1
|
Li Z, Tong Y, Wu Z, Liao B, Liu G, Xia L, Liu C, Zhao L. Management strategies to reduce microbial mercury methylation in constructed wetlands: Potential routes and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138009. [PMID: 40132266 DOI: 10.1016/j.jhazmat.2025.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Constructed wetlands (CWs) are widely recognized as the potential hotspots for producing highly toxic methylmercury (MeHg). This presents an obstacle to the widespread application of CWs. A comprehensive discussion on strategies to control mercury methylation in CWs is currently lacking. This review highlighted the potential impacts of differences in oxygen supply and consumption in various CWs, the characteristics of influent quality, the interactions between different substrates and mercury (including mercury adsorption, reduction), and plants on microbial mercury methylation in CWs. We also proposed the potential strategies for human intervention in regulating or controlling microbial mercury methylation in CWs, including oxygenation, nitrate inhibition, selection of substrates with high adsorption capacity, weak reducibility and low organic matter release, and plant management. Knowledge summarized in this review would help achieve a comprehensive understanding of various research gaps in previous studies and point out future research directions by focusing on CWs types, influent quality, substrates selection and plants management, to reduce the mercury methylation in CWs.
Collapse
Affiliation(s)
- Zhike Li
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bing Liao
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Lei Xia
- Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| | - Li Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| |
Collapse
|
2
|
Jin W, Yang Y, Jin J, Xu M, Zhang Z, Dong F, Shao M, Wan Y. Characterization of phosphate modified red mud-based composite materials and study on heavy metal adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43687-43703. [PMID: 38904876 DOI: 10.1007/s11356-024-33969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
In this paper, Bayer red mud (RM) and lotus leaf powder (LL) were used as the main materials, and KH2PO4 was added to modify the material. Under the condition of high-temperature carbonization, RMLL was prepared and phosphate modified red mud matrix composite (PRMLL) was prepared based on KH2PO4 modification, which can effectively remove Pb2+ from water. The optimum preparation and application conditions were determined through orthogonal experiment: dosage 0.1g, ratio 1:1, and temperature 600 °C. The effects of pH, dosage, and initial concentration on the adsorption of Pb2+ were studied. The pseudo-first-order, pseudo-second-order, and Elovich kinetic models were fitted to the experimental data. It was found that RMLL and PRMLL were more consistent with the pseudo-second-order kinetic model and chemisorption. Langmuir, Freundlich, Timkin, and Dubinin-Radushkevich isothermal adsorption models were used to fit the experimental data. It was found that RMLL and PRMLL were more consistent with Langmuir model. In addition, the maximum adsorption capacity of RMLL and PRMLL was 188.1 mg/g and 213.4 mg/g, respectively. It is larger than the adsorption capacity of their monomers. Therefore, the use of RMLL and PRMLL as the removal of Pb2+ from water is a potential application material.
Collapse
Affiliation(s)
- Wenlou Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yanzhi Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jiacheng Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingchen Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhipeng Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Fan Dong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Min Shao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yushan Wan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
3
|
Salama E, Samy M, Hassan HS, Mohamed S, Mensah K, Elkady MF. Chemical activation and magnetization of carbonaceous materials fabricated from waste plastics and their evaluation for methylene blue adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44863-44884. [PMID: 38954341 PMCID: PMC11255058 DOI: 10.1007/s11356-024-33729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/15/2024] [Indexed: 07/04/2024]
Abstract
In this study, novel adsorbents were synthesized via the activation and magnetization of carbon spheres, graphene, and carbon nanotubes fabricated from plastics to improve their surface area and porosity and facilitate their separation from aqueous solutions. Fourier transform infrared spectroscopy "FTIR", X-ray diffraction "XRD", energy-dispersive X-ray spectroscopy "EDX", transmission electron microscope "TEM", and X-ray photoelectron spectroscopy "XPS" affirmed the successful activation and magnetization of the fabricated materials. Further, surface area analysis showed that the activation and magnetization enhanced the surface area. The weight loss ratio decreased from nearly 60% in the case of activated graphene to around 25% after magnetization, and the same trend was observed in the other materials confirming that magnetization improved the thermal stability of the fabricated materials. The prepared carbonaceous materials showed superparamagnetic properties according to the magnetic saturation values obtained from vibrating sample magnetometry analysis, where the magnetic saturation values were 33.77, 38.75, and 27.18 emu/g in the presence of magnetic activated carbon spheres, graphene, and carbon nanotubes, respectively. The adsorption efficiencies of methylene blue (MB) were 76.9%, 96.3%, and 74.8% in the presence of magnetic activated carbon spheres, graphene, and carbon nanotubes, respectively. This study proposes efficient adsorbents with low cost and high adsorption efficiency that can be applied on an industrial scale to remove emerging pollutants.
Collapse
Affiliation(s)
- Eslam Salama
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Mahmoud Samy
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Hassan Shokry Hassan
- Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El Arab City, Alexandria, 21934, Egypt
| | - Safaa Mohamed
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Kenneth Mensah
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, 04469, USA
| | - Marwa F Elkady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El Arab City, Alexandria, 21934, Egypt
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
4
|
Xie DA, Sun Y, Yang YL, Shi XL, Suo G, Hou X, Ye X, Zhang L, Chen ZG. Remarkable purification of organic dyes by NiOOH-modified industrial waste residues. J Colloid Interface Sci 2024; 664:136-145. [PMID: 38460379 DOI: 10.1016/j.jcis.2024.02.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Extracting functional materials from industrial waste residues to absorb organic dyes can maximize waste reuse and minimize water pollution. However, the extraordinarily low purification efficiency still limits the practical application of this strategy. Herein, the lamellar NiOOH is in-situ anchored on the industrial waste red mud surface (ARM/NiOOH) as an adsorbent to purify organic dyes in wastewater. ARM/NiOOH adsorbent with high specific surface area and porosity provides considerable active sites for the congo red (CR), thereby significantly enhancing the removal efficiency of CR. Besides, we fit a reasonable adsorption model for ARM/NiOOH adsorbent and investigate its adsorption kinetics. Resultantly, ARM/NiOOH adsorbent can remarkably adsorb 348.0 mg g-1 CR within 5 min, which is 7.91 times that of raw RM. Our work provides a strategy for reusing industrial waste and purifying sewage pollution, which advances wastewater treatment engineering.
Collapse
Affiliation(s)
- De-An Xie
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yu Sun
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yan-Ling Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Guoquan Suo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xiaojiang Hou
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xiaohui Ye
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Li Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
5
|
Yu D, Guo X, Wang A, Wu Z, Shi J. Simulation and parameter determination of the net sorption of phenanthrene by sediment particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116440. [PMID: 38733806 DOI: 10.1016/j.ecoenv.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The distribution of polycyclic aromatic hydrocarbons (PAHs) in the ocean is affected by the sorption-desorption process of sediment particles. This process is determined by the concentration of PAHs in seawater, water temperature, and organic matter content of sediment particles. Quantitative relationships between the net sorption rates (=the difference of sorption and desorption rates) and these factors have not been established yet and used in PAH transport models. In this study, phenanthrene was chosen as the representative of PAHs. Three groups of experimental data were collected to address the dependence of the net sorption processes on the initial concentration, water temperature, and organic carbon content representing organic matter content. One-site and two-compartment mass-transfer models were tested to represent the experimental data using various parameters. The results showed that the two-compartment mass-transfer model performed better than the one-site mass-transfer model. The parameters of the two-compartment mass-transfer model include the sorption rate coefficients kafand kas (L g-1 min-1), and the desorption rate coefficients kdf and kds (min-1). The parameters at different temperatures and organic carbon contents were obtained by numerical simulations. Linear relationships were obtained between the parameters and water temperature, as well as organic carbon content. kaf, kas and kdf decreased linearly, while kds increased linearly with temperature. kaf, kas and kdf increased linearly, while kds decreased linearly with organic carbon content. The r2 values between the simulation results based on the relationships and the experimental results reached 0.96-0.99, which supports the application of the model to simulate sorption-desorption processes at different water temperatures and organic carbon contents in a realistic ocean.
Collapse
Affiliation(s)
- Donglin Yu
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xinyu Guo
- Center for Marine Environmental Studies, Ehime University2-5 Bunkyo-cho, Matsuyama 790-8577,Japan
| | - Aobo Wang
- School of Hydraulic Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Zhaosen Wu
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jie Shi
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Zhao BY, Yang XL, Liu XK, Shi Q, Liu YR, Wang L. Study on the cyclic adsorption performance of biomass composite membrane for Hg(II). ENVIRONMENTAL TECHNOLOGY 2023; 44:3777-3790. [PMID: 35481789 DOI: 10.1080/09593330.2022.2071644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Salix psammophila wood flour /polyvinyl alcohol hydrogel composite membrane (SPPM) with high adsorption capacity and good cycle adsorption performance was prepared by wet spinning technology. The SPPM was characterised by the scanning electron microscope (SEM), specific surface area test (BET), energy dispersive spectrum (EDS) thermal gravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), and x-ray photoelectron spectroscopy (XPS). The results showed that the surface of SPPM is rough and porous, with good pore structure and thermal stability, and mercury ions (Hg(II)) have been successfully adsorbed on SPPM. At the same time, the effects of adsorption conditions (Hg(II) initial concentration, pH, adsorption time, and temperature) on the adsorption performance of SPPM were studied. Results from the adsorption experiment showed that the adsorption capacity of SPPM for Hg(II) can reach 426 mg/g. After four adsorption and desorption experiments, the adsorption capacity can reach 375 mg/g, which indicates that SPPM has good cycle adsorption performance. The adsorption kinetics was better described by the Pseudo-second-order kinetic, and their adsorption isotherms were fitted for the Langmuir model. The obtained results showed that SPPM is an available, economical adsorbent and was found suitable for removing Hg(II) from an aqueous solution.
Collapse
Affiliation(s)
- Bai-Yun Zhao
- College of Material Science and Art Design, Laboratory of Fibrosis and Energy Utilisation of Shrubby Resources in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Xing-Lin Yang
- College of Material Science and Art Design, Laboratory of Fibrosis and Energy Utilisation of Shrubby Resources in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Xiao-Kai Liu
- College of Material Science and Art Design, Laboratory of Fibrosis and Energy Utilisation of Shrubby Resources in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Qi Shi
- College of Material Science and Art Design, Laboratory of Fibrosis and Energy Utilisation of Shrubby Resources in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Yan-Rong Liu
- College of Material Science and Art Design, Laboratory of Fibrosis and Energy Utilisation of Shrubby Resources in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Li Wang
- College of Material Science and Art Design, Laboratory of Fibrosis and Energy Utilisation of Shrubby Resources in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| |
Collapse
|
7
|
Neelgund GM, Jimenez EA, Ray RL, Kurkuri MD. Facilitated Adsorption of Mercury(II) and Chromium(VI) Ions over Functionalized Carbon Nanotubes. TOXICS 2023; 11:545. [PMID: 37368645 DOI: 10.3390/toxics11060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
By considering the importance of water and its purity, herein, a powerful adsorbent has been developed for the adsorption of two toxic contaminants that commonly exist in water, viz., divalent mercury and hexavalent chromium. The efficient adsorbent, CNTs-PLA-Pd, was prepared by covalent grafting polylactic acid to carbon nanotubes and subsequent deposition of palladium nanoparticles. The CNTs-PLA-Pd could adsorb Hg(II), and Cr(VI) entirely exists in water. The adsorption rate for Hg(II) and Cr(VI) was rapid at initial stage, followed by gradual decrease, and attained the equilibrium. The Hg(II) and Cr(VI) adsorption was perceived within 50 min and 80 min, respectively with CNTs-PLA-Pd,. Further, experimental data for Hg(II) and Cr(VI) adsorption was analyzed, and kinetic parameters were estimated using pseudo-first and second-order models. The adsorption process of Hg(II) and Cr(VI) followed the pseudo-second-order kinetics, and the rate-limiting step in the adsorption was chemisorption. The Weber-Morris intraparticle pore diffusion model revealed that the Hg(II) and Cr(VI) adsorption over CNTs-PLA-Pd occurs through multiple phases. The experimental equilibrium parameters for the Hg(II) and Cr(VI) adsorption were estimated by Langmuir, Freundlich, and Temkin isotherms models. All three models were well suited and demonstrated that Hg(II) and Cr(VI) adsorption over CNTs-PLA-Pd transpires through monolayer molecular covering and chemisorption.
Collapse
Affiliation(s)
- Gururaj M Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Erica A Jimenez
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Ram L Ray
- College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru 562 112, Karnataka, India
| |
Collapse
|
8
|
Ferreira N, Viana T, Henriques B, Tavares DS, Jacinto J, Colónia J, Pinto J, Pereira E. Application of response surface methodology and box-behnken design for the optimization of mercury removal by Ulva sp. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130405. [PMID: 36437192 DOI: 10.1016/j.jhazmat.2022.130405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Mercury (Hg) is a global and top priority contaminant, toxic at low concentrations. Although it has been progressively eliminated from processes, this metal continues to circulate in the atmosphere, soil, and water. In this work, the Response Surface Methodology (RSM) combined with a Box-Behnken Design (3 factors - 3 levels) was used to optimize key operational conditions that influence the removal and uptake of Hg by living macroalga Ulva sp. in a complex mixture containing several elements used in industry (potentially toxic elements, rare earth elements, and platinum-group elements) (initial concentration 10, 100 and 190 µg/L, salinity 15, 25 and 35, seaweed stock density 1.0, 3.0 and 5.0 g/L). Results evidenced the great capability of Ulva sp. to remove Hg, with removal efficiencies between 69 % and 97 %. 3-D surfaces showed that the most impactful variable was seaweed stock density, with higher densities leading to higher removal. Regarding the uptake, a positive correlation between initial concentration and qt values was observed. The appliance of RSM made possible to obtain optimal operating conditions for removing virtually 100 % of Hg from waters with high ionic strength, which is a pivotal step in the direction of the application of this remediation biotechnology at large scale.
Collapse
Affiliation(s)
- Nicole Ferreira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Thainara Viana
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Central Laboratory of Analysis, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela S Tavares
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jéssica Jacinto
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Colónia
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Central Laboratory of Analysis, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Salama E, Samy M, Shokry H, El-Subruiti G, El-Sharkawy A, Hamad H, Elkady M. The superior performance of silica gel supported nano zero-valent iron for simultaneous removal of Cr (VI). Sci Rep 2022; 12:22443. [PMID: 36575278 PMCID: PMC9794730 DOI: 10.1038/s41598-022-26612-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Pure nano zero-valent iron (NZVI) was fabricated under optimum conditions based on material production yield and its efficiency toward acid blue dye-25 decolorization. The optimum prepared bare NZVI was immobilized with two different supports of silica and starch to fabricate their composites nanomaterials. The three different prepared zero-valent iron-based nanomaterials were evaluated for removal of hexavalent chromium (Cr(VI)). The silica-modified NZVI recorded the most outstanding removal efficiency for Cr(VI) compared to pristine NZVI and starch-modified NZVI. The removal efficiency of Cr(VI) was improved under acidic conditions and decreased with raising the initial concentration of Cr(VI). The co-existence of cations, anions, and humic acid reduced Cr(VI) removal efficiency. The removal efficiency was ameliorated from 96.8% to 100% after adding 0.75 mM of H2O2. The reusability of silica-modified NZVI for six cycles of Cr(VI) removal was investigated and the removal mechanism was suggested as the physicochemical process. Based on Langmuir isotherm, the maximal Cr(VI) removal capacity attained 149.25 mg/g. Kinetic and equilibrium data were efficiently fitted using the pseudo-second-order and Langmuir models, respectively confirming the proposed mechanism. Diffusion models affirmed that the adsorption rate was governed by intraparticle diffusion. Adsorption thermodynamic study suggested the spontaneity and exothermic nature of the adsorption process. This study sheds light on the technology that has potential for magnetic separation and long-term use for effective removal of emerging water pollutants.
Collapse
Affiliation(s)
- Eslam Salama
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Mahmoud Samy
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Hassan Shokry
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Gehan El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, Egypt
| | - Asmaa El-Sharkawy
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, Egypt
| | - Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Marwa Elkady
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
10
|
Novel preparation of sludge-based spontaneous magnetic biochar combination with red mud for the removal of Cu2+ from wastewater. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Khurshid H, Mustafa MRU, Isa MH. Adsorption of chromium, copper, lead and mercury ions from aqueous solution using bio and nano adsorbents: A review of recent trends in the application of AC, BC, nZVI and MXene. ENVIRONMENTAL RESEARCH 2022; 212:113138. [PMID: 35364043 DOI: 10.1016/j.envres.2022.113138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Recent trends in adsorption of Chromium (Cr), Copper (Cu), Lead (Pb) and Mercury (Hg) in wastewater using (i) carbonaceous materials including activated carbon (AC) and biochar (BC), and (ii) nanomaterials including nano zero-valent iron (nZVI) and MXenes have been discussed in this paper. It has been found that adsorption capacity depends largely on the adsorbent modification technique, initial pH of wastewater, dosage of adsorbent, contact time and initial concentration of the pollutants. The pH value ranges for maximum removal of Cr, Cu, Pb and Hg have been reported as 2-4, 5-6, 5-8 and 3-8, respectively. Up to 99% removal of metals has been reported using AC, BC, nZVI and MXene. The mechanism involves the reduction and chemical adsorption of metals. AC and BC have a higher surface area (up to 5000 m2/g) compared to nZVI (up to 500 m2/g) and MXene (up to 67.66 m2/g). However, the higher reactivity and regeneration capacity of nZVI and MXene make them suitable adsorbents. From a practical point of view the application of adsorbents for real effluents, cost analysis, regeneration capability and reuse of heavy metals are some aspects that need attention in future studies. The removal efficiencies of AC and BC are comparable to the nZVI and MXene. The cost analysis may be an attractive aspect to decide the future application of these adsorbents at large scale.
Collapse
Affiliation(s)
- Hifsa Khurshid
- Department of Civil & Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Muhammad Raza Ul Mustafa
- Department of Civil & Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
| | - Mohamed Hasnain Isa
- Civil Engineering Programme, Faculty of Engineering, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam
| |
Collapse
|