
- Center for Soft and Living MatterInstitute for Basic Science (IBS)Ulsan44919Republic of Korea
| | - Seong‐Ho Kong
- Department of SurgerySeoul National University HospitalSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Tae‐Eun Park
- Department of Biomedical EngineeringUlsan National Institute of Science and TechnologyUlsan44919Republic of Korea
| |
Collapse
|
17
|
Tjandra D, Busuttil RA, Boussioutas A. Gastric Intestinal Metaplasia: Challenges and the Opportunity for Precision Prevention. Cancers (Basel) 2023; 15:3913. [PMID: 37568729 PMCID: PMC10417197 DOI: 10.3390/cancers15153913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
GIM is a persistent, premalignant lesion whereby gastric mucosa is replaced by metaplastic mucosa resembling intestinal tissue, arising in the setting of chronic inflammation, particularly in the context of Helicobacter pylori. While the overall rates of progression to gastric adenocarcinoma are low, estimated at from 0.25 to 2.5%, there are features that confer a much higher risk and warrant follow-up. In this review, we collate and summarise the current knowledge regarding the pathogenesis of GIM, and the clinical, endoscopic and histologic risk factors for cancer. We examine the current state-of-practice with regard to the diagnosis and management of GIM, which varies widely in the published guidelines and in practice. We consider the emerging evidence in population studies, artificial intelligence and molecular markers, which will guide future models of care. The ultimate goal is to increase the detection of early gastric dysplasia/neoplasia that can be cured while avoiding unnecessary surveillance in very low-risk individuals.
Collapse
Affiliation(s)
- Douglas Tjandra
- Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia;
- Department of Gastroenterology, The Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Rita A. Busuttil
- Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia;
- Department of Gastroenterology, The Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Alex Boussioutas
- Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia;
- Department of Gastroenterology, The Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| |
Collapse
|
18
|
Acosta-Astaiza C, López-Sandoval A, Bonilla-Chaves J, Valdes-Valdes A, Romo-Romero W. Helicobacter pylori virulence genotypes and their relationship with precursor lesions of gastric malignancy and histological parameters in infected patients in Colombia. Rev Peru Med Exp Salud Publica 2023; 40:348-353. [PMID: 37991039 PMCID: PMC10953661 DOI: 10.17843/rpmesp.2023.403.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/13/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this research was to determine the presence of Helicobacter pylori virulence genotypes and their association with precursor lesions of gastric malignancy and histological parameters in patients with dyspepsia symptoms in southwestern Colombia. Polymerase chain reaction (PCR) was used for the genetic characterization of vacA, cagA, babA2 and sabA. The chi-square or Fischer test were used to evaluate the association between each genotype and the clinical outcome. We found that 86.3% of the patients with precursor lesions of gastric malignancy presented the vacA s1/m1 genotype, 68.1% had the cagA+ genotype and 68.8% and 55.8% had the babA2+ and sabA+ genotypes, respectively. Our results show association between virulence genotypes and severe degree of polymorphonuclear cell infiltration. In addition, we found an association between the combination of vacA/cagA, vacA/sabA and babA2/sabA genes. This study provides evidence about the association of H. pylori virulence genotypes and gastric inflammation in infected patients.
Collapse
Affiliation(s)
- Claudia Acosta-Astaiza
- Grupo de Investigación en Genética Humana Aplicada, Universidad del Cauca, Popayán, Colombia
| | - Alexis López-Sandoval
- Grupo de Investigación en Genética Humana Aplicada, Universidad del Cauca, Popayán, Colombia
| | - Juan Bonilla-Chaves
- Grupo de Investigación en Genética Humana Aplicada, Universidad del Cauca, Popayán, Colombia
| | - Anyi Valdes-Valdes
- Grupo de Investigación en Genética Humana Aplicada, Universidad del Cauca, Popayán, Colombia
| | | |
Collapse
|
19
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T, Liu X. Gastric immune homeostasis imbalance: An important factor in the development of gastric mucosal diseases. Biomed Pharmacother 2023; 161:114338. [PMID: 36905807 DOI: 10.1016/j.biopha.2023.114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
The gastric mucosal immune system is a unique immune organ independent of systemic immunity that not only maintains nutrient absorption but also plays a role in resisting the external environment. Gastric mucosal immune disorder leads to a series of gastric mucosal diseases, including autoimmune gastritis (AIG)-related diseases, Helicobacter pylori (H. pylori)-induced diseases, and various types of gastric cancer (GC). Therefore, understanding the role of gastric mucosal immune homeostasis in gastric mucosal protection and the relationship between mucosal immunity and gastric mucosal diseases is very important. This review focuses on the protective effect of gastric mucosal immune homeostasis on the gastric mucosa, as well as multiple gastric mucosal diseases caused by gastric immune disorders. We hope to offer new prospects for the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
20
|
Beccaceci G, Sigal M. Unwelcome guests - the role of gland-associated Helicobacter pylori infection in gastric carcinogenesis. Front Oncol 2023; 13:1171003. [PMID: 37152042 PMCID: PMC10160455 DOI: 10.3389/fonc.2023.1171003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Helicobacter pylori (H. pylori) are Gram-negative bacteria that cause chronic gastritis and are considered the main risk factor for the development of gastric cancer. H. pylori have evolved to survive the harsh luminal environment of the stomach and are known to cause damage and signaling aberrations in gastric epithelial cells, which can result in premalignant and malignant pathology. As well as colonizing the gastric mucus and surface epithelial cells, a subpopulation of H. pylori can invade deep into the gastric glands and directly interact with progenitor and stem cells. Gland colonization therefore bears the potential to cause direct injury to long-lived cells. Moreover, this bacterial subpopulation triggers a series of host responses that cause an enhanced proliferation of stem cells. Here, we review recent insights into how gastric gland colonization by H. pylori is established, the resulting pro-carcinogenic epithelial signaling alterations, as well as new insights into stem cell responses to infection. Together these point towards a critical role of gland-associated H. pylori in the development of gastric cancer.
Collapse
Affiliation(s)
- Giulia Beccaceci
- Medical Department, Division of Gastroenterology and Hepatology, Charité-Universtitätsmedizin Berlin, Berlin, Germany
- The Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Charité-Universtitätsmedizin Berlin, Berlin, Germany
- The Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
21
|
Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, Smith SI, Suerbaum S. Helicobacter pylori infection. Nat Rev Dis Primers 2023; 9:19. [PMID: 37081005 PMCID: PMC11558793 DOI: 10.1038/s41572-023-00431-8] [Citation(s) in RCA: 349] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
Helicobacter pylori infection causes chronic gastritis, which can progress to severe gastroduodenal pathologies, including peptic ulcer, gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori is usually transmitted in childhood and persists for life if untreated. The infection affects around half of the population in the world but prevalence varies according to location and sanitation standards. H. pylori has unique properties to colonize gastric epithelium in an acidic environment. The pathophysiology of H. pylori infection is dependent on complex bacterial virulence mechanisms and their interaction with the host immune system and environmental factors, resulting in distinct gastritis phenotypes that determine possible progression to different gastroduodenal pathologies. The causative role of H. pylori infection in gastric cancer development presents the opportunity for preventive screen-and-treat strategies. Invasive, endoscopy-based and non-invasive methods, including breath, stool and serological tests, are used in the diagnosis of H. pylori infection. Their use depends on the specific individual patient history and local availability. H. pylori treatment consists of a strong acid suppressant in various combinations with antibiotics and/or bismuth. The dramatic increase in resistance to key antibiotics used in H. pylori eradication demands antibiotic susceptibility testing, surveillance of resistance and antibiotic stewardship.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
- Medical Department Klinik of Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke Universität, Magdeburg, Germany.
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Emad El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Cancer Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Richard Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Schulz
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
| | - Stella I Smith
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Sebastian Suerbaum
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- National Reference Center for Helicobacter pylori, Munich, Germany
| |
Collapse
|
22
|
Role of IL-6/STAT3 Axis in Resistance to Cisplatin in Gastric Cancers. Biomedicines 2023; 11:biomedicines11030694. [PMID: 36979673 PMCID: PMC10044743 DOI: 10.3390/biomedicines11030694] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gastric cancer, the second most common cause of death worldwide, is characterized by poor prognosis and low responsiveness to chemotherapy. Indeed, multidrug resistance, based mainly on cellular and molecular factors, remains one of the most limiting factors of the current approach to gastric cancer (GC) therapy. We employed a comprehensive gene expression analysis through data mining of publicly available databases to assess the role of the signal transducer and activator of transcription 3 (STAT3) in gastric cancer drug efficiency. It has been proposed that gastric cancer cells are less sensitive to these drugs because they develop resistance to these agents through activating alternative signalling pathways responsible for overcoming pharmacological inhibition. Our study evaluated the hypothesis that activating STAT3 signalling in response to cisplatin reduces the reaction to the drug. Consistent with this hypothesis, inhibition of interleukin 6 (IL-6)/STAT3 in combination therapy with cisplatin prevented both STAT3 activation and more lethality than induction by a single agent. The data suggest that the IL-6/STAT3 axis block associated with cisplatin treatment may represent a strategy to overcome resistance.
Collapse
|
23
|
He T, Zhang F, Zhang J, Wei S, Ning J, Yuan H, Li B. UreB immunodominant epitope-specific CD8 + T-cell responses were beneficial in reducing gastric symptoms in Helicobacter pylori-infected individuals. Helicobacter 2023; 28:e12959. [PMID: 36828665 DOI: 10.1111/hel.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND AND AIMS Although Helicobacter pylori is recognized as an extracellular infection bacterium, it can lead to an increase in the number of CD8+ T cells after infection. At present, the characteristics of H. pylori antigen-specific CD8+ T cells and the epitope response have not been elucidated. This study was focused on putative protective antigen UreB to detect specific CD8+ T-cell responses in vitro and screen for predominant response epitopes. METHODS The PBMCs collected from H. pylori-infected individuals were stimulated by UreB peptide pools in vitro to identify the immunodominant CD8+ T-cell epitopes. Furthermore, their HLA restriction characteristics were detected accordingly by NGS. Finally, the relationship between immunodominant responses and appearance of gastric symptoms after H. pylori infection was conducted. RESULTS UreB-specific CD8+ T-cell responses were detected in H. pylori-infected individuals. Three of UreB dominant epitopes (A-2 (UreB443-451 : GVKPNMIIK), B-4 (UreB420-428 : SEYVGSVEV), and C-1 (UreB5-13 : SRKEYVSMY)) were firstly identified and mainly presented by HLA-A*1101, HLA-B*4001 and HLA-C*0702 alleles, respectively. C-1 responses were mostly occurred in H. pylori-infected subjects without gastric symptoms and may alleviate the degree of gastric inflammation. CONCLUSIONS The UreB dominant epitope-specific CD8+ T-cell response was closely related to the gastric symptoms after H. pylori infection, and the C-1 (UreB5-13 ) dominant peptides may be protective epitopes.
Collapse
Affiliation(s)
- Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fang Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shanshan Wei
- Department of Digestive Endoscopy Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Wessler S, Posselt G. Bacterial Proteases in Helicobacter pylori Infections and Gastric Disease. Curr Top Microbiol Immunol 2023; 444:259-277. [PMID: 38231222 DOI: 10.1007/978-3-031-47331-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori (H. pylori) proteases have become a major focus of research in recent years, because they not only have an important function in bacterial physiology, but also directly alter host cell functions. In this review, we summarize recent findings on extracellular H. pylori proteases that target host-derived substrates to facilitate bacterial pathogenesis. In particular, the secreted H. pylori collagenase (Hp0169), the metalloprotease Hp1012, or the serine protease High temperature requirement A (HtrA) are of great interest. Specifically, various host cell-derived substrates were identified for HtrA that directly interfere with the gastric epithelial barrier allowing full pathogenesis. In light of increasing antibiotic resistance, the development of inhibitory compounds for extracellular proteases as potential targets is an innovative field that offers alternatives to existing therapies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria.
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria.
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
| |
Collapse
|
25
|
Song B, Li T, Zhang Y, Yang Q, Pei B, Liu Y, Wang J, Dong G, Sun Q, Fan S, Li X. Identification and verification of ferroptosis-related genes in gastric intestinal metaplasia. Front Genet 2023; 14:1152414. [PMID: 37144125 PMCID: PMC10151495 DOI: 10.3389/fgene.2023.1152414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Background: Gastric intestinal metaplasia (IM) is the key link of gastric precancerous lesions. Ferroptosis is a novel form of programmed cell death. However, its impact on IM is unclear. The focus of this study is to identify and verify ferroptosis-related genes (FRGs) that may be involved in IM by bioinformatics analysis. Materials and methods: Differentially expressed genes (DEGs) were obtained from microarray dataset GSE60427 and GSE78523 downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed ferroptosis-related genes (DEFRGs) were obtained from overlapping genes of DEGs and FRGs got from FerrDb. DAVID database was used for functional enrichment analysis. Protein-protein interaction (PPI) analysis and Cytoscape software were used to screen hub gene. In addition, we built a receiver operating characteristic (ROC) curve and verified the relative mRNA expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the CIBERSORT algorithm was used to analyze the immune infiltration in IM. Results: First, a total of 17 DEFRGs were identified. Second, a gene module identified by Cytoscape software was considered as hub gene: PTGS2, HMOX1, IFNG, and NOS2. Third, ROC analysis showed that HMOX1 and NOS2 had good diagnostic characteristics. qRT-PCR experiments confirmed the differential expression of HMOX1 in IM and normal gastric tissues. Finally, immunoassay showed that the proportion of T cells regulatory (Tregs) and macrophages M0 in IM was relatively higher, while the proportion of T cells CD4 memory activated and dendritic cells activated was lower. Conclusion: We found significant associations between FRGs and IM, and HMOX1 may be diagnostic biomarkers and therapeutic targets for IM. These results may enhance our understanding of IM and may contribute to its treatment.
Collapse
Affiliation(s)
- Biao Song
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Tingting Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yi Zhang
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qi Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Bei Pei
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yun Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jieyu Wang
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Gang Dong
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qin Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | | | - Xuejun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Xuejun Li,
| |
Collapse
|
26
|
Backert S, Linz B, Tegtmeyer N. Helicobacter pylori-Induced Host Cell DNA Damage and Genetics of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:185-206. [PMID: 38231219 DOI: 10.1007/978-3-031-47331-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-β-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
27
|
Association of Progranulin Gene Expression from Dyspeptic Patients with Virulent Helicobacter pylori Strains; In Vivo Model. Microorganisms 2022; 10:microorganisms10050998. [PMID: 35630441 PMCID: PMC9145319 DOI: 10.3390/microorganisms10050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Gastric cancer, the fourth most common cause of death from tumors in the world, is closely associated with Helicobacter pylori. Timely diagnosis, therefore, is essential to achieve a higher survival rate. In Chile, deaths from gastric cancer are high, mainly due to late diagnosis. Progranulin has reflected the evolution of some cancers, but has been poorly studied in gastric lesions. Aiming to understand the role of progranulin in H. pylori infection and its evolution in development of gastric lesions, we evaluated the genic expression of progranulin in gastric tissue from infected and non-infected patients, comparing it according to the epithelial status and virulence of H. pylori strains. (2) Methods: The genic expression of progranulin by q-PCR was quantified in gastric biopsies from Chilean dyspeptic patients (n = 75) and individuals who were uninfected (n = 75) by H. pylori, after receiving prior informed consent. Bacteria were grown on a medium Columbia agar with equine-blood 7%, antibiotics (Dent 2%, OxoidTM), in a microaerophilic environment, and genetically characterized for the ureC, vacA, cagA, and iceA genes by PCR. The status of the tissue was determined by endoscopic observation. (3) Results: Minor progranulin expression was detected in atrophic tissue, with a sharp drop in the tissue colonized by H. pylori that carried greater virulence, VacAs1m1+CagA+IceA1+. (4) Conclusions: Progranulin shows a differential behavior according to the lesions and virulence of H. pylori, affecting the response of progranulin against gastric inflammation.
Collapse
|