1
|
Pontell ME, Barrero CE, Naidu K, Hitchner M, Wagner CS, Salinero LK, Swanson JW, Bartlett SP, Taylor JA. Changes in Ventricular Volume After Posterior Vault Distraction Osteogenesis in Patients With Syndromic and Nonsyndromic Craniosynostosis. J Craniofac Surg 2024; 35:1967-1971. [PMID: 39194194 DOI: 10.1097/scs.0000000000010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE Little is known about the response of the ventricular system to cranial vault surgery in patients with craniosynostosis. This study aims to evaluate the changes in the cerebral ventricular system in response to posterior vault distraction osteogenesis (PVDO) in patients with syndromic and nonsyndromic craniosynostosis. METHODS A single-institution retrospective review of all patients with craniosynostosis undergoing PVDO from 2000 to 2022 was completed. Patients were included for analysis if they had pre and postoperative cranial computed tomography scans. Ventricular volume (VV) and intracranial volume (ICV) were calculated using segmentation software. RESULTS Both patients with syndromic synostosis and nonsyndromic synostosis (NSS) experienced a significant increase in ICV after PVDO, but only patients with NSS experienced a significant VV change ( P = 0.004). After normalization by ICV, total, lateral, and third VV changes retained significance with percentage increases of 114%, 117%, and 89%, respectively ( P < 0.05 for all). CONCLUSION The differing results between cohorts reinforce the concept that the intracranial milieu is different between patients with syndromic synostosis and NSS. The results of the NSS cohort suggest that these patients may exist in a compensated state in which a reduction in cerebral blood flow and VV allows for the maintenance of parenchymal health to prevent the development of intracranial hypertension. Further studies may explore VV as a surrogate marker of ICP elevation, and the utility of cranial vault remodeling on nonsynostotic pathologies with cephalocranial disproportion.
Collapse
Affiliation(s)
- Matthew E Pontell
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia
| | - Carlos E Barrero
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia
| | - Kirin Naidu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michaela Hitchner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Connor S Wagner
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia
| | - Lauren K Salinero
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia
| | - Jordan W Swanson
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia
| | - Scott P Bartlett
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia
| | - Jesse A Taylor
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia
| |
Collapse
|
2
|
Liu XY, Song X, Czosnyka M, Robba C, Czosnyka Z, Summers JL, Yu HJ, Gao GY, Smielewski P, Guo F, Pang MJ, Ming D. Congenital hydrocephalus: a review of recent advances in genetic etiology and molecular mechanisms. Mil Med Res 2024; 11:54. [PMID: 39135208 PMCID: PMC11318184 DOI: 10.1186/s40779-024-00560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024] Open
Abstract
The global prevalence rate for congenital hydrocephalus (CH) is approximately one out of every five hundred births with multifaceted predisposing factors at play. Genetic influences stand as a major contributor to CH pathogenesis, and epidemiological evidence suggests their involvement in up to 40% of all cases observed globally. Knowledge about an individual's genetic susceptibility can significantly improve prognostic precision while aiding clinical decision-making processes. However, the precise genetic etiology has only been pinpointed in fewer than 5% of human instances. More occurrences of CH cases are required for comprehensive gene sequencing aimed at uncovering additional potential genetic loci. A deeper comprehension of its underlying genetics may offer invaluable insights into the molecular and cellular basis of this brain disorder. This review provides a summary of pertinent genes identified through gene sequencing technologies in humans, in addition to the 4 genes currently associated with CH (two X-linked genes L1CAM and AP1S2, two autosomal recessive MPDZ and CCDC88C). Others predominantly participate in aqueduct abnormalities, ciliary movement, and nervous system development. The prospective CH-related genes revealed through animal model gene-editing techniques are further outlined, focusing mainly on 4 pathways, namely cilia synthesis and movement, ion channels and transportation, Reissner's fiber (RF) synthesis, cell apoptosis, and neurogenesis. Notably, the proper functioning of motile cilia provides significant impulsion for cerebrospinal fluid (CSF) circulation within the brain ventricles while mutations in cilia-related genes constitute a primary cause underlying this condition. So far, only a limited number of CH-associated genes have been identified in humans. The integration of genotype and phenotype for disease diagnosis represents a new trend in the medical field. Animal models provide insights into the pathogenesis of CH and contribute to our understanding of its association with related complications, such as renal cysts, scoliosis, and cardiomyopathy, as these genes may also play a role in the development of these diseases. Genes discovered in animals present potential targets for new treatments but require further validation through future human studies.
Collapse
Affiliation(s)
- Xiu-Yun Liu
- Medical School, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Xin Song
- Medical School, Tianjin University, Tianjin, 300072, China
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Chiara Robba
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132, Genoa, Italy
| | - Zofia Czosnyka
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Jennifer Lee Summers
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Hui-Jie Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guo-Yi Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Peter Smielewski
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Fang Guo
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Mei-Jun Pang
- Medical School, Tianjin University, Tianjin, 300072, China.
| | - Dong Ming
- Medical School, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China.
| |
Collapse
|
3
|
Raposo-Amaral CE, Vincenzi-Lemes M, Medeiros ML, Raposo-Amaral CA, Ghizoni E. Apert syndrome: neurosurgical outcomes and complications following posterior vault distraction osteogenesis. Childs Nerv Syst 2024; 40:2557-2563. [PMID: 38700706 DOI: 10.1007/s00381-024-06436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/27/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE Posterior vault distraction osteogenesis (PVDO) has been utilized during the past 15 years to treat a variety of clinical features commonly presented by patients with Apert syndrome. The objective of this study is to determine the efficacy of PVDO in addressing both elevated intracranial pressure (ICP) and ectopia of the cerebellar tonsils (ECT) in young Apert patients. In addition, we aimed to determine the prevalence of hydrocephalus in Apert syndrome patients who underwent PVDO. METHODS A retrospective study was made with a cohort of 40 consecutive patients with syndromic craniosynostosis (SC), previously diagnosed with Apert syndrome, who underwent PVDO between 2012 and 2022, and thereafter received at least 1 year of follow-up care. Demographic data and diagnosis, along with surgical and outcome data, were verified using medical records, clinical photographs, radiologic examination, and interviews with the parents of all cohort patients. RESULTS The average patient age when PVDO was performed was 12.91 ± 10 months. The average posterior advancement distance achieved per patient was 22.68 ± 5.26 mm. The average hospital stay per patient was 3.56 ± 2.44 days. The average absolute and relative blood transfusion volumes were 98.47 ml and 17.63 ml/kg, respectively. Although five patients (14%) presented ECT preoperatively, this condition was completely resolved by PVDO in three of these five patients. One of the three patients whose ECT had completely resolved presented syringomyelia postoperatively, requiring subsequent extra dural foramen magnum decompression. All of the remaining four patients were asymptomatic for ECT for at least 1 year of follow-up, and none of these four patients required any additional treatments to address ECT. Two patients presented hydrocephalus requiring ventriculoperitoneal shunt placement. CONCLUSIONS This study demonstrates that PVDO both reduces diagnosed elevated ICP symptoms and is partially effective in treating ECT in Apert syndrome patients. Hydrocephalus in Apert syndrome is an uncommon feature. The effectiveness of PVDO in addressing hydrocephalus is uncertain.
Collapse
Affiliation(s)
- Cassio Eduardo Raposo-Amaral
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil.
- Department of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Marcela Vincenzi-Lemes
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil
| | - Mateus L Medeiros
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil
| | - Cesar Augusto Raposo-Amaral
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil
| | - Enrico Ghizoni
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil
- Department of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Moore MH, Chaisrisawadisuk S, Khampalikit I, Doorenbosch X, Jukes A, Molloy CJ. Re-imagining early cloverleaf skull deformity management from front to back approach-30 years on. Childs Nerv Syst 2023; 39:3349-3359. [PMID: 37698651 DOI: 10.1007/s00381-023-06147-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The cloverleaf skull deformity remains among the most complicated craniofacial conditions to successfully manage. Many cases achieve largely unsatisfactory outcomes due to the requirement for frequent reoperation on the cranial vault and failure to deal with all the elements of the craniofaciostenosis in a timely fashion. Early cranial vault surgery without addressing the cranial base deformity and its attendant cerebrospinal fluid flow changes is invariably challenging and disappointing. A recent focus on the expansion of the posterior cranial vault as a primary procedure with the greater volume change allows a delay in fronto-orbital advancement and reduced need for repeat surgery. We herein describe three cases of complex multisuture craniosynostosis with cloverleaf skull deformity who underwent neonatal posterior cranial vault decompression along with foramen magnum decompression. Our report examines the safety and rationale for this pre-emptive surgical approach to simultaneously deal with the cranial vault and craniocervical junction abnormalities and thus change the early trajectory of these complex cases.
Collapse
Affiliation(s)
- Mark H Moore
- Cleft and Craniofacial SA, Women's and Children's Hospital, North Adelaide, Adelaide, SA, Australia
| | - Sarut Chaisrisawadisuk
- Cleft and Craniofacial SA, Women's and Children's Hospital, North Adelaide, Adelaide, SA, Australia.
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Inthira Khampalikit
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xenia Doorenbosch
- Department of Neurosurgery, Women's and Children's Hospital, North Adelaide, Adelaide, SA, Australia
| | - Alistair Jukes
- Department of Neurosurgery, Women's and Children's Hospital, North Adelaide, Adelaide, SA, Australia
| | - Cindy J Molloy
- Department of Neurosurgery, Women's and Children's Hospital, North Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Hashimoto H, Takemoto O, Chiba Y. Growth patterns and ratios of posterior cranial fossa structures in the Japanese pediatric population: a study utilizing CT scans. Neuroradiology 2023; 65:1835-1844. [PMID: 37798333 DOI: 10.1007/s00234-023-03229-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE The changes in the proportion of posterior cranial fossa structures during pediatric development remain unclear. This retrospective study aimed to investigate the growth patterns and ratios of these structures using CT scans. METHODS Head CT scans of pediatric patients with minor head trauma from Osaka Women's and Children's Hospital between March 2006 and May 2023 were analyzed. The study segmented the intracranial volume (ICV), posterior cranial fossa volume (PCFV), cerebellum volume (CBMV), and brainstem volume (BSV). Correlation coefficients were calculated among the parameters. Patients aged 0 to 10 years were divided into 15 age-related clusters, and mean and standard deviation values were measured. Growth curves were created by plotting mean values sequentially. Ratios such as PCFV/ICV and (CBMV + BSV)/PCFV were examined. Statistical analyses, including unpaired t tests and logarithmic curve fitting, were performed. RESULTS A total of 234 CT scans (97 from females, 115 from infants under 1 year of age) were analyzed. Positive correlations were observed among the parameters, with the strongest between PCFV and CBMV. The growth curves for ICV, PCFV, CBMV, and BSV exhibited a two-phase process, with rapid growth until approximately 4 years of age, followed by stabilization. The ratios PCFV/ICV and (CBMV + BSV)/PCFV showed increasing trends from birth onwards, stabilizing by 4 and 1 years of age, respectively. CONCLUSION This study provides insights into the growth patterns and ratios of posterior cranial fossa structures in the pediatric population. The findings demonstrate a two-phase growth process and increasing trends in the examined ratios.
Collapse
Affiliation(s)
- Hiroaki Hashimoto
- Department of Neurosurgery, Osaka Women's and Children's Hospital, Osaka, Izumi, 594-1101, Japan.
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Osaka, Suita, 565-0871, Japan.
| | - Osamu Takemoto
- Department of Neurosurgery, Osaka Women's and Children's Hospital, Osaka, Izumi, 594-1101, Japan
| | - Yasuyoshi Chiba
- Department of Neurosurgery, Osaka Women's and Children's Hospital, Osaka, Izumi, 594-1101, Japan
| |
Collapse
|
6
|
Doerga PN, Goederen RD, van Veelen MLC, Joosten KFM, Tasker RC, Mathijssen IMJ. What We Know About Intracranial Hypertension in Children With Syndromic Craniosynostosis. J Craniofac Surg 2023; 34:1903-1914. [PMID: 37487059 DOI: 10.1097/scs.0000000000009517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE A scoping review of literature about mechanisms leading to intracranial hypertension (ICH) in syndromic craniosynostosis (sCS) patients, followed by a narrative synopsis of whether cognitive and behavioral outcome in sCS is more related to genetic origins, rather than the result of ICH. METHODS The scoping review comprised of a search of keywords in EMBASE, MEDLINE, Web of science, Cochrane Central Register of Trials, and Google scholar databases. Abstracts were read and clinical articles were selected for full-text review and data were extracted using a structured template. A priori, the authors planned to analyze mechanistic questions about ICH in sCS by focusing on 2 key aspects, including (1) the criteria for determining ICH and (2) the role of component factors in the Monro-Kellie hypothesis/doctrine leading to ICH, that is, cerebral blood volume, cerebrospinal fluid (CSF), and the intracranial volume. RESULTS Of 1893 search results, 90 full-text articles met criteria for further analysis. (1) Invasive intracranial pressure measurements are the gold standard for determining ICH. Of noninvasive alternatives to determine ICH, ophthalmologic ones like fundoscopy and retinal thickness scans are the most researched. (2) The narrative review shows how the findings relate to ICH using the Monro-Kellie doctrine. CONCLUSIONS Development of ICH is influenced by different aspects of sCS: deflection of skull growth, obstructive sleep apnea, venous hypertension, obstruction of CSF flow, and possibly reduced CSF absorption. Problems in cognition and behavior are more likely because of genetic origin. Cortical thinning and problems in visual function are likely the result of ICH.
Collapse
Affiliation(s)
- Priya N Doerga
- Sophia Children's Hospital, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center
| | - Robbin de Goederen
- Sophia Children's Hospital, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center
| | - Marie-Lise C van Veelen
- Sophia Children's Hospital, Department of Neurosurgery, Erasmus MC, University Medical Center
| | - Koen F M Joosten
- Sophia Children's Hospital Pediatric Intensive Care Unit, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Robert C Tasker
- Department of Anaesthesia (Pediatrics) and Division of Critical Care Medicine, Harvard Medical School and Boston Children's Hospital, Boston, MA
| | - Irene M J Mathijssen
- Sophia Children's Hospital, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center
| |
Collapse
|
7
|
Cinalli G, Russo C, Vitulli F, Parlato RS, Spennato P, Imperato A, Quarantelli M, Covelli E, Aliberti F. Changes in venous drainage after posterior cranial vault distraction and foramen magnum decompression in syndromic craniosynostosis. J Neurosurg Pediatr 2022; 30:330-341. [PMID: 35901679 DOI: 10.3171/2022.6.peds22171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors' objective was to measure the effect of posterior cranial vault distraction (PCVD) plus foramen magnum decompression (FMD) on dural sinus volume and venous flow in patients with syndromic craniosynostosis. METHODS The volumes of the sagittal, straight, transverse, and sigmoid sinuses of 5 consecutive patients with syndromic craniosynostosis who underwent PCVD+FMD were calculated in cubic centimeters with T2-weighted volumetric MRI sequences before surgery, immediately after surgery, and after the end of the distraction process. Tridimensional reconstructions of phase-contrast magnetic resonance angiography (PC-MRA) images were obtained with multiplanar reconstruction (MPR). RESULTS The average total volume of all dural sinuses increased immediately after surgery (from 10.06 cm3 to 12.64 cm3) and continued to increase throughout the 30-day distraction period (from 12.64 cm3 to 14.71 cm3) (p = 0.04), except that the right sigmoid sinus remained stable after the initial increase. The most important increases were observed for the left transverse sinus (+113.2%), right transverse sinus (+104.3%), left sigmoid sinus (+91.3%), and sagittal sinus (+41.8%). Less important modifications were evident for the right sigmoid sinus (+33.7%) and straight sinus (+23.4%). Significant improvements in venous flow were noted on the tridimensional reconstructions of the PC-MRA images. Venous obstruction grading score improved in 4 patients (average [range] 2.4 [ 2-5]) (p = 0.023) and remained stable in 1 patient. All patients had chronic tonsillar herniation (CTH) (mean [range] 16.6 [8-26] mm), and 3 had syringomyelia. CTH showed improvement on the last follow-up MRI evaluation in 4 patients (mean [range] 10.5 [0-25] mm) and worsened from 15 mm to 19 mm in 1 patient. Syringomyelia improved in 2 patients and remained unchanged in 1. CONCLUSIONS This study has provided the first radiological evidence of the impact of craniofacial surgery on dural sinus anatomy and venous drainage. The venous anomalies described in patients with syndromic craniosynostosis are not static, and PCVD+FMD triggers a dynamic process that can lead to significant modifications of intracranial venous drainage. The traction exerted by the distracted bone flap onto the occipitoparietal dura mater adherent to the inner calvaria may account for the enlargement of the dural sinus throughout the distraction period. The impact of these modifications on venous pressure, intracranial pressure, CTH, and hydrocephalus remains to be determined.
Collapse
Affiliation(s)
| | | | - Francesca Vitulli
- Departments of1Pediatric Neurosurgery
- 4Department of Neurosurgery, "Federico II" University School of Medicine, Naples; and
| | | | | | | | - Mario Quarantelli
- 5Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | | | - Ferdinando Aliberti
- Departments of1Pediatric Neurosurgery
- 3Cranio-Facial Surgery Unit, Santobono-Pausilipon Children's Hospital, AORN, Naples
| |
Collapse
|
8
|
A diffusion tensor imaging analysis of white matter microstructures in non-operated craniosynostosis patients. Neuroradiology 2022; 64:2391-2398. [PMID: 35760925 DOI: 10.1007/s00234-022-02997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE In 7 to 15-year-old operated syndromic craniosynostosis patients, we have shown the presence of microstructural anomalies in brain white matter by using DTI. To learn more about the cause of these anomalies, the aim of the study is to determine diffusivity values in white matter tracts in non-operated syndromic craniosynostosis patients aged 0-2 years compared to healthy controls. METHODS DTI datasets of 51 non-operated patients with syndromic craniosynostosis with a median [IQR] age of 0.40 [0.25] years were compared with 17 control subjects with a median of 1.20 [0.85] years. Major white matter tract pathways were reconstructed with ExploreDTI from MRI brain datasets acquired on a 1.5 T MRI system. Eigenvalues of these tract data were examined, with subsequent assessment of the affected tracts. Having syndromic craniosynostosis (versus control), gender, age, frontal occipital horn ratio (FOHR), and tract volume were treated as independent variables. RESULTS ʎ2 and ʎ3 of the tracts genu of the corpus callosum and the hippocampal segment of the cingulum bundle show a ƞ2 > 0.14 in the comparison of patients vs controls, which indicates a large effect on radial diffusivity. Subsequent linear regressions on radial diffusivity of these tracts show that age and FOHR are significantly associated interacting factors on radial diffusivity (p < 0.025). CONCLUSION Syndromic craniosynostosis shows not to be a significant factor influencing the major white matter tracts. Enlargement of the ventricles show to be a significant factor on radial diffusivity in the tracts corpus callosum genu and the hippocampal segment of the cingulate bundle. CLINICAL TRIAL REGISTRATION MEC-2014-461.
Collapse
|
9
|
Layton RG, Pontier JF, Bins GP, Sucher BJ, Runyan CM. Morphology of the Occipital Bones and Foramen Magnum Resulting From Premature Minor Suture Fusion in Crouzon Syndrome. Cleft Palate Craniofac J 2022; 60:591-600. [PMID: 35044263 DOI: 10.1177/10556656211072762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To identify skull-base growth patterns in Crouzon syndrome, we hypothesized premature minor suture fusion restricts occipital bone development, secondarily limiting foramen magnum expansion. Skull-base suture closure degree and cephalometric measurements were retrospectively studied using preoperative computed tomography (CT) scans and multiple linear regression analysis. Evaluation of multi-institutional CT images and 3D reconstructions from Wake Forest's Craniofacial Imaging Database (WFCID). Sixty preoperative patients with Crouzon syndrome under 12 years-old were selected from WFCID. The control group included 60 age- and sex-matched patients without craniosynostosis or prior craniofacial surgery. None. 2D and 3D cephalometric measurements. 3D volumetric evaluation of the basioccipital, exo-occipital, and supraoccipital bones revealed decreased growth in Crouzon syndrome, attributed solely to premature minor suture fusion. Spheno-occipital (β = -398.75; P < .05) and petrous-occipital (β = -727.5; P < .001) suture fusion reduced growth of the basioccipital bone; lambdoid suture (β = -14 723.1; P < .001) and occipitomastoid synchondrosis (β = -16 419.3; P < .001) fusion reduced growth of the supraoccipital bone; and petrous-occipital suture (β = -673.3; P < .001), anterior intraoccipital synchondrosis (β = -368.47; P < .05), and posterior intraoccipital synchondrosis (β = -6261.42; P < .01) fusion reduced growth of the exo-occipital bone. Foramen magnum morphology is restricted in Crouzon syndrome but not directly caused by early suture fusion. Premature minor suture fusion restricts the volume of developing occipital bones providing a plausible mechanism for observed foramen magnum anomalies.
Collapse
Affiliation(s)
- Ryan G Layton
- 12279Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Joshua F Pontier
- 12279Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Griffin P Bins
- Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Brandon J Sucher
- Department of Biostatistics and Bioinformatics, 12277Duke University School of Medicine, Durham, NC, USA
| | - Christopher M Runyan
- Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| |
Collapse
|
10
|
Skadorwa T, Wierzbieniec O. The foramen magnum in scaphocephaly. Childs Nerv Syst 2022; 38:2163-2170. [PMID: 35931858 PMCID: PMC9617951 DOI: 10.1007/s00381-022-05624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/23/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The foramen magnum (FM) presents various alterations in craniosynostoses, such as brachycephaly or Crouzon syndrome. However, to date, no study has been devoted to its morphology and morphometry in scaphocephaly, which is the most common of cranial deformities resulting from premature fusion of cranial sutures. METHODS We assessed the morphology and morphometry of FM using preoperative thin-cut CT scans of 107 children with non-syndromic sagittal craniosynostosis aged 1-12 months (mean age 5.38 months). A series of sagittal and transverse dimensions were taken and the FM area was calculated in each case. Obtained data were compared to the age-matched control group of 101 normocephalic children. RESULTS Dolichotrematous type of FM was dominant in the scaphocephaly group and observed in 63/107 cases (58.9%). The mean FM area in the scaphocephaly group was 519.64 mm2 and was significantly smaller compared to the control group (p = 0.0011). The transverse diameter and anterior sagittal diameter were also significantly smaller (p = 0.0112 and p = 0.0003, respectively). CONCLUSION The area of FM in scaphocephaly is smaller compared to normal individuals. This is associated with a significant reduction of the width of FM in children with sagittal craniosynostosis. FM in scaphocephaly is larger than in other reported series of children with brachycephaly or Crouzon syndrome.
Collapse
Affiliation(s)
- Tymon Skadorwa
- Department of Pediatric Neurosurgery, Bogdanowicz Memorial Hospital for Children, 4/24 Nieklanska St, 03924, Warsaw, Poland. .,Department of Descriptive and Clinical Anatomy, The Medical University of Warsaw, 5 Chalubinskiego St, 02004, Warsaw, Poland.
| | - Olga Wierzbieniec
- grid.13339.3b0000000113287408Department of Descriptive and Clinical Anatomy, The Medical University of Warsaw, 5 Chalubinskiego St, 02004 Warsaw, Poland
| |
Collapse
|
11
|
Sinha A, Vankipuram S, Ellenbogen J. Management of Chiari 1 malformation and hydrocephalus in syndromic craniosynostosis: A review. J Pediatr Neurosci 2022; 17:S67-S76. [PMID: 36388008 PMCID: PMC9648655 DOI: 10.4103/jpn.jpn_49_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/16/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Chiari 1 malformation and hydrocephalus are frequent findings in multi-suture and syndromic craniosynostosis patients. In this article, we review the pathogenesis, clinical significance, and management options for these conditions with comments from our own experience. The role of premature fusion of skull base sutures leading to a crowded posterior fossa and venous outflow obstruction resulting in impaired cerebrospinal fluid (CSF) absorption is highlighted. Management options are unique in this group and we advocate early (prior to 6 months of age) posterior vault expansion by distraction osteogenesis (DO) in the management of Chiari 1 malformation. Foramen magnum decompression is recommended for a select few either as part of posterior vault expansion or at a later date. Treatment of hydrocephalus, utilizing a ventriculoperitoneal (VP) shunt with preferably a programmable high-pressure valve and anti-siphon device, is required in a small percentage of cases despite successful posterior vault expansion. Patients need to be carefully selected and managed as hydrocephalus often serves as an important cranial vault growth stimulus. Further, they require careful monitoring and thought to ensure the management of these conditions and the timing of any intervention provides the optimal long-term outcome for the patient.
Collapse
|
12
|
Frassanito P, Palombi D, Tamburrini G. Craniosynostosis and hydrocephalus: relevance and treatment modalities. Childs Nerv Syst 2021; 37:3465-3473. [PMID: 33829280 DOI: 10.1007/s00381-021-05158-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Hydrocephalus is variously associated to syndromic craniosynostosis (CS), while it is randomly encountered in monosutural CS. Pathogenesis is still debated and reliable criteria for the diagnosis of overt hydrocephalus are lacking. Additionally, optimal treatment is controversial since it should balance the need to relieve intracranial hypertension and the risk of recurrence favored by lowering intracranial pressure. METHODS A thorough review of the literature has been performed. Accordingly, pathogenic theories, diagnostic issues, and treatment options on hydrocephalus presenting in the context of CS are discussed. RESULTS The association of hydrocephalus to simple CS is considered a fortuitous event. Its treatment is usually driven by the etiology and clinical relevance of hydrocephalus, favoring treatment before surgical correction to reduce CSF-related complications. On the other side, pathogenesis of hydrocephalus in the context of syndromic CS has been mainly related to factors that are secondary to the synostostic process, such as craniocerebral disproportion and venous hypertension. Hydrocephalus complicates 12-15% of syndromic CS, though its incidence is more relevant in FGFR2-related CS and raises up to 88% in Pfeiffer syndrome. Overt hydrocephalus should be properly differentiated by non-tense ventriculomegaly that is more frequent in Apert syndrome. Since intracranial hypertension is constant in syndromic CS even in the absence of active hydrocephalus, radiological monitoring of ventricular size along with intracranial pressure monitoring is essential. Active hydrocephalus occurs more frequently in infants, though stable ventriculomegaly may evolve into overt hydrocephalus after cranial expansion. If hydrocephalus is not clinically prominent, cranial expansion should be favored as first surgical step. Although posterior cranial expansion may address posterior cranial fossa constriction and stabilize ventricular dilation, effectiveness in long-term control of hydrocephalus is not clear. ETV is an effective treatment option, though success rate is affected by the presence of brain malformations and patient age. Extrathecal CSF shunting should be used as last resource due to the increased risk of complications in this context. CONCLUSIONS The pathogenesis of hydrocephalus complicating syndromic CS should be further investigated. Concomitantly, the definition of reliable diagnostic criteria is advocated in order to promptly and properly identify active hydrocephalus. Finally, treatment algorithm should refine the best timing and treatment options aiming to relieve intracranial hypertension on one side and reduce the risk of restenosis on the other side.
Collapse
Affiliation(s)
- Paolo Frassanito
- Pediatric Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy.
| | | | - Gianpiero Tamburrini
- Pediatric Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
13
|
den Ottelander BK, Dremmen MHG, de Planque CA, van der Oest MJW, Mathijssen IMJ, van Veelen MLC. Does the association between abnormal anatomy of the skull base and cerebellar tonsillar position also exist in syndromic craniosynostosis? J Plast Reconstr Aesthet Surg 2021; 75:797-805. [PMID: 34799294 DOI: 10.1016/j.bjps.2021.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/28/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Cerebellar tonsillar herniation (TH) occurs frequently in syndromic craniosynostosis; however, the exact pathogenesis is unknown. This study evaluates the association between skull base deformities and TH in syndromic craniosynostosis. METHODS Retrospective study MRI study comparing syndromic craniosynostosis to controls. Measured parameters included clivus length, skull base angle, Boogard's angle, foramen magnum area, and cerebellar tonsillar position (TP). The association between skull base parameters and TP was evaluated with linear mixed models, correcting for age and risk factors for TH in craniosynostosis (hydrocephalus, intracranial hypertension, craniocerebral disproportion, and lambdoid synostosis). RESULTS Two hundred and eighty-two scans in 145 patients were included, and 146 scans in 146 controls. The clivus was smaller at birth, and its growth was retarded in all syndromes. The skull base angle was smaller at birth in Apert and Crouzon syndromes, and the evolution through time was normal. Boogard's angle was smaller at birth in Apert syndrome, and its evolution was disturbed in Apert and Saethre-Chotzen syndromes. The foramen magnum was smaller at birth in Crouzon and Saethre-Chotzen syndromes, and its growth was disturbed in Apert, Crouzon, and Saethre-Chotzen syndromes. TP was higher at birth in Apert syndrome, but lowered faster. In Crouzon syndrome, TP was lower at birth and throughout life. A smaller clivus and larger foramen magnum were associated with a lower TP in controls (p<0.001, p=0.007), and in Crouzon syndrome, this applied to only foramen magnum size (p=0.004). CONCLUSION The skull base and its growth are significantly different in syndromic craniosynostosis compared to controls. However, only foramen magnum area is associated with TP in Crouzon syndrome.
Collapse
Affiliation(s)
- Bianca K den Ottelander
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Marjolein H G Dremmen
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Radiology, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Catherine A de Planque
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Mark J W van der Oest
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Marie-Lise C van Veelen
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Neurosurgery, Room SK-1204, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Saletti V, Farinotti M, Peretta P, Massimi L, Ciaramitaro P, Motta S, Solari A, Valentini LG. The management of Chiari malformation type 1 and syringomyelia in children: a review of the literature. Neurol Sci 2021; 42:4965-4995. [PMID: 34591209 DOI: 10.1007/s10072-021-05565-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
In anticipation of the "Chiari and Syringomyelia Consensus Conference" held in Milan in 2019, we performed a systematic literature review on the management of Chiari malformation type 1 (CM1) and syringomyelia (Syr) in children.We aimed to summarize the available evidence and identify areas where consensus has not been reached and further research is needed.In accordance with PRISMA guidelines, we formulated seven questions in Patients-Interventions-Comparators-Outcomes (PICO) format. Six PICOs concerned CM1 children with/without additional structural anomalies (Syr, craniosynostosis, hydrocephalus, tethered cord, and cranio-vertebral junction anomalies), and one PICO Syr without CM1. We searched Medline, Embase, Cochrane, and NICE databases from January 1, 1999, to May 29, 2019. Cohort studies, controlled and randomized clinical trials (CCTs, RCTs), and systematic reviews were included, all pertinent only to patients ≤ 18 years of age.For CM1, 3787 records were found, 460 full texts were assessed and 49 studies (46 cohort studies, one RCT, and two systematic reviews) were finally included. For Syr, 376 records were found, 59 full texts were assessed, and five studies (one RCT and four cohort studies) were included. Data on each PICO were synthetized narratively due to heterogeneity in the inclusion criteria, outcome measures, and length of follow-up of the included studies.Despite decades of experience on CM1 and Syr management in children, the available evidence remains limited. Specifically, there is an urgent need for collaborative initiatives focusing on the adoption of shared inclusion criteria and outcome measures, as well as rigorous prospective designs, particularly RCTs.
Collapse
Affiliation(s)
- Veronica Saletti
- Developmental Neurology Unit, Mariani Foundation Center for Complex Disabilities, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria, 11, 20133, Milan, Italy.
| | - Mariangela Farinotti
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Peretta
- Pediatric Neurosurgery Unit, Ospedale Infantile Regina Margherita, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luca Massimi
- Pediatric Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Palma Ciaramitaro
- Clinical Neurophysiology, Department of Neuroscience, Presidio CTO, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Saba Motta
- Scientific Library, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Solari
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Grazia Valentini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
15
|
Spazzapan P, Bosnjak R, Prestor B, Velnar T. Chiari malformations in children: An overview. World J Clin Cases 2021; 9:764-773. [PMID: 33585622 PMCID: PMC7852648 DOI: 10.12998/wjcc.v9.i4.764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Chiari malformations encompass various radiological and clinical entities, sharing the herniation of the rhombencephalic structures through the foramen magnum as a common characteristic. They can be symptomatic or asymptomatic. The therapeutic strategies for these malformations differ on the basis of the diverse pathophysiologic processes that cause them. As Chiari malformations are caused by various pathophysiologic processes, they must be recognized promptly to select the best treatment for each single case.
Collapse
Affiliation(s)
- Peter Spazzapan
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Roman Bosnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Borut Prestor
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
16
|
Mavridis IN, Rodrigues D. Nervous system involvement in Pfeiffer syndrome. Childs Nerv Syst 2021; 37:367-374. [PMID: 33083874 DOI: 10.1007/s00381-020-04934-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Pfeiffer syndrome (PS) is a rare autosomal dominant craniofacial disorder characterized by primary craniosynostosis, midface hypoplasia, and extremities' abnormalities including syndactyly. The purpose of this article was to review the current knowledge regarding how PS affects the nervous system. Methodologically, we conducted a systematic review of the existing literature concerning involvement of the nervous system in PS. Multiple-suture synostosis is common, and it is the premature fusion and abnormal growth of the facial skeleton's bones that cause the characteristic facial features of these patients. Brain abnormalities in PS can be primary or secondary. Primary anomalies are specific developmental brain defects including disorders of the white matter. Secondary anomalies are the result of skull deformity and include intracranial hypertension, hydrocephalus, and Chiari type I malformation. Spinal anomalies in PS patients include fusion of vertebrae, "butterfly" vertebra, and sacrococcygeal extension. Different features have been observed in different types of this syndrome. Cloverleaf skull deformity characterizes PS type II. The main neurological abnormalities are mental retardation, learning difficulties, and seizures. The tricky neurological examination in severely affected patients makes difficult the early diagnosis of neurological and neurosurgical complications. Prenatal diagnosis of PS is possible either molecularly or by sonography, and the differential diagnosis includes other craniosynostosis syndromes. Knowing how PS affects the nervous system is important, not only for understanding its pathogenesis and determining its prognosis but also for the guidance of decision-making in the various critical steps of its management. The latter necessitates an experienced multidisciplinary team.
Collapse
Affiliation(s)
- Ioannis N Mavridis
- Department of Neurosurgery, Birmingham Children's Hospital, Birmingham, West Midlands, UK.
| | - Desiderio Rodrigues
- Department of Neurosurgery, Birmingham Children's Hospital, Birmingham, West Midlands, UK
| |
Collapse
|
17
|
Den Ottelander BK, Van Veelen MC, De Goederen R, Van De Beeten SDC, Dremmen MHG, Loudon SE, Versnel SL, Van Den Ouweland AMW, Van Dooren MF, Joosten KFM, Mathijssen IMJ. Saethre-Chotzen syndrome: long-term outcome of a syndrome-specific management protocol. Dev Med Child Neurol 2021; 63:104-110. [PMID: 32909287 PMCID: PMC7754116 DOI: 10.1111/dmcn.14670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Abstract
AIM To assess the long-term outcomes of our management protocol for Saethre-Chotzen syndrome, which includes one-stage fronto-orbital advancement. METHOD All patients born with Saethre-Chotzen syndrome between January 1992 and March 2017 were included. Evaluated parameters included occipital frontal head circumference (OFC), fundoscopy, neuroimaging (ventricular size, tonsillar position, and the presence of collaterals/an abnormal transverse sinus), polysomnography, and ophthalmological outcomes. The relationship between papilledema and its associated risk factors was evaluated with Fisher's exact test. RESULTS Thirty-two patients (21 females, 11 males) were included. Median (SD) age at first surgery was 9.6 months (3.1mo) for patients who were primarily referred to our center (range: 3.6-13.0mo), the median (SD) age at last follow-up was 13 years (5y 7mo; range: 3-25y). Seven patients had papilledema preoperatively, which recurred in two. Two patients had papilledema solely after first surgery. Second cranial vault expansion was indicated in 20%. Thirteen patients had an OFC deflection, indicating restricted skull growth, one patient had ventriculomegaly, and none developed hydrocephalus. Eleven patients had emissary veins, while the transverse sinus was aberrant unilaterally in 13 (hypoplastic n=10 and absent n=3). Four patients had mild tonsillar descent, one of which was a Chiari type I malformation. Four patients had obstructive sleep apnoea (two mild, one moderate, and one severe). An aberrant transverse sinus was associated with papilledema (p=0.01). INTERPRETATION Single one-stage fronto-orbital advancement was sufficient to prevent intracranial hypertension for 80% of our patients with Saethre-Chotzen syndrome. Follow-up should focus on OFC deflection and venous anomalies.
Collapse
Affiliation(s)
- Bianca K Den Ottelander
- Department of Plastic and Reconstructive Surgery and Hand SurgeryDutch Craniofacial CenterErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Marie‐Lise C Van Veelen
- Department of NeurosurgeryErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Robbin De Goederen
- Department of Plastic and Reconstructive Surgery and Hand SurgeryDutch Craniofacial CenterErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Stephanie DC Van De Beeten
- Department of Plastic and Reconstructive Surgery and Hand SurgeryDutch Craniofacial CenterErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Marjolein HG Dremmen
- Department of RadiologyErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Sjoukje E Loudon
- Department of OphthalmologyErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Sarah L Versnel
- Department of Plastic and Reconstructive Surgery and Hand SurgeryDutch Craniofacial CenterErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Ans MW Van Den Ouweland
- Department of Clinical GeneticsErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Marieke F Van Dooren
- Department of Clinical GeneticsErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Koen FM Joosten
- Pediatric Intensive Care UnitErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Irene MJ Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand SurgeryDutch Craniofacial CenterErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamthe Netherlands
| |
Collapse
|
18
|
den Ottelander BK, de Goederen R, de Planque CA, Baart SJ, van Veelen MLC, Corel LJA, Joosten KFM, Mathijssen IMJ, Dremmen MHG. Cervical Spinal Cord Compression and Sleep-Disordered Breathing in Syndromic Craniosynostosis. AJNR Am J Neuroradiol 2020; 42:201-205. [PMID: 33272949 DOI: 10.3174/ajnr.a6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Cerebellar tonsillar herniation arises frequently in syndromic craniosynostosis and causes central and obstructive apneas in other diseases through spinal cord compression. The purposes of this study were the following: 1) to determine the prevalence of cervical spinal cord compression in syndromic craniosynostosis, and 2) to evaluate its connection with sleep-disordered breathing. MATERIALS AND METHODS This was a cross-sectional study including patients with syndromic craniosynostosis who underwent MR imaging and polysomnography. Measures encompassed the compression ratio at the level of the odontoid process and foramen magnum and the cervicomedullary angle. MR imaging studies of controls were included. Linear mixed models were developed to compare patients with syndromic craniosynostosis with controls and to evaluate the association between obstructive and central sleep apneas and MR imaging parameters. RESULTS One hundred twenty-two MR imaging scans and polysomnographies in 89 patients were paired; 131 MR imaging scans in controls were included. The mean age at polysomnography was 5.7 years (range, 0.02-18.9 years). The compression ratio at the level of the odontoid process was comparable with that in controls; the compression ratio at the level of the foramen magnum was significantly higher in patients with Crouzon syndrome (+27.1, P < .001). The cervicomedullary angle was significantly smaller in Apert, Crouzon, and Saethre-Chotzen syndromes (-4.4°, P = .01; -10.2°, P < .001; -5.2°, P = .049). The compression ratios at the level of the odontoid process and the foramen magnum, the cervicomedullary angle, and age were not associated with obstructive apneas (P > .05). Only age was associated with central apneas (P = .02). CONCLUSIONS The prevalence of cervical spinal cord compression in syndromic craniosynostosis is low and is not correlated to sleep disturbances. However, considering the high prevalence of obstructive sleep apnea in syndromic craniosynostosis and the low prevalence of compression and central sleep apnea in our study, we would, nevertheless, recommend a polysomnography in case of compression on MR imaging studies.
Collapse
Affiliation(s)
- B K den Ottelander
- From the Dutch Craniofacial Center (B.K.d.O., R.D.G., C.A.d.P., I.M.J.M.), Department of Plastic and Reconstructive Surgery and Hand Surgery
| | - R de Goederen
- From the Dutch Craniofacial Center (B.K.d.O., R.D.G., C.A.d.P., I.M.J.M.), Department of Plastic and Reconstructive Surgery and Hand Surgery
| | - C A de Planque
- From the Dutch Craniofacial Center (B.K.d.O., R.D.G., C.A.d.P., I.M.J.M.), Department of Plastic and Reconstructive Surgery and Hand Surgery
| | - S J Baart
- Department of Biostatistics (S.J.B.), Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - L J A Corel
- Pediatric Intensive Care Unit (L.J.A.C., K.F.M.J.)
| | | | - I M J Mathijssen
- From the Dutch Craniofacial Center (B.K.d.O., R.D.G., C.A.d.P., I.M.J.M.), Department of Plastic and Reconstructive Surgery and Hand Surgery
| | - M H G Dremmen
- Department of Radiology (M.H.G.D.), Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Smith TD, Reynolds RL, Mano N, Wood BJ, Oladipupo L, Hughes GK, Corbin HM, Taylor J, Ufelle A, Burrows AM, Durham E, Vinyard CJ, Cray JJ, DeLeon VB. Cranial synchondroses of primates at birth. Anat Rec (Hoboken) 2020; 304:1020-1053. [DOI: 10.1002/ar.24521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Timothy D. Smith
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Rebecca L. Reynolds
- Department of Biology Slippery Rock University Slippery Rock Pennsylvania USA
| | - Nanami Mano
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Brody J. Wood
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Lanre Oladipupo
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Gabriel K. Hughes
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Hayley M. Corbin
- Department of Biology Slippery Rock University Slippery Rock Pennsylvania USA
| | - Jane Taylor
- Department of Biomedical Education and Anatomy The Ohio State College of Medicine Columbus Ohio USA
| | - Alexander Ufelle
- Department of Biology Slippery Rock University Slippery Rock Pennsylvania USA
- Department of Public Health and Social Work Slippery Rock University Slippery Rock PA
| | - Anne M. Burrows
- Department of Physical Therapy Duquesne University Pittsburgh Pennsylvania USA
| | - Emily Durham
- Department of Anthropology Penn State University State College Pennsylvania USA
| | - Christopher J. Vinyard
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio USA
| | - James J. Cray
- Department of Biomedical Education and Anatomy The Ohio State College of Medicine Columbus Ohio USA
- Division of Biosciences The Ohio State College of Dentistry Columbus Ohio USA
| | - Valerie B. DeLeon
- Department of Public Health and Social Work Slippery Rock University Slippery Rock PA
- Department of Anthropology University of Florida Gainesville Florida USA
| |
Collapse
|
20
|
Lo WB, Thant KZ, Kaderbhai J, White N, Nishikawa H, Dover MS, Evans M, Rodrigues D. Posterior calvarial distraction for complex craniosynostosis and cerebellar tonsillar herniation. J Neurosurg Pediatr 2020; 26:421-430. [PMID: 32650306 DOI: 10.3171/2020.4.peds19742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Children with syndromic, multisuture, and lambdoid craniosynostosis undergoing calvarial surgery often have Chiari malformation type I (CM-I) (or cerebellar tonsillar herniation). The optimal management of this patient group, including the surgical techniques and timing of surgery, remains uncertain. Posterior calvarial distraction (PCD) is an effective method to increase the supratentorial cranial volume and improve raised intracranial pressure in children with complex craniosynostosis. This study investigated the efficacy of PCD in posterior fossa (PF) volume expansion and treatment of CM-I and associated syringomyelia (syrinx) in this group of children. METHODS This retrospective study included patients who were surgically treated between 2006 and 2015. Over 10 years, 16 patients with multisuture synostosis, lambdoid synostosis, or craniosynostosis associated with a confirmed genetic syndrome, and a concurrent CM-I, were included. The mean age at the time of surgery was 5.1 years (range 8 months-18 years). Fourteen patients had pansynostosis and 2 had lambdoid synostosis. Eight had a confirmed syndromic diagnosis (Crouzon in 8, Apert in 4, Pfeiffer in 1, and Saethre-Chotzen in 1). Ten patients had raised intracranial pressure; 4 had syringomyelia. RESULTS The average clinical follow-up was 50 months (range 9-116 months). Clinically, 9 patients improved, 7 remained stable, and none deteriorated. The average distraction distance was 23 mm (range 16-28 mm). The PF anterior-posterior (AP) distance/width ratio increased from 0.73 to 0.80 mm (p = 0.0004). Although an osteotomy extending inferior to the torcula (compared with superior) was associated with a larger absolute PF AP distance increase (13 vs 6 mm, p = 0.028), such a difference was not demonstrable when the PF AP distance/width ratio was calculated. Overall, the mean tonsillar herniation improved from 9.3 to 6.0 mm (p = 0.011). Syrinx dimensions also improved in the AP (from 7.9 to 3.1 mm) and superior-inferior (from 203 to 136 mm) dimensions. No patients required further foramen magnum decompression for CM. Of the 16 patients, 2 had subsequent frontoorbital advancement and remodeling, of which 1 was for volume expansion and 1 was for cosmetic purposes. Two patients required CSF shunt insertion after PCD. CONCLUSIONS Following PCD, PF volume increased as well as supratentorial volume. This morphometric change was observed in osteotomies both inferior and superior to the torcula. The PF volume increase resulted in improvement of cerebellar tonsillar herniation and syrinx. PCD is an efficacious first-line, single-stage treatment for concurrent pansynostosis and lambdoid craniosynostosis, CM-I, and syrinx.
Collapse
Affiliation(s)
- William B Lo
- Departments of1Neurosurgery and
- 2Craniofacial Surgery, Birmingham Children's Hospital, Birmingham, United Kingdom
| | | | - Jameel Kaderbhai
- 2Craniofacial Surgery, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Nicholas White
- 2Craniofacial Surgery, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Hiroshi Nishikawa
- 2Craniofacial Surgery, Birmingham Children's Hospital, Birmingham, United Kingdom
| | | | - Martin Evans
- 2Craniofacial Surgery, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Desiderio Rodrigues
- Departments of1Neurosurgery and
- 2Craniofacial Surgery, Birmingham Children's Hospital, Birmingham, United Kingdom
| |
Collapse
|
21
|
Wilson AT, Den Ottelander BK, De Goederen R, Van Veelen MLC, Dremmen MHG, Persing JA, Vrooman HA, Mathijssen IMJ. Intracranial hypertension and cortical thickness in syndromic craniosynostosis. Dev Med Child Neurol 2020; 62:799-805. [PMID: 32060907 DOI: 10.1111/dmcn.14487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
AIM To evaluate the impact of risk factors for intracranial hypertension (ICH) on cerebral cortex thickness in syndromic craniosynostosis. METHOD ICH risk factors including papilloedema, hydrocephalus, obstructive sleep apnea (OSA), cerebellar tonsillar position, occipitofrontal circumference (OFC) curve deflection, age, and sex were collected from the records of patients with syndromic craniosynostosis (Apert, Crouzon, Pfeiffer, Muenke, Saethre-Chotzen syndromes) and imaging. Magnetic resonance images were analysed and exported for statistical analysis. A linear mixed model was developed to determine correlations with cerebral cortex thickness changes. RESULTS In total, 171 scans from 107 patients (83 males, 88 females [including repeated scans], mean age 8y 10mo, range 1y 1mo-34y, SD 5y 9mo) were evaluated. Mean cortical thickness in this cohort was 2.78mm (SD 0.17). Previous findings of papilloedema (p=0.036) and of hydrocephalus (p=0.007) were independently associated with cortical thinning. Cortical thickness did not vary significantly by sex (p=0.534), syndrome (p=0.896), OSA (p=0.464), OFC (p=0.375), or tonsillar position (p=0.682). INTERPRETATION Detection of papilloedema or hydrocephalus in syndromic craniosynostosis is associated with significant changes in cortical thickness, supporting the need for preventative rather than reactive treatment strategies. WHAT THIS PAPER ADDS Papilloedema is associated with thinning of the cerebral cortex in syndromic craniosynostosis, independently of hydrocephalus.
Collapse
Affiliation(s)
- Alexander T Wilson
- Department of Plastic and Reconstructive Surgery, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Surgery, Section of Plastic Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Bianca K Den Ottelander
- Department of Plastic and Reconstructive Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robbin De Goederen
- Department of Plastic and Reconstructive Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - John A Persing
- Department of Surgery, Section of Plastic Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Henri A Vrooman
- Department of Radiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Medical Informatics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
22
|
Massimi L, Bianchi F, Frassanito P, Calandrelli R, Tamburrini G, Caldarelli M. Imaging in craniosynostosis: when and what? Childs Nerv Syst 2019; 35:2055-2069. [PMID: 31289853 DOI: 10.1007/s00381-019-04278-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Currently, the interest on craniosynostosis in the clinical practice is raised by their increased frequency and their genetic implications other than by the still existing search of less invasive surgical techniques. These reasons, together with the problem of legal issues, make the need of a definite diagnosis for a crucial problem, even in single-suture craniosynostosis (SSC). Although the diagnosis of craniosynostosis is primarily the result of physical examination, craniometrics measuring, and observation of the skull deformity, the radiological assessment currently plays an important role in the confirmation of the diagnosis, the surgical planning, and even the postoperative follow-up. On the other hand, in infants, the use of radiation or the need of sedation/anesthesia raises the problem to reduce them to minimum to preserve such a delicate category of patient from their adverse effects. METHODS, RESULTS AND CONCLUSIONS This review aims at summarizing the state of the art of the role of radiology in craniosynostosis, mainly focusing on indications and techniques, to provide an update not only to pediatric neurosurgeons or maxillofacial surgeons but also to all the other specialists involved in their management, like neonatologists, pediatricians, clinical geneticists, and pediatric neurologists.
Collapse
Affiliation(s)
- L Massimi
- Fondazione Policlinico Gemelli IRCCS, Neurochirurgia Infantile, Rome, Italy.
- Università Cattolica del Sacro Cuore, Istituto Neurochirurgia, Rome, Italy.
| | - F Bianchi
- Fondazione Policlinico Gemelli IRCCS, Neurochirurgia Infantile, Rome, Italy
| | - P Frassanito
- Fondazione Policlinico Gemelli IRCCS, Neurochirurgia Infantile, Rome, Italy
| | - R Calandrelli
- Polo scienze delle immagini, di laboratorio ed infettivologiche, Area diagnostica per immagini, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - G Tamburrini
- Fondazione Policlinico Gemelli IRCCS, Neurochirurgia Infantile, Rome, Italy
- Università Cattolica del Sacro Cuore, Istituto Neurochirurgia, Rome, Italy
| | - M Caldarelli
- Fondazione Policlinico Gemelli IRCCS, Neurochirurgia Infantile, Rome, Italy
- Università Cattolica del Sacro Cuore, Istituto Neurochirurgia, Rome, Italy
| |
Collapse
|
23
|
den Ottelander BK, de Goederen R, van Veelen MLC, van de Beeten SDC, Lequin MH, Dremmen MHG, Loudon SE, Telleman MAJ, de Gier HHW, Wolvius EB, Tjoa STH, Versnel SL, Joosten KFM, Mathijssen IMJ. Muenke syndrome: long-term outcome of a syndrome-specific treatment protocol. J Neurosurg Pediatr 2019; 24:415-422. [PMID: 31323628 DOI: 10.3171/2019.5.peds1969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The authors evaluated the long-term outcome of their treatment protocol for Muenke syndrome, which includes a single craniofacial procedure. METHODS This was a prospective observational cohort study of Muenke syndrome patients who underwent surgery for craniosynostosis within the first year of life. Symptoms and determinants of intracranial hypertension were evaluated by longitudinal monitoring of the presence of papilledema (fundoscopy), obstructive sleep apnea (OSA; with polysomnography), cerebellar tonsillar herniation (MRI studies), ventricular size (MRI and CT studies), and skull growth (occipital frontal head circumference [OFC]). Other evaluated factors included hearing, speech, and ophthalmological outcomes. RESULTS The study included 38 patients; 36 patients underwent fronto-supraorbital advancement. The median age at last follow-up was 13.2 years (range 1.3-24.4 years). Three patients had papilledema, which was related to ophthalmological disorders in 2 patients. Three patients had mild OSA. Three patients had a Chiari I malformation, and tonsillar descent < 5 mm was present in 6 patients. Tonsillar position was unrelated to papilledema, ventricular size, or restricted skull growth. Ten patients had ventriculomegaly, and the OFC growth curve deflected in 3 patients. Twenty-two patients had hearing loss. Refraction anomalies were diagnosed in 14/15 patients measured at ≥ 8 years of age. CONCLUSIONS Patients with Muenke syndrome treated with a single fronto-supraorbital advancement in their first year of life rarely develop signs of intracranial hypertension, in accordance with the very low prevalence of its causative factors (OSA, hydrocephalus, and restricted skull growth). This illustrates that there is no need for a routine second craniofacial procedure. Patient follow-up should focus on visual assessment and speech and hearing outcomes.
Collapse
Affiliation(s)
- Bianca K den Ottelander
- Departments of1Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, and
| | - Robbin de Goederen
- Departments of1Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, and
| | | | | | - Maarten H Lequin
- 3Department of Radiology, University Medical Center-Wilhelmina Children's Hospital, Utrecht; and
| | | | | | | | | | - Eppo B Wolvius
- 7Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics; and
| | - Stephen T H Tjoa
- 7Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics; and
| | - Sarah L Versnel
- Departments of1Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, and
| | - Koen F M Joosten
- 8Pediatric Intensive Care Unit, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Departments of1Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, and
| |
Collapse
|
24
|
Massimi L, Pennisi G, Frassanito P, Tamburrini G, Di Rocco C, Caldarelli M. Chiari type I and hydrocephalus. Childs Nerv Syst 2019; 35:1701-1709. [PMID: 31227858 DOI: 10.1007/s00381-019-04245-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The association between Chiari type I malformation (CIM) and hydrocephalus raises a great interest because of the still unclear pathogenesis and the management implications. The goal of this paper is to review the theories on the cause-effect mechanisms of such a relationship and to analyze the results of the management of this condition. METHODS A review of the literature has been performed, focusing on the articles specifically addressing the problem of CIM and hydrocephalus and on the series reporting about its treatment. Also, the personal authors' experience is briefly discussed. RESULTS As far as the pathogenesis is concerned, it seems clear that raised intracranial pressure due to hydrocephalus can cause a transient and reversible tonsillar caudal ectopia ("pressure from above" hypothesis), which is something different from CIM. A "complex" hypothesis, on the other hand, can explain the occurrence of hydrocephalus and CIM because of the venous engorgement resulting from the hypoplasia of the posterior cranial fossa (PCF) and the occlusion of the jugular foramina, leading to cerebellar edema (CIM) and CSF hypo-resorption (hydrocephalus). Nevertheless, such a mechanism can be advocated only in a minority of cases (syndromic craniosynostosis). In non-syndromic CIM subjects, the presence of hydrocephalus could be explained by an occlusion of the basal CSF pathways, which would occur completely in a minority of cases (only 7-10% of CIM patients show hydrocephalus) while it would be partial in the remaining cases (no hydrocephalus). This hypothesis still needs to be demonstrated. As far as the management is concerned, the strategy to treat the hydrocephalus first is commonly accepted. Because of the "obstructive" origin of CIM-related hydrocephalus, the use of endoscopic third ventriculostomy (ETV) is straightforward. Actually, the analysis of the literature, concerning 63 cases reported so far, reveals very high success rates of ETV in treating hydrocephalus (90.5%), CIM (78.5%), and syringomyelia symptoms (76%) as well as in giving a radiological improvement of both CIM (74%) and syringomyelia (89%). The failures of ETV were not attributable to CIM or syringomyelia. Only 11% of cases required PCF decompression after ETV. CONCLUSIONS The association between CIM and hydrocephalus probably results from different, multifactorial, and not yet completely understood mechanisms, which place the affected patients in a peculiar subgroup among those constituting the heterogeneous CIM population. ETV is confirmed as the best first approach for this subset of patients.
Collapse
Affiliation(s)
- Luca Massimi
- Fondazione Policlinico Gemelli IRCCS, Neurochirurgia Infantile, Roma, Italy.
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, Roma, Italy.
- International Neuroscience Institute, Hannover, Germany.
| | - Giovanni Pennisi
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Paolo Frassanito
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Gemelli IRCCS, Neurochirurgia Infantile, Roma, Italy
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Massimo Caldarelli
- Fondazione Policlinico Gemelli IRCCS, Neurochirurgia Infantile, Roma, Italy
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
25
|
The growth of the posterior cranial fossa in FGFR2-induced faciocraniosynostosis: A review. Neurochirurgie 2019; 65:221-227. [PMID: 31557489 DOI: 10.1016/j.neuchi.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/25/2019] [Accepted: 09/12/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND The growth of the posterior fossa in syndromic craniostenosis was studied in many papers. However, few studies described the pathophysiological growth mechanisms in non-operated infants with fibroblast growth factor receptor (FGFR) type 2 mutation (Crouzon, Apert or Pfeiffer syndrome), although these are essential to understanding cranial vault expansion and hydrocephalus treatment in these syndromes. OBJECTIVE A review of the medical literature was performed, to understand the physiological and pathological growth mechanisms of the posterior fossa in normal infants and infants with craniostenosis related to FGFR2 mutation. DISCUSSION Of the various techniques for measuring posterior fossa volume, direct slice-by-slice contouring is the most precise and sensitive. Posterior fossa growth follows a bi-phasic pattern due to opening of the petro-occipital, occipitomastoidal and spheno-occipital sutures. Some studies reported smaller posterior fossae in syndromic craniostenosis, whereas direct contouring studies reported no difference between normal and craniostenotic patients. In Crouzon syndrome, synchondrosis fusion occurs earlier than in normal subjects, and follows a precise pattern. This premature fusion in Crouzon syndrome leads to a stenotic foramen magnum and facial retrusion.
Collapse
|
26
|
Coll G, El Ouadih Y, Abed Rabbo F, Jecko V, Sakka L, Di Rocco F. Hydrocephalus and Chiari malformation pathophysiology in FGFR2-related faciocraniosynostosis: A review. Neurochirurgie 2019; 65:264-268. [PMID: 31525395 DOI: 10.1016/j.neuchi.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Patients with syndromic faciocraniosynostosis due to the mutation of the fibroblast growth factor receptor (FGFR) 2 gene present premature fusion of the coronal sutures and of the cranial base synchondrosis. Cerebrospinal fluid (CSF) circulation disorders and cerebellar tonsil prolapse are frequent findings in faciocraniosynostosis. OBJECTIVE We reviewed the medical literature on the pathophysiological mechanisms of CSF disorders such as hydrocephalus and of cerebellar tonsil prolapse in FGFR2-related faciocraniosynostosis. DISCUSSION Different pathophysiological theories have been proposed, but none elucidated all the symptoms present in Apert, Crouzon and Pfeiffer syndromes. The first theory that addressed CSF circulation disruption was the constrictive theory (cephalocranial disproportion): cerebellum and brain stem are constricted by the small volume of the posterior fossa. The second theory proposed venous hyperpressure due to jugular foramens stenosis. The most recent theory proposed a pressure differential between CSF in the posterior fossa and in the vertebral canal, due to foramen magnum stenosis.
Collapse
Affiliation(s)
- G Coll
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, SIGMA, Institut Pascal, Clermont-Ferrand, France.
| | - Y El Ouadih
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - F Abed Rabbo
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - V Jecko
- Service de Neurochirurgie, CHU Bordeaux, Bordeaux, France
| | - L Sakka
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - F Di Rocco
- Service de Neurochirurgie Pédiatrique, Hôpital Femme Mère Enfant, Lyon, France; Université Claude Bernard, INSERM 1033, Lyon, France
| |
Collapse
|
27
|
Lara-Reyna J, Carlton J, Parker WE, Greenfield JP. Synchronous complex Chiari malformation and cleft palate-a case-based review. Childs Nerv Syst 2018; 34:2353-2359. [PMID: 30128838 DOI: 10.1007/s00381-018-3950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/13/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND The association between mid-facial clefts and Chiari malformation in the medical literature has been restricted to patients with syndromic craniofacial abnormalities. A common shared developmental pathway including causative factors for facial clefts and "complex" Chiari malformations, both midline skull base pathologies, seems logical but has not been reported. The coincident presentation of these findings in a single patient, and our subsequent discovery of other patients harboring these mutual findings prompted further investigation. CASE ILLUSTRATION We describe the case of a patient born with a cleft palate which was repaired during his first year of life, subsequently presenting as a teenager to our hospital with a severe and symptomatic complex Chiari malformation. We discuss his treatment strategy, suboccipital decompression with occipitocervical fusion and endoscopic anterior decompression surgeries, as well as his favorable radiological and clinical outcome, demonstrated at long-interval follow-up. Furthermore, we review his two pathologies, cleft palate and Chiari malformation, and posit a common embryological linkage. CONCLUSIONS The embryologic interaction between the paraxial mesoderm and ectoderm may explain the co-occurrence of cleft palate and complex Chiari malformation in a single patient. Complete radiological, clinical, and genetic evaluation and counseling is advised in this situation and raises the question of whether the presence of a cleft palate independently increases the risk for other skull base developmental abnormalities.
Collapse
Affiliation(s)
- Jacques Lara-Reyna
- Department of Neurological Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, 520 East 70th Street, Starr Pavilion, Suite 651, New York, USA
| | - Johnny Carlton
- Department of Neurological Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, 520 East 70th Street, Starr Pavilion, Suite 651, New York, USA
| | - Whitney E Parker
- Department of Neurological Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, 520 East 70th Street, Starr Pavilion, Suite 651, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, 520 East 70th Street, Starr Pavilion, Suite 651, New York, USA.
| |
Collapse
|
28
|
Lu X, Forte AJ, Sawh-Martinez R, Wu R, Cabrejo R, Steinbacher DM, Alperovich M, Alonso N, Persing JA. Normal angulation of skull base in Apert syndrome. J Craniomaxillofac Surg 2018; 46:2042-2051. [DOI: 10.1016/j.jcms.2018.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/31/2018] [Accepted: 09/24/2018] [Indexed: 11/17/2022] Open
|
29
|
Morphometric Analysis of the Posterior Cranial Fossa in Syndromic and Nonsyndromic Craniosynostosis. J Craniofac Surg 2018; 28:e484-e488. [PMID: 28665854 DOI: 10.1097/scs.0000000000003797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Posterior cranial fossa (PCF) anatomy can be abnormal in craniosynostosis, and hindbrain herniation may occur. This study analyzed PCF anatomy in single suture and complex craniosynostosis.Children with craniosynostosis and age-matched controls were identified. Cephalic index (CI) for cranial vault and PCF as well as tentorial (TA) and occipital angles (OA) were measured on preoperative imaging.Children with syndromic (N = 6), bicoronal (N = 4), sagittal (N = 12), and metopic synostosis (N = 4) as well as controls (N = 10) were enrolled. Mean CI for cranial vault was 0.89, 0.93, 0.65, 0.74, and 0.78, respectively. Corresponding CI for PCF was 0.81, 0.93, 0.62, 0.74, and 0.78. Mean TA and OA were 45.4° and 96.6° in syndromic, 39.7° and 87.0° in bicoronal, 34.0 and 75.0° in sagittal, 39.7° and 87.0° in metopic synostosis, and 42.9° and 88.3° in controls.While CI, TA, and OA in metopic synostosis were similar to controls, abnormalities were found in syndromic, bicoronal, and sagittal synostosis. Syndromic and bicoronal craniosynostosis patients had a higher CI for both cranial vault and PFC as well as larger TA and OA, indicating a brachycephalic skull with steep tentorium and narrow PCF. In sagittal synostosis, CI for cranial vault and PCF were lower and TA and OA smaller, reflecting scaphocephalic deformity also at PCF, with a flat tentorium. This study provides basic PCF morphometry in craniofacial conditions.
Collapse
|
30
|
Pattern of Closure of Skull Base Synchondroses in Crouzon Syndrome. World Neurosurg 2018; 109:e460-e467. [DOI: 10.1016/j.wneu.2017.09.208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022]
|
31
|
Surgical correction of lambdoid synostosis – New technique and first results. J Craniomaxillofac Surg 2016; 44:1531-1535. [DOI: 10.1016/j.jcms.2016.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/17/2016] [Accepted: 07/29/2016] [Indexed: 11/18/2022] Open
|
32
|
Sakamoto H, Matsusaka Y, Kunihiro N, Imai K. Physiological Changes and Clinical Implications of Syndromic Craniosynostosis. J Korean Neurosurg Soc 2016; 59:204-13. [PMID: 27226850 PMCID: PMC4877541 DOI: 10.3340/jkns.2016.59.3.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/02/2022] Open
Abstract
Syndromic craniosynostosis has severe cranial stenosis and deformity, combined with hypoplastic maxillary bone and other developmental skeletal lesions. Among these various lesions, upper air way obstruction by hypoplastic maxillary bone could be the first life-threatening condition after birth. Aggressive cranial vault expansion for severely deformed cranial vaults due to multiple synostoses is necessary even in infancy, to normalize the intracranial pressure. Fronto-orbital advancement (FOA) is recommended for patients with hypoplastic anterior part of cranium induced by bicoronal and/or metopic synostoses, and posterior cranial vault expansion is recommended for those with flattening of the posterior part of the cranium by lambdoid synostosis. Although sufficient spontaneous reshaping of the cranium can be expected by expansive cranioplasty, keeping the cranial bone flap expanded sufficiently is often difficult when the initial expansion is performed during infancy. So far distraction osteogenesis (DO) is the only method to make it possible and to provide low rates of re-expansion of the cranial vault. DO is quite beneficial for both FOA and posterior cranial vault expansion, compared with the conventional methods. Associated hydrocephalus and chronic tonsillar herniation due to lambdoid synostosis can be surgically treatable. Abnormal venous drainages from the intracranial space and air way obstruction should be always considered at any surgical procedures. Neurosurgeons have to know well about the managements not only of the deformed cranial vault and the associated brain lesions but also of other multiple skeletal lesions associated with syndromic craniosynostosis, to improve treatment outcome.
Collapse
Affiliation(s)
- Hiroaki Sakamoto
- Department of Pediatric Neurosurgery, Osaka City General Hospital, Osaka, Japan
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Matsusaka
- Department of Pediatric Neurosurgery, Osaka City General Hospital, Osaka, Japan
| | - Noritsugu Kunihiro
- Department of Pediatric Neurosurgery, Osaka City General Hospital, Osaka, Japan
| | - Keisuke Imai
- Department of Plastic and Reconstructive Surgery, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|