1
|
Jia X, He K, Cai L, Liu Y, Li H, Dong X, He M, Zhang L, Le G, Wang S, Chen J. Coaxially fabricated electrospinning near-infrared light-responsive nanofibrous membranes for combating drug-resistant bacteria. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138106. [PMID: 40199072 DOI: 10.1016/j.jhazmat.2025.138106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/08/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Nowadays, the rapid emergence of drug-resistant bacteria has posed a global threat to the public health, leading to increased cost of environmental hygiene and healthcare treatment, which urges the development of safe and efficient antibacterial strategies. Here, coaxially fabricated electrospun nanofibrous membrane (ENMs) consisted of quercetin (Qu) stabilized selenium nanoparticles (Qu@SeNPs) and electro-synthesized molybdenum disulfide (MoS2) nanosheets were facilely formed as core/shell structure with polyvinyl alcohol (PVA) and α-Lipoic acid (LA) as cross-linker. The obtained ENMs formed by core-shell PVA/MoS2/LA/Qu@SeNPs (PMLQS) showed good air permeability and near-infrared-light photothermal responsiveness to kill bacteria efficiently. Moreover, the obtained ENMs resembling extracellular matrix-like properties showed superior biocompatibility with negligible development toxicity of zebrafish. The antibacterial experiments indicated that the produced PMLQS fibrous membrane exhibited more pronounced bactericidal activity against Gram-positive (G+) Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) as compared to that of Gram-negative (G-) Escherichia coli (E. coli). Furthermore, transcriptomic analysis revealed MRSA inactivation by PMLQS ENMs involved disruption of ion transport, antioxidant system, carbohydrate metabolism and energy metabolism. Notably, the MRSA ADI pathway was also blocked supporting the minimized antibiotic resistance development. Therefore, the constructed near-infrared light-responsive PMLQS nanofibrous membrane held promise in tackling drug-resistant bacteria with enormous environmental and biomedical utilizations.
Collapse
Affiliation(s)
- Xiaoyu Jia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kaiting He
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxiao Dong
- Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| | - Min He
- Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guannan Le
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shoulin Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Wang C, Liang F, Wang L, Sun Y, Xu LC, Zhang J, Pan Y, Shen J, Yin M, Yuan J. Bilayer vascular grafts separately composited with nitric oxide-releasing keratin conjugates and hydrogen sulfide-releasing heparin conjugates. Int J Biol Macromol 2025; 307:141887. [PMID: 40064264 DOI: 10.1016/j.ijbiomac.2025.141887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Gasotransmitters such as nitric oxide (NO) and hydrogen sulfide (H2S) play crucial roles in various physiological and pathological processes, including angiogenesis, vascular homeostasis, thrombosis, inflammation, and remodeling. In addition to playing their respective roles, these two gasotransmitters act synergistically to regulate physiological pathways. This study designed and fabricated bilayer tissue-engineered vascular grafts with respective dual NO and H2S release capability for vascular cell regulation according to the spatiotemporal regulation strategy. Keratin/methacrylated arginine conjugate (KMA) was prepared and then electrospun with poly(ε-caprolactone) (PCL) with NO release potential, serving as the inner layer of grafts. For the outer layer of grafts with H2S release capability, heparin/4-aminobenzothioamide conjugate (HAT) was synthesized and then coaxially electrospun with PCL. These two conjugates could retain keratin's good biocompatibility and heparin's anticoagulation nature. The bilayer grafts selectively promoted the proliferation of HUVECs and inhibited the abnormal proliferation of HUASMCs. More importantly, the release of NO and H2S can stimulate the secretion of the other, thus resulting in a synergistic effect. In addition, these grafts exhibited antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the grafts could modulate macrophage polarization toward the M2 phenotype. In rat models with abdominal aorta replacement for 1 month of implantation, the grafts facilitated rapid endothelialization with enhanced anticoagulant and anti-calcification properties. These findings suggest that these bilayer grafts are promising candidates for small-diameter tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Chenshu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yu Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Jie Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, PR China.
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Li M, Zhang Y, Xu B, Ren H, Gao Y, Wu J. Gelatinase-responsive core-shell nanofiber membranes for anti-adhesion applications. Int J Biol Macromol 2025; 296:139725. [PMID: 39805436 DOI: 10.1016/j.ijbiomac.2025.139725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Dressings are prone to adhering to new tissues, leading to secondary harm to the wound during dressing replacement. To address this issue, many strategies have been proposed to endow dressings with anti-adhesive functions. However, the introduction of exogenous agents or stimuli is always needed, and difficulty in achieving adaptive removal is also present. Herein, an endogenous gelatinase-responsive core-shell nanofiber membrane containing hydroxy-terminated polydimethylsiloxane (HTPDMS) was developed for anti-adhesion applications. The core-shell nanofiber membrane is created via coaxial electrospinning technique, where a mixture of gelatin and polycaprolactone (PCL) serves as shell layer and HTPDMS serves as core layer. In the presence of gelatinase, the gelatin component in shell layer is degraded, and many grooves are formed on the surface, which provide channels for the migration of HTPDMS with low surface energy, further forming a hydrophobic lubricating coating on the rough surface. This coating enhances the hydrophobicity of the membrane while significantly reducing its protein adsorption characteristics and adhesion to isolated tissues. Moreover, the current nanofiber membrane is highly cytocompatible with L929 mouse fibroblasts. This finding provides a proof-of-concept for an anti-adhesive nanofiber membrane for adaptive removal and demonstrates great potential for alleviating patient discomfort during dressing replacement and enhancing wound healing.
Collapse
Affiliation(s)
- Mengwei Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanan Zhang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haotian Ren
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Jiangsu Province for Silk Engineering, Soochow University, Suzhou 215123, China.
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Iurilli M, Porrelli D, Turco G, Lagatolla C, Camurri Piloni A, Medagli B, Nicolin V, Papa G. Electrospun Collagen-Coated Nanofiber Membranes Functionalized with Silver Nanoparticles for Advanced Wound Healing Applications. MEMBRANES 2025; 15:39. [PMID: 39997665 PMCID: PMC11857158 DOI: 10.3390/membranes15020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025]
Abstract
Complex wounds pose a significant healthcare challenge due to their susceptibility to infections and delayed healing. This study focuses on developing electrospun polycaprolactone (PCL) nanofiber membranes coated with Type I collagen derived from bovine skin and functionalized with silver nanoparticles (AgNPs) to address these issues. The collagen coating enhances biocompatibility, while AgNPs synthesized through chemical reduction with sodium citrate provide broad-spectrum antimicrobial properties. The physical properties of the membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Results showed the formation of nanofibers without defects and the uniform distribution of AgNPs. A swelling test and contact angle measurements confirmed that the membranes provided an optimal environment for wound healing. In vitro biological assays with murine 3T3 fibroblasts revealed statistically significant (p ≤ 0.05) differences in cell viability among the membranes at 24 h (p = 0.0002) and 72 h (p = 0.022), demonstrating the biocompatibility of collagen-coated membranes and the minimal cytotoxicity of AgNPs. Antibacterial efficacy was evaluated against Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), and Vancomycin-resistant Enterococcus (VRE), with the significant inhibition of biofilm formation observed for VRE (p = 0.006). Overall, this novel combination of collagen-coated electrospun PCL nanofibers with AgNPs offers a promising strategy for advanced wound dressings, providing antimicrobial benefits. Future in vivo studies are warranted to further validate its clinical and regenerative potential.
Collapse
Affiliation(s)
- Martin Iurilli
- Plastic and Reconstructive Surgery Unit, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (M.I.); (G.P.)
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Davide Porrelli
- Department of Life Sciences, University of Trieste, Via Alexander Fleming 31/B, 34127 Trieste, Italy
| | - Gianluca Turco
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy; (G.T.); (A.C.P.); (B.M.); (V.N.)
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, Via Alexander Fleming 22, 34127 Trieste, Italy;
| | - Alvise Camurri Piloni
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy; (G.T.); (A.C.P.); (B.M.); (V.N.)
| | - Barbara Medagli
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy; (G.T.); (A.C.P.); (B.M.); (V.N.)
| | - Vanessa Nicolin
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy; (G.T.); (A.C.P.); (B.M.); (V.N.)
| | - Giovanni Papa
- Plastic and Reconstructive Surgery Unit, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (M.I.); (G.P.)
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| |
Collapse
|
5
|
Dai X, Nie W, Shen H, Machens HG, Böker K, Taheri S, Lehmann W, Shen Y, Schilling AF. Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair. Regen Biomater 2024; 12:rbae139. [PMID: 39803356 PMCID: PMC11723536 DOI: 10.1093/rb/rbae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors. The design of 'smart' systems provides not merely physical support, but also microenvironmental cues that can guide regenerative tissue repair. Electrospun nanofibrous matrices are regarded as a highly promising tool in this area, as they can serve as both an extracellular matrix (ECM)-mimicking scaffold and a vehicle for the delivery of bioactive proteins. Their highly porous architecture and high surface-to-volume ratio facilitate the loading of drugs and mass transfer. By employing a judicious selection of materials and processing techniques, there is considerable flexibility in efficiently customizing nanofiber architecture and incorporating bioactive proteins. This article presents a review of the strategies employed for the structural modification and protein delivery of electrospun nanofibrous materials, with a focus on the objective of achieving a tailored tissue response. The article goes on to discuss the challenges currently facing the field and to suggest future research directions.
Collapse
Affiliation(s)
- Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Nie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27103, USA
| | - Hua Shen
- Department of Plastic and Reconstructive Surgery, Shanghai First People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, Faculty of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Kai Böker
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| |
Collapse
|
6
|
Huang H, Pu H, Fan J, Yang H, Zhao Y, Ha X, Li R, Jiao D, Guo Z. High-Quality Conductive Network Films Constructed from Carbon Nanotube/Carbon Nanofiber Composites via Electrospinning for Electrothermal Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1646. [PMID: 39452982 PMCID: PMC11510678 DOI: 10.3390/nano14201646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
In this study, carbon nanotube (CNT)/carbon nanofiber (CNF) composite electrothermal films were prepared by electrospinning, and the effects of the CNT content and carbonization temperature on the electrothermal properties of the CNT/CNF composite films were investigated. The experimental results demonstrated that the conductivity of the CNT/CNF composite electrothermal film (0.006-6.89 S/cm) was directly affected by the CNT content and carbonization temperature. The electrothermal properties of the CNT/CNF positively correlated with the CNT content, carbonization temperature, and applied voltage. The surface temperature of CNT/CNF can be controlled within 30-260 °C, and continuously heated and cooled 100 times without any loss. The convective heat transfer with air is controllable between 0.008 and 31.75. The radiation heat transfer is controllable between 0.29 and 1.92. The prepared CNT/CNF exhibited a heat transfer efficiency of up to 94.5%, and melted a 1 cm thick ice layer within 3 min by thermal convection and radiation alone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zeyu Guo
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.H.); (J.F.); (H.Y.); (Y.Z.); (X.H.); (R.L.); (D.J.)
| |
Collapse
|
7
|
Díaz-Puertas R, Rodríguez-Cañas E, Lozoya-Agulló MJ, Badía-Hernández PV, Álvarez-Martínez FJ, Falcó A, Mallavia R. Bovine serum albumin and lysozyme nanofibers as versatile platforms for preserving loaded bioactive compounds. Int J Biol Macromol 2024; 280:136019. [PMID: 39341317 DOI: 10.1016/j.ijbiomac.2024.136019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
In this study, the electrospinning procedure was optimized to create polyethylene oxide (PEO) NFs highly enriched in proteins with non-structural functions while preserving their activity. For this purpose, several immune-related proteins of low, medium and high molecular weights were used as molecular models. Initially, the electrospinning parameters were adjusted using 3 % w/w PEO and bovine serum albumin (BSA, 5-20 % w/w). As determined by FESEM, their average diameters ranged from 301 to 752 nm, and those with higher protein content (15-20 %) yielded more uniform NFs in both size and morphology terms. Protein integrity remained stable as determined by SDS-PAGE and FTIR. Similar results were observed for the polypeptide lysozyme (LYZ) when incorporated in NFs under these settings. To further explore the potential of these materials, the antimicrobial peptide piscidin (PIS) and an antibody (Ab, HRP-IgG) were used to produce BSA/PIS, LYZ/PIS and BSA/Ab NFs and evaluate the preservation of their activity. The antibacterial assays showed that, in most bacterial species, the activity of PIS remained consistent after being incorporated into the NFs. Furthermore, the activity of HRP-IgG was maintained within the NFs, with enhanced preservation observed in BSA/Ab NFs. These findings expand the possibilities of protein utilization across various applications through nanomaterials.
Collapse
Affiliation(s)
- Rocío Díaz-Puertas
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Enrique Rodríguez-Cañas
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - María Jesús Lozoya-Agulló
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Pedro Valentín Badía-Hernández
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Francisco Javier Álvarez-Martínez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Alberto Falcó
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Spanish National Research Council (IATS-CSIC), 12595 Cabanes, Castellón, Spain.
| | - Ricardo Mallavia
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| |
Collapse
|
8
|
Gorantla A, Hall JTVE, Troidle A, Janjic JM. Biomaterials for Protein Delivery: Opportunities and Challenges to Clinical Translation. MICROMACHINES 2024; 15:533. [PMID: 38675344 PMCID: PMC11052476 DOI: 10.3390/mi15040533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The development of biomaterials for protein delivery is an emerging field that spans materials science, bioengineering, and medicine. In this review, we highlight the immense potential of protein-delivering biomaterials as therapeutic options and discuss the multifaceted challenges inherent to the field. We address current advancements and approaches in protein delivery that leverage stimuli-responsive materials, harness advanced fabrication techniques like 3D printing, and integrate nanotechnologies for greater targeting and improved stability, efficacy, and tolerability profiles. We also discuss the demand for highly complex delivery systems to maintain structural integrity and functionality of the protein payload. Finally, we discuss barriers to clinical translation, such as biocompatibility, immunogenicity, achieving reliable controlled release, efficient and targeted delivery, stability issues, scalability of production, and navigating the regulatory landscape for such materials. Overall, this review summarizes insights from a survey of the current literature and sheds light on the interplay between innovation and the practical implementation of biomaterials for protein delivery.
Collapse
Affiliation(s)
- Amogh Gorantla
- Department of Engineering, Wake Forest University, Winston-Salem, NC 27109, USA;
| | | | | | - Jelena M. Janjic
- School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| |
Collapse
|
9
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
10
|
Ke Q, Ma K, Zhang Y, Meng Q, Huang X, Kou X. Antibacterial aroma compounds as property modifiers for electrospun biopolymer nanofibers of proteins and polysaccharides: A review. Int J Biol Macromol 2023; 253:126563. [PMID: 37657584 DOI: 10.1016/j.ijbiomac.2023.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kangning Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
11
|
Shangguan W, Xu H, Ding W, Chen H, Mei X, Zhao P, Cao C, Huang Q, Cao L. Nano-Micro Core-Shell Fibers for Efficient Pest Trapping. NANO LETTERS 2023; 23:11809-11817. [PMID: 38048290 DOI: 10.1021/acs.nanolett.3c03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Insect sex pheromones as an alternative to chemical pesticides hold promising prospects in pest control. However, their burst release and duration need to be optimized. Herein, pheromone-loaded core-shell fibers composed of degradable polycaprolactone and polyhydroxybutyrate were prepared by coaxial electrospinning. The results showed that this core-shell fiber had good hydrophobic performance and thermal stability, and the light transmittance in the ultraviolet band was only below 40%, which provided protection to pheromones. The core-shell structure alleviated the burst release of pheromone in the fiber and extended the release time to about 133 days. In the field, the pheromone-loaded core-shell fibers showed the same continuous and efficient trapping of Spodoptera litura as the commercial carriers. More importantly, the electrospun fibers combined with biomaterials had a degradability unmatched by commercial carriers. The structure design strategy provides ideas for the innovative design of pheromone carriers and is a potential tool for the management of agricultural pests.
Collapse
Affiliation(s)
- Wenjie Shangguan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Hongliang Xu
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Wanlong Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Huiping Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangdong Mei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengyue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Sarma S, Deka DJ, Rajak P, Laloo D, Das T, Chetia P, Saha D, Bharali A, Deka B. Potential injectable hydrogels as biomaterials for central nervous system injury: A narrative review. IBRAIN 2023; 9:402-420. [PMID: 38680508 PMCID: PMC11045191 DOI: 10.1002/ibra.12137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 05/01/2024]
Abstract
Numerous modalities exist through which the central nervous system (CNS) may sustain injury or impairment, encompassing traumatic incidents, stroke occurrences, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Presently available pharmacological and therapeutic interventions are incapable of restoring or regenerating damaged CNS tissue, leading to substantial unmet clinical needs among patients with CNS ailments or injuries. To address and facilitate the recovery of the impaired CNS, cell-based repair strategies encompass multiple mechanisms, such as neuronal replacement, therapeutic factor secretion, and the promotion of host brain plasticity. Despite the progression of cell-based CNS reparation as a therapeutic strategy throughout the years, substantial barriers have impeded its widespread implementation in clinical settings. The integration of cell technologies with advancements in regenerative medicine utilizing biomaterials and tissue engineering has recently facilitated the surmounting of several of these impediments. This comprehensive review presents an overview of distinct CNS conditions necessitating cell reparation, in addition to exploring potential biomaterial methodologies that enhance the efficacy of treating brain injuries.
Collapse
Affiliation(s)
- Santa Sarma
- Girijananda Chowdhury Institute of Pharmaceutical ScienceAssam Science and Technology UniversityGuwahatiAssamIndia
| | - Dhruva J. Deka
- Girijananda Chowdhury Institute of Pharmaceutical ScienceAssam Science and Technology UniversityGuwahatiAssamIndia
| | - Prakash Rajak
- Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhAssamIndia
| | - Damiki Laloo
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| | - Trishna Das
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| | - Purbajit Chetia
- Department of PharmacologyNETES Institute of Pharmaceutical Science, Nemcare Group of Institutes, MirzaGuwahatiAssamIndia
| | - Dipankar Saha
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| | - Alakesh Bharali
- Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhAssamIndia
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| | - Bhargab Deka
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| |
Collapse
|
13
|
Si L, Guo X, Bera H, Chen Y, Xiu F, Liu P, Zhao C, Abbasi YF, Tang X, Foderà V, Cun D, Yang M. Unleashing the healing potential: Exploring next-generation regenerative protein nanoscaffolds for burn wound recovery. Asian J Pharm Sci 2023; 18:100856. [PMID: 38204470 PMCID: PMC10777420 DOI: 10.1016/j.ajps.2023.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 01/12/2024] Open
Abstract
Burn injury is a serious public health problem and scientists are continuously aiming to develop promising biomimetic dressings for effective burn wound management. In this study, a greater efficacy in burn wound healing and the associated mechanisms of α-lactalbumin (ALA) based electrospun nanofibrous scaffolds (ENs) as compared to other regenerative protein scaffolds were established. Bovine serum albumin (BSA), collagen type I (COL), lysozyme (LZM) and ALA were separately blended with poly(ε-caprolactone) (PCL) to fabricate four different composite ENs (LZM/PCL, BSA/PCL, COL/PCL and ALA/PCL ENs). The hydrophilic composite scaffolds exhibited an enhanced wettability and variable mechanical properties. The ALA/PCL ENs demonstrated higher levels of fibroblast proliferation and adhesion than the other composite ENs. As compared to PCL ENs and other composite scaffolds, the ALA/PCL ENs also promoted a better maturity of the regenerative skin tissues and showed a comparable wound healing effect to Collagen spongeⓇ on third-degree burn model. The enhanced wound healing activity of ALA/PCL ENs compared to other ENs could be attributed to their ability to promote serotonin production at wound sites. Collectively, this investigation demonstrated that ALA is a unique protein with a greater potential for burn wound healing as compared to other regenerative proteins when loaded in the nanofibrous scaffolds.
Collapse
Affiliation(s)
- Liangwei Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Fangfang Xiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Peixin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chunwei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yasir Faraz Abbasi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| |
Collapse
|
14
|
Mares-Bou S, Serrano MA, Gómez-Tejedor JA. Core-Shell Polyvinyl Alcohol (PVA) Base Electrospinning Microfibers for Drug Delivery. Polymers (Basel) 2023; 15:polym15061554. [PMID: 36987334 PMCID: PMC10056133 DOI: 10.3390/polym15061554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, electrospun membranes were developed for controlled drug release applications. Both uniaxial Polyvinyl alcohol (PVA) and coaxial fibers with a PVA core and a poly (L-lactic acid) (PLLA) and polycaprolactone (PCL) coating were produced with different coating structures. The best conditions for the manufacture of the fibers were also studied and their morphology was analyzed as a function of the electrospinning parameters. Special attention was paid to the fiber surface morphology of the coaxial fibers, obtaining both porous and non-porous coatings. Bovine serum albumin (BSA) was used as the model protein for the drug release studies and, as expected, the uncoated fibers were determined to have the fastest release kinetics. Different release rates were obtained for the coated fibers, which makes this drug release system suitable for different applications according to the release time required.
Collapse
Affiliation(s)
- Sofía Mares-Bou
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - María-Antonia Serrano
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José Antonio Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER-BBN, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Instituto de Salud Carlos III, 46022 Valencia, Spain
| |
Collapse
|
15
|
Diep E, Schiffman JD. Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS APPLIED BIO MATERIALS 2023; 6:951-964. [PMID: 36791266 DOI: 10.1021/acsabm.2c01055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Living bacteria are used in biotechnologies that lead to improvements in health care, agriculture, and energy. Encapsulating bacteria into flexible and modular electrospun polymer fabrics that maintain their viability will further enable their use. This review will first provide a brief overview of electrospinning before examining the impact of electrospinning parameters, such as precursor composition, applied voltage, and environment on the viability of encapsulated bacteria. Currently, the use of nanofiber scaffolds to deliver live probiotics into the gut is the most researched application space; however, several additional applications, including skin probiotics (wound bandages) and menstruation products have also been explored and will be discussed. The use of bacteria-loaded nanofibers as seed coatings that promote plant growth, for the remediation of contaminated wastewaters, and in energy-generating microbial fuel cells are also covered in this review. In summary, electrospinning is an effective method for encapsulating living microorganisms into dry polymer nanofibers. While these living composite scaffolds hold potential for use across many applications, before their use in commercial products can be realized, numerous challenges and further investigations remain.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
16
|
Lee CH, Chen DY, Hsieh MJ, Hung KC, Huang SC, Cho CJ, Liu SJ. Nanofibrous insulin/vildagliptin core-shell PLGA scaffold promotes diabetic wound healing. Front Bioeng Biotechnol 2023; 11:1075720. [PMID: 37168611 PMCID: PMC10164987 DOI: 10.3389/fbioe.2023.1075720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Slow wound repair in diabetes is a serious adverse event that often results in loss of a limb or disability. An advanced and encouraging vehicle is wanted to enhance clinically applicable diabetic wound care. Nanofibrous insulin/vildagliptin core-shell biodegradable poly (lactic-co-glycolic acid) (PLGA) scaffolds to prolong the effective drug delivery of vildagliptin and insulin for the repair of diabetic wounds were prepared. Methods: To fabricate core-shell nanofibrous membranes, vildagliptin mixture with PLGA, and insulin solution were pumped via separate pumps into two differently sized capillary tubes that were coaxially electrospun. Results and Discussion: Nanofibrous core-shell scaffolds slowly released effective vildagliptin and insulin over 2 weeks in vitro migration assay and in vivo wound-healing models. Water contact angle (68.3 ± 8.5° vs. 121.4 ± 2.0°, p = 0.006) and peaked water absorbent capacity (376% ± 9% vs. 283% ± 24%, p = 0.003) of the insulin/vildagliptin core-shell nanofibrous membranes remarkably exceeded those of a control group. The insulin/vildagliptin-loaded core-shell nanofibers improved endothelial progenitor cells migration in vitro (762 ± 77 cells/mm2 vs. 424.4 ± 23 cells/mm2, p < 0.001), reduced the α-smooth muscle actin content in vivo (0.72 ± 0.23 vs. 2.07 ± 0.37, p < 0.001), and increased diabetic would recovery (1.9 ± 0.3 mm2 vs. 8.0 ± 1.4 mm2, p = 0.002). Core-shell insulin/vildagliptin-loaded nanofibers extend the drug delivery of insulin and vildagliptin and accelerate the repair of wounds associated with diabetes.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
- *Correspondence: Chen-Hung Lee, ; Chia-Jung Cho, ; Shih-Jung Liu,
| | - Dong-Yi Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shu-Chun Huang
- Department of Physical Medicine and Rehabilitation, New Taipei Municipal Tucheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Cho
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
- *Correspondence: Chen-Hung Lee, ; Chia-Jung Cho, ; Shih-Jung Liu,
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chen-Hung Lee, ; Chia-Jung Cho, ; Shih-Jung Liu,
| |
Collapse
|
17
|
Zhang T, Nie M, Li Y. Current Advances and Future Perspectives of Advanced Polymer Processing for Bone and Tissue Engineering: Morphological Control and Applications. Front Bioeng Biotechnol 2022; 10:895766. [PMID: 35694231 PMCID: PMC9178098 DOI: 10.3389/fbioe.2022.895766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 01/13/2023] Open
Abstract
Advanced polymer processing has received extensive attention due to its unique control of complex force fields and customizability, and has been widely applied in various fields, especially in preparation of functional devices for bioengineering and biotechnology. This review aims to provide an overview of various advanced polymer processing techniques including rotation extrusion, electrospinning, micro injection molding, 3D printing and their recent progresses in the field of cell proliferation, bone repair, and artificial blood vessels. This review dose not only attempts to provide a comprehensive understanding of advanced polymer processing, but also aims to guide for design and fabrication of next-generation device for biomedical engineering.
Collapse
|
18
|
Zhou Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K. Electrospun Nanofiber Membranes for Air Filtration: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1077. [PMID: 35407195 PMCID: PMC9000692 DOI: 10.3390/nano12071077] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Nanomaterials for air filtration have been studied by researchers for decades. Owing to the advantages of high porosity, small pore size, and good connectivity, nanofiber membranes prepared by electrospinning technology have been considered as an outstanding air-filter candidate. To satisfy the requirements of material functionalization, electrospinning can provide a simple and efficient one-step process to fabricate the complex structures of functional nanofibers such as core-sheath structures, Janus structures, and other multilayered structures. Additionally, as a nanoparticle carrier, electrospun nanofibers can easily achieve antibacterial properties, flame-retardant properties, and the adsorption properties of volatile gases, etc. These simple and effective approaches have benefited from the significate development of electrospun nanofibers for air-filtration applications. In this review, the research progress on electrospun nanofibers as air filters in recent years is summarized. The fabrication methods, filtration performances, advantages, and disadvantages of single-polymer nanofibers, multipolymer composite nanofibers, and nanoparticle-doped hybrid nanofibers are investigated. Finally, the basic principles of air filtration are concluded upon and prospects for the application of complex-structured nanofibers in the field of air filtration are proposed.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| |
Collapse
|
19
|
Miranda CS, Silva AFG, Pereira-Lima SMMA, Costa SPG, Homem NC, Felgueiras HP. Tunable Spun Fiber Constructs in Biomedicine: Influence of Processing Parameters in the Fibers' Architecture. Pharmaceutics 2022; 14:pharmaceutics14010164. [PMID: 35057060 PMCID: PMC8781456 DOI: 10.3390/pharmaceutics14010164] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022] Open
Abstract
Electrospinning and wet-spinning have been recognized as two of the most efficient and promising techniques for producing polymeric fibrous constructs for a wide range of applications, including optics, electronics, food industry and biomedical applications. They have gained considerable attention in the past few decades because of their unique features and tunable architectures that can mimic desirable biological features, responding more effectively to local demands. In this review, various fiber architectures and configurations, varying from monolayer and core-shell fibers to tri-axial, porous, multilayer, side-by-side and helical fibers, are discussed, highlighting the influence of processing parameters in the final constructs. Additionally, the envisaged biomedical purposes for the examined fiber architectures, mainly focused on drug delivery and tissue engineering applications, are explored at great length.
Collapse
Affiliation(s)
- Catarina S. Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Ana Francisca G. Silva
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Sílvia M. M. A. Pereira-Lima
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Susana P. G. Costa
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Natália C. Homem
- Digital Transformation CoLab (DTx), Building 1, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Correspondence: ; Tel.: +351-253-510-283; Fax: +351-253-510-293
| |
Collapse
|
20
|
Tan H, Zhang Y, Sun L, Sun Y, Dang H, Yang Y, Jiang D. Preparation of nano sustained-release fertilizer using natural degradable polymer polylactic acid by coaxial electrospinning. Int J Biol Macromol 2021; 193:903-914. [PMID: 34717981 DOI: 10.1016/j.ijbiomac.2021.10.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
Polylactic acid (PLA) is a novel biodegradable material that is widely used in fields like medicine, petrochemicals, disposable products, and has played significant role in the fast-growing agriculture sector in recent years. In this study, nanoscale sustained-release urea fiber materials were successfully fabricated by coaxial electrospinning by encapsulating urea inside polylactic acid fibers. The effects of different concentrations of PLA and urea on the preparation of fibrous membranes as well as the effects of different concentrations of PH and variations in temperature on the sustained release were investigated. The experimental results showed that the proposed method was feasible and the urea fiber membranes acidic and basic conditions as well as elevated temperatures. The sustained release time for the urea was as long as 84 d. Scanning electron microscopy and Fourier transform infrared spectrophotometry were employed to characterize the morphology of the electrospun nanofibers. Thermogravimetric analysis and differential scanning calorimetry showed that the release system was thermally stable up to a temperature of 126 °C, and urea concentration was determined by UV-Vis spectrophotometry. This method has broad application prospects in agricultural production and provides a more rational fertilizer choice for soil-free cultivation.
Collapse
Affiliation(s)
- Haoyuan Tan
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuhan Zhang
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lixian Sun
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Youli Sun
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongbo Dang
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanhua Yang
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dong Jiang
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
21
|
Singh R, Roopmani P, Chauhan M, Basu SM, Deeksha W, Kazem MD, Hazra S, Rajakumara E, Giri J. Silver sulfadiazine loaded core-shell airbrushed nanofibers for burn wound healing application. Int J Pharm 2021; 613:121358. [PMID: 34896560 DOI: 10.1016/j.ijpharm.2021.121358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 01/21/2023]
Abstract
Ideal dressing materials for complex and large asymmetric burns should have the dual properties of anti-bacterial and regenerative with advanced applicability of direct deposit on the wound at the patient bedside. In this study, core-shell nanofibers (polycaprolactone; PCL and polyethylene oxide; PEO) with different percent of silver sulfadiazine (SSD) loading (2-10%) were prepared by the airbrushing method using a custom build device. Results indicate a sustained release profile of silver sulfadiazine (SSD) up to 28 days and concentration-dependent anti-bacterial activity. The morphology and proliferation of human dermal fibroblast (HDF) cells and human dental follicle stem cells (HDFSC) on the silver sulfadiazine loaded nanofibers confirm the biocompatibility of airbrushed nanofibers. Moreover, upregulation of extracellular matrix (ECM) proteins (Col I, Col III, and elastin) support the differentiation and regenerative properties of silver sulfadiazine nanofiber mats. This was further confirmed by the complete recovery of rabbit burn wound models within 7 days of silver sulfadiazine loaded nanofiber dressing. Histopathology data show silver sulfadiazine loaded core-shell nanofibers' anti-inflammatory and proliferative activity without any adverse response on the tissue. Overall data display that the airbrushed silver sulfadiazine-loaded core-shell nanofibers are effective dressing material with the possibility of direct fiber deposition on the wound to cover, heal, and regenerate large asymmetric burn wounds.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Purandhi Roopmani
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - M D Kazem
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Sarbani Hazra
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
22
|
Cerium(III) Nitrate Containing Electrospun Wound Dressing for Mitigating Burn Severity. Polymers (Basel) 2021; 13:polym13183174. [PMID: 34578075 PMCID: PMC8470165 DOI: 10.3390/polym13183174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Thermal injuries pose a risk for service members in prolonged field care (PFC) situations or to civilians in levels of lower care. Without access to prompt surgical intervention and treatment, potentially salvageable tissues are compromised, resulting in increases in both wound size and depth. Immediate debridement of necrotic tissue enhances survivability and mitigates the risks of burn shock, multiple organ failure, and infection. However, due to the difficulty of surgical removal of the burn eschar in PFC situations and lower levels of care, it is of utmost importance to develop alternative methods for burn stabilization. Studies have indicated that cerium(III) nitrate may be used to prolong the time before surgical intervention is required. The objective of this study was to incorporate cerium(III) nitrate into an electrospun dressing that could provide burst release. Select dosages of cerium(III) nitrate were dissolved with either pure solvent or polyethylene oxide (PEO) for coaxial or traditional electrospinning set-ups, respectively. The solutions were coaxially electrospun onto a rotating mandrel, resulting in a combined nonwoven mesh, and then compared to traditionally spun solutions. Dressings were evaluated for topography, morphology, and porosity using scanning electron microscopy and helium pycnometry. Additionally, cerium(III) loading efficiency, release rates, and cytocompatibility were evaluated in both static and dynamic environments. Imaging showed randomly aligned polymer nanofibers with fiber diameters of 1161 ± 210 nm and 1090 ± 250 nm for traditionally and coaxially spun PEO/cerium(III) nitrate dressings, respectively. Assay results indicated that the electrospun dressings contained cerium(III) nitrate properties, with the coaxially spun dressings containing 33% more cerium(III) nitrate than their traditionally spun counterparts. Finally, release studies revealed that PEO-based dressings released the entirety of their contents within the first hour with no detrimental cytocompatibility effects for coaxially-spun dressings. The study herein shows the successful incorporation of cerium(III) nitrate into an electrospun dressing.
Collapse
|
23
|
Chen CH, Cheng YH, Chen SH, Chuang ADC, Chen JP. Functional Hyaluronic Acid-Polylactic Acid/Silver Nanoparticles Core-Sheath Nanofiber Membranes for Prevention of Post-Operative Tendon Adhesion. Int J Mol Sci 2021; 22:8781. [PMID: 34445516 PMCID: PMC8396318 DOI: 10.3390/ijms22168781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we prepared core-sheath nanofiber membranes (CSNFMs) with silver nanoparticles (Ag NPs) embedding in the polylactic acid (PLA) nanofiber sheath and hyaluronic acid (HA) in the nanofiber core. The PLA/Ag NPs sheath provides mechanical support as well as anti-bacterial and anti-inflammatory properties. The controlled release of HA from the core could exert anti-adhesion effects to promote tendon sliding while reducing fibroblast attachment. From the microfibrous structural nature of CSNFMs, they function as barrier membranes to reduce fibroblast penetration without hampering nutrient transports to prevent post-operative peritendinous adhesion. As the anti-adhesion efficacy will depend on release rate of HA from the core as well as Ag NP from the sheath, we fabricated CSNFMs of comparable fiber diameter, but with thick (Tk) or thin (Tn) sheath. Similar CSNFMs with thick (Tk+) and thin (Tn+) sheath but with embedded Ag NPs in the sheath were also prepared. The physico-chemical properties of the barrier membranes were characterized in details, together with their biological response including cell penetration, cell attachment and proliferation, and cytotoxicity. Peritendinous anti-adhesion models in rabbits were used to test the efficacy of CSNFMs as anti-adhesion barriers, from gross observation, histology, and biomechanical tests. Overall, the CSNFM with thin-sheath and Ag NPs (Tn+) shows antibacterial activity with low cytotoxicity, prevents fibroblast penetration, and exerts the highest efficacy in reducing fibroblast attachment in vitro. From in vivo studies, the Tn+ membrane also shows significant improvement in preventing peritendinous adhesions as well as anti-inflammatory efficacy, compared with Tk and Tn CSNFMs and a commercial adhesion barrier film (SurgiWrap®) made from PLA.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; (C.-H.C.); (A.D.-C.C.)
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan;
| | - Yuan-Hsun Cheng
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Shih-Heng Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan;
| | - Andy Deng-Chi Chuang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; (C.-H.C.); (A.D.-C.C.)
| | - Jyh-Ping Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, Linkou Campus, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
24
|
Tu H, Dai F, Cheng G, Yuan M, Zhou X, Wang Y, Zhang R, Zheng Y, Cheng Y, Deng H. Incorporation of Layered Rectorite into Biocompatible Core-Sheath Nanofibrous Mats for Sustained Drug Delivery. ACS Biomater Sci Eng 2021; 7:4509-4520. [PMID: 34346208 DOI: 10.1021/acsbiomaterials.1c00638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Searching for drug carries with controlled release and good biocompatibility has always been one of the research hotspots and difficulties. Herein, core-sheath nanofibrous mats (NFs) consisting of biocompatible poly(ethylene oxide) (PEO, core) and poly(l-lactic acid) (PLLA, sheath) for drug delivery were fabricated via coaxial electrospinning strategy. The nontoxic layered silicate rectorite (REC) with 0.5-1 wt % amount was introduced in the sheath for sustained drug delivery. Layered REC could be intercalated with PLLA macromolecule chains, leading to the densified structure for loading and keeping doxorubicin hydrochloride (DOX) while reversibly capturing and releasing DOX to delay the drug migration due to its high cation activity. The addition of REC in NFs could delay the initial burst release of DOX and prolong the residence time from 12 to 96 h. Moreover, DOX-loaded core-sheath NFs had in vitro culture with strong antitumor activity, which was confirmed by cytotoxicity results and live and dead assay. HepG2 tumor-bearing xenograft further demonstrated the tumor-suppression effect and the excellent safety of the DOX-loaded core-sheath NFs in vivo. The constructed NFs as drug carriers showed great potential in the local treatment of solid tumors.
Collapse
Affiliation(s)
- Hu Tu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.,State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Gu Cheng
- Hubei-MOST KLOS & KLOBME, Department of Oral and Maxillofical Trauma and Plastic Surgery, Wuhan University Stomatological Hospital, Wuhan University, Wuhan 430079, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xue Zhou
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
25
|
Salvatore KL, Wong SS. Exploring Strategies toward Synthetic Precision Control within Core-Shell Nanowires. Acc Chem Res 2021; 54:2565-2578. [PMID: 33989501 DOI: 10.1021/acs.accounts.1c00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusAchieving precision and reproducibility in terms of physical structure and chemical composition within arbitrary nanoscale systems remains a "holy grail" challenge for nanochemistry. Because nanomaterials possess fundamentally distinctive size-dependent electronic, optical, and magnetic properties with wide-ranging applicability, the ability to produce homogeneous and monodisperse nanostructures with precise size and shape control, while maintaining a high degree of sample quality, purity, and crystallinity, remains a key synthetic objective. Moreover, it is anticipated that the methodologies developed to address this challenge ought to be reasonably simple, scalable, mild, nontoxic, high-yield, and cost-effective, while minimizing reagent use, reaction steps, byproduct generation, and energy consumption.The focus of this Account revolves around the study of various types of nanoscale one-dimensional core-shell motifs, prepared by our group. These offer a compact structural design, characterized by atom economy, to bring together two chemically distinctive (and potentially sharply contrasting) material systems into contact within the structural context of an extended, anisotropic configuration. Herein, we describe complementary strategies aimed at resolving the aforementioned concerns about precise structure and compositional control through the infusion of careful "quantification" and systematicity into customized, reasonably sustainable nanoscale synthetic protocols, developed by our group. Our multipronged approach involved the application of (a) electrodeposition, (b) electrospinning, (c) a combination of underpotential deposition and galvanic displacement reactions, and (d) microwave-assisted chemistry to diverse core-shell model systems, such as (i) carbon nanotube-SiO2 composites, (ii) SnO2/TiO2 motifs, (iii) ultrathin Pt-monolayer shell-coated alloyed metal core nanowires, and (iv) Cu@TiO2 nanowires, for applications spanning optoelectronics, photocatalysis, electrocatalysis, and thermal CO2 hydrogenation, respectively.In so doing, over the years, we have reported on a number of different characterization tools involving spectroscopy (e.g., extended X-ray absorption fine structure (EXAFS) spectroscopy) and microscopy (e.g., high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM)) for gaining valuable insights into the qualitative and quantitative nature of not only the inner core and outer shell themselves but also their intervening interface. While probing the functional catalytic behavior of a few of these core-shell structures under realistic operando conditions, using dynamic, in situ characterization techniques, we found that local and subtle changes in chemical composition and physical structure often occur during the reaction process itself. As such, nuanced differences in atomic packing, facet exposure, degree of derivatization, defect content, and/or extent of crystallinity can impact upon observed properties with tangible consequences for performance, mechanism, and durability.
Collapse
Affiliation(s)
- Kenna L. Salvatore
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Stanislaus S. Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
26
|
Yu D, Huang C, Jiang C, Zhu H. Features of a simvastatin-loaded multi-layered co-electrospun barrier membrane for guided bone regeneration. Exp Ther Med 2021; 22:713. [PMID: 34007322 PMCID: PMC8120663 DOI: 10.3892/etm.2021.10145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
A novel tri-layer membrane consisting of polycaprolactone (PCL) fibrous sheets and structured nanofibers with a gelatin (Gt) shell and a simvastatin-containing PCL core (PCL-Gt/PCL-simvastatin membrane) was prepared. The soft external layer comprised of Gt/PCL-simvastatin, the external layer of PCL and the middle layer of both microfilaments, interwoven together. The membrane was designed to promote osteoinduction and act as a barrier against cells but not against water and molecules in order to promote guided bone regeneration. The structure of the membrane was characterized by scanning electronic microscopy. The in vitro release rates of simvastatin over 32 days were determined by high-performance liquid chromatography. For in vitro biological assays, bone marrow mesenchymal stem cells and human fibroblasts were cultured on the different surfaces of the membrane. Cell adhesion, proliferation, distribution, and differentiation were examined. For in vivo testing, cranial defects were created in rabbits to assess the amount of new bone formed for each membrane. The results revealed that membranes with multi-layered structures showed good cell viability and effective osteoinductive and barrier properties. These results suggest that the novel multi-layered PCL-Gt/PCL-simvastatin membranes have great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Chongshang Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Chu Jiang
- Department of Stomatology, Jiangshan People's Hospital, Jiangshan, Zhejiang 324100, P.R. China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
27
|
Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. PROGRESS IN MATERIALS SCIENCE 2021; 117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
28
|
Fabrication and characterization of core–shell TiO2-containing nanofibers of PCL-zein by coaxial electrospinning method as an erythromycin drug carrier. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Rathore P, Schiffman JD. Beyond the Single-Nozzle: Coaxial Electrospinning Enables Innovative Nanofiber Chemistries, Geometries, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48-66. [PMID: 33356093 DOI: 10.1021/acsami.0c17706] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With an ever increasing scientific, technological, and industrial interest in high surface area, porous nanofiber mats, electrospinning has emerged as a popular method to produce fibrous assemblies for use across biomedical, energy, and environmental applications. However, not all precursor solutions nor complex geometries can be easily fabricated using the traditional single-nozzle apparatus. Therefore, coaxial electrospinning, a modified version of electrospinning that features a concentrically aligned dual nozzle, has been developed. This review will first describe the mechanism of electrospinning two precursor solutions simultaneously and the operational parameters that need to be optimized to fabricate continuous fibers. Modifications that can be made to the coaxial electrospinning process, which enable the fabrication of uniform fibers with improved properties, as well as the fabrication of fibers that are hollow, functionalized, and from "nonspinnable precursors" will be discussed as a means of promoting the advantages of using a coaxial setup. Examples of how coaxially electrospun nanofibers are employed in diverse applications will be provided throughout this review. We conclude with a timely discussion about the current limitations and challenges of coaxial electrospinning.
Collapse
Affiliation(s)
- Prerana Rathore
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
30
|
Roll-to-Roll Production of Spider Silk Nanofiber Nonwoven Meshes Using Centrifugal Electrospinning for Filtration Applications. Molecules 2020; 25:molecules25235540. [PMID: 33255885 PMCID: PMC7728303 DOI: 10.3390/molecules25235540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023] Open
Abstract
Filtration systems used in technical and medical applications require components for fine particle deep filtration to be highly efficient and at the same time air permeable. In high efficiency filters, nonwoven meshes, which show increased performance based on small fiber diameters (e.g., using nanofibers), can be used as fine particle filter layers. Nanofiber nonwoven meshes made by electrospinning of spider silk proteins have been recently shown to exhibit required filter properties. Needle-based electrospinning, however, is limited regarding its productivity and scalability. Centrifugal electrospinning, in contrast, has been shown to allow manufacturing of ultrathin polymer nonwoven meshes in an efficient and scalable manner. Here, continuous roll-to-roll production of nonwoven meshes made of recombinant spider silk proteins is established using centrifugal electrospinning. The produced spider silk nanofiber meshes show high filter efficiency in the case of fine particulate matter below 2.5 µm (PM2.5) and a low pressure drop, resulting in excellent filter quality.
Collapse
|
31
|
Yousefzade O, Katsarava R, Puiggalí J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics (Basel) 2020; 5:biomimetics5040049. [PMID: 33050136 PMCID: PMC7709492 DOI: 10.3390/biomimetics5040049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering approaches appear nowadays highly promising for the regeneration of injured/diseased tissues. Biomimetic scaffolds are continuously been developed to act as structural support for cell growth and proliferation as well as for the delivery of cells able to be differentiated, and also of bioactive molecules like growth factors and even signaling cues. The current research concerns materials employed to develop biological scaffolds with improved features as well as complex preparation techniques. In this work, hybrid systems based on natural polymers are discussed and the efforts focused to provide new polymers able to mimic proteins and DNA are extensively explained. Progress on the scaffold fabrication technique is mentioned, those processes based on solution and melt electrospinning or even on their combination being mainly discussed. Selection of the appropriate hybrid technology becomes vital to get optimal architecture to reasonably accomplish the final applications. Representative examples of the recent possibilities on tissue regeneration are finally given.
Collapse
Affiliation(s)
- Omid Yousefzade
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bedukidze Univesity Campus, Tbilisi 0131, Georgia;
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
- Correspondence: ; Tel.: +34-93-401-5649
| |
Collapse
|
32
|
Lee CH, Liu KS, Cheng CW, Chan EC, Hung KC, Hsieh MJ, Chang SH, Fu X, Juang JH, Hsieh IC, Wen MS, Liu SJ. Codelivery of Sustainable Antimicrobial Agents and Platelet-Derived Growth Factor via Biodegradable Nanofibers for Repair of Diabetic Infectious Wounds. ACS Infect Dis 2020; 6:2688-2697. [PMID: 32902952 DOI: 10.1021/acsinfecdis.0c00321] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
More than half of diabetic wounds demonstrate clinical signs of infection at presentation and lead to poor outcomes. This work develops coaxial sheath-core nanofibrous poly(lactide-co-glycolide) (PLGA) scaffolds that are loaded with bioactive antibiotics and platelet-derived growth factor (PDGF) for the repair of diabetic infectious wounds. PDGF and PLGA/antibiotic solutions were pumped, respectively, into two independent capillary tubings for coaxial electrospinning to prepare biodegradable sheath-core nanofibers. Spun nanofibrous scaffolds sustainably released PDGF, vancomycin, and gentamicin for 3 weeks. The scaffolds also reduced the phosphatase and tensin homologue content, enhanced the amount of angiogenesis marker (CD31) around the wound area, and accelerated healing in the early stage of infected diabetic wound repair. Antibiotic/biomolecule-loaded PLGA nanofibers may provide a very effective way to aid tissue regeneration at the sites of infected diabetic wounds.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Kuo-Sheng Liu
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Che-Wei Cheng
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Err-Cheng Chan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Xuebin Fu
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung University and Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - I-Chang Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 33305, Taiwan
| |
Collapse
|
33
|
Chen L, Cheng L, Wang Z, Zhang J, Mao X, Liu Z, Zhang Y, Cui W, Sun X. Conditioned medium-electrospun fiber biomaterials for skin regeneration. Bioact Mater 2020; 6:361-374. [PMID: 32954054 PMCID: PMC7481508 DOI: 10.1016/j.bioactmat.2020.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022] Open
Abstract
Conditioned medium (CM) contains variety of factors secreted by cells, which directly regulate cellular processes, showing tremendous potential in regenerative medicine. Here, for the first time, we proposed a novel regenerative therapy mediated by biodegradable micro-nano electrospun fibers loaded with highly active conditioned medium of adipose-derived stem cells (ADSC-CM). ADSC-CM was successfully loaded into the nanofibers with biological protection and controllable sustained-release properties by emulsion electrospinning and protein freeze-drying technologies. In vitro, ADSC-CM released by the fibers accelerated the migration rate of fibroblasts; inhibited the over proliferation of fibroblasts by inducing apoptosis and damaging cell membrane; in addition, ADSC-CM inhibited the transformation of fibroblasts into myofibroblasts and suppressed excessive production of extracellular matrix (ECM). In vivo, the application of CM-biomaterials significantly accelerated wound closure and improved regeneration outcome, showing superior pro-regenerative performance. This study pioneered the application of CM-biomaterials in regenerative medicine, and confirmed the practicability and significant biological effects of this innovative biomaterials.
Collapse
Affiliation(s)
- Lu Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Liying Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Zhen Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jianming Zhang
- National Research Center for Translational Medicine, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Zhimo Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| |
Collapse
|
34
|
Cavo M, Serio F, Kale NR, D'Amone E, Gigli G, Del Mercato LL. Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomater Sci 2020; 8:4887-4905. [PMID: 32830832 DOI: 10.1039/d0bm00390e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospinning is historically related to tissue engineering due to its ability to produce nano-/microscale fibrous materials with mechanical and functional properties that are extremely similar to those of the extracellular matrix of living tissues. The general interest in electrospun fibrous matrices has recently expanded to cancer research both as scaffolds for in vitro cancer modelling and as patches for in vivo therapeutic delivery. In this review, we examine electrospinning by providing a brief description of the process and overview of most materials used in this process, discussing the effect of changing the process parameters on fiber conformations and assemblies. Then, we describe two different applications of electrospinning in service of cancer research: firstly, as three-dimensional (3D) fibrous materials for generating in vitro pre-clinical cancer models; and secondly, as patches encapsulating anticancer agents for in vivo delivery.
Collapse
Affiliation(s)
- Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Tiwari SK, Dicks LMT, Popov IV, Karaseva A, Ermakov AM, Suvorov A, Tagg JR, Weeks R, Chikindas ML. Probiotics at War Against Viruses: What Is Missing From the Picture? Front Microbiol 2020; 11:1877. [PMID: 32973697 PMCID: PMC7468459 DOI: 10.3389/fmicb.2020.01877] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.
Collapse
Affiliation(s)
- Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, India,*Correspondence: Santosh Kumar Tiwari,
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Igor V. Popov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexey M. Ermakov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alexander Suvorov
- Institute of Experimental Medicine, Saint Petersburg, Russia,Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| | - Michael L. Chikindas
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| |
Collapse
|
36
|
Rafiei M, Jooybar E, Abdekhodaie MJ, Alvi M. Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110913. [DOI: 10.1016/j.msec.2020.110913] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023]
|
37
|
Kazsoki A, Farkas A, Balogh-Weiser D, Mancuso E, Sharma PK, Lamprou DA, Zelkó R. Novel combination of non-invasive morphological and solid-state characterisation of drug-loaded core-shell electrospun fibres. Int J Pharm 2020; 587:119706. [PMID: 32739390 DOI: 10.1016/j.ijpharm.2020.119706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
In recent years, core-shell nanofibrous drug delivery systems have received increasing attention due to their ability to incorporate two or more active pharmaceutical ingredients (APIs) individually into the desired layer (either core or sheath) and thereby finely tune the release profiles of even incompatible drugs in one system. This study aims to perform formulation and solid-state characterisation of levofloxacin-loaded polylactic acid (PLA) - naproxen-sodium-loaded polyvinyl pyrrolidone (PVP) bicomponent core-shell fibrous sheets and examine the electro spinnability of the precursor combinations. The selected drugs have potential therapeutic relevance in similar systems intended for wound healing; however, in this study, they are used as model drugs to understand the physicochemical properties of a drug loaded system. In order to determine the best core- and shell-solution combination, a full factorial experimental design is used. A combination of various morphological (scanning electron microscopy and transmission electron microscopy) and microstructural characterisation techniques (X-ray photoelectron spectroscopy and Raman spectroscopy) was applied to non-invasively obtain information about the structure of the fibres and the embedded drugs. The results indicate that core-shell fibres of different compositions could be successfully prepared with various structural homogeneities. The best core-shell structure was obtained using a combination of 15% (w/w) shell concentration and 8% (w/w) PLA solution concentration. In addition to the conventional core-shell structural verification methods, the Raman spectroscopy method was implemented to reveal not only the core-shell structure of the PLA/PVP nanofibers but also the form of the embedded drugs. The Raman mapping of the fibres confirm the above results, and it is shown that an amorphous solid dispersion is formed as a result of the coaxial electrospinning process.
Collapse
Affiliation(s)
- Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre utca 7-9, H-1092 Budapest, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary; Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown campus, UK
| | - Preetam K Sharma
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown campus, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre utca 7-9, H-1092 Budapest, Hungary.
| |
Collapse
|
38
|
Edmans JG, Murdoch C, Santocildes-Romero ME, Hatton PV, Colley HE, Spain SG. Incorporation of lysozyme into a mucoadhesive electrospun patch for rapid protein delivery to the oral mucosa. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110917. [DOI: 10.1016/j.msec.2020.110917] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
|
39
|
Jaswal R, Shrestha S, Shrestha BK, Kumar D, Park CH, Kim CS. Nanographene enfolded AuNPs sophisticatedly synchronized polycaprolactone based electrospun nanofibre scaffold for peripheral nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111213. [PMID: 32806222 DOI: 10.1016/j.msec.2020.111213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Herein, we report the bioactivity of monodispersed nanosized reduced graphene oxide (RGO) enfolded gold nanoparticles (AuNPs) engineered polycaprolactone (PCL) based electrospun composite scaffolds. The 2D patterns of PCL based nanofibers prepared by the homogenous distribution of RGO-AuNPs exhibited unique topological and biological features such as mechanical properties, porous structure, large surface area, high electrical conductivity, biodegradability, and resemble the natural extracellular matrix (ECM) that supports the adhesion, growth, proliferation, and differentiation of stem cells. The prepared composite nanofibers based scaffolds containing RGO-AuNPs accelerated neuronal cell functions and confirmed that the optimized concentration showed cytocompatibility to PC12 and S42 cells. The 0.0005 wt% loading of RGO-AuNPs on PCL has a huge impact on neurite growth which leads to an almost one-fold increase in neurite length growth. The present study provides a new strategic design of highly efficient scaffolds that have a significant direct impact on cell activity and could be a potential bioimplant for peripheral nerve repair.
Collapse
Affiliation(s)
- Richa Jaswal
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, South Korea
| | - Sita Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea
| | - Bishnu Kumar Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Dinesh Kumar
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
40
|
Edmans JG, Clitherow KH, Murdoch C, Hatton PV, Spain SG, Colley HE. Mucoadhesive Electrospun Fibre-Based Technologies for Oral Medicine. Pharmaceutics 2020; 12:E504. [PMID: 32498237 PMCID: PMC7356016 DOI: 10.3390/pharmaceutics12060504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Oral disease greatly affects quality of life, as the mouth is required for a wide range of activities including speech, food and liquid consumption. Treatment of oral disease is greatly limited by the dose forms that are currently available, which suffer from short contact times, poor site specificity, and sensitivity to mechanical stimulation. Mucoadhesive devices prepared using electrospinning offer the potential to address these challenges by allowing unidirectional site-specific drug delivery through intimate contact with the mucosa and with high surface areas to facilitate drug release. This review will discuss the range of electrospun mucoadhesive devices that have recently been reported to address oral inflammatory diseases, pain relief, and infections, as well as new treatments that are likely to be enabled by this technology in the future.
Collapse
Affiliation(s)
- Jake G. Edmans
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK;
| | - Katharina H. Clitherow
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK;
| | - Craig Murdoch
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
| | - Paul V. Hatton
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
| | - Sebastian G. Spain
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK;
| | - Helen E. Colley
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
| |
Collapse
|
41
|
Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Ghayour H, Ismail AF, Nur H, Berto F. Electrospun Nano-Fibers for Biomedical and Tissue Engineering Applications: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2153. [PMID: 32384813 PMCID: PMC7254207 DOI: 10.3390/ma13092153] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023]
Abstract
Pharmaceutical nano-fibers have attracted widespread attention from researchers for reasons such as adaptability of the electro-spinning process and ease of production. As a flexible method for fabricating nano-fibers, electro-spinning is extensively used. An electro-spinning unit is composed of a pump or syringe, a high voltage current supplier, a metal plate collector and a spinneret. Optimization of the attained nano-fibers is undertaken through manipulation of the variables of the process and formulation, including concentration, viscosity, molecular mass, and physical phenomenon, as well as the environmental parameters including temperature and humidity. The nano-fibers achieved by electro-spinning can be utilized for drug loading. The mixing of two or more medicines can be performed via electro-spinning. Facilitation or inhibition of the burst release of a drug can be achieved by the use of the electro-spinning approach. This potential is anticipated to facilitate progression in applications of drug release modification and tissue engineering (TE). The present review aims to focus on electro-spinning, optimization parameters, pharmacological applications, biological characteristics, and in vivo analyses of the electro-spun nano-fibers. Furthermore, current developments and upcoming investigation directions are outlined for the advancement of electro-spun nano-fibers for TE. Moreover, the possible applications, complications and future developments of these nano-fibers are summarized in detail.
Collapse
Affiliation(s)
- Shokoh Parham
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (S.P.); (A.Z.K.)
| | - Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (S.P.); (A.Z.K.)
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Hamid Ghayour
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor 81310, Malaysia;
| | - Hadi Nur
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM Skudai, Johor 81310, Malaysia;
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
42
|
Long-Term Evaluation of Dip-Coated PCL-Blend-PEG Coatings in Simulated Conditions. Polymers (Basel) 2020; 12:polym12030717. [PMID: 32213843 PMCID: PMC7183267 DOI: 10.3390/polym12030717] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 11/17/2022] Open
Abstract
Our study focused on the long-term degradation under simulated conditions of coatings based on different compositions of polycaprolactone-polyethylene glycol blends (PCL-blend-PEG), fabricated for titanium implants by a dip-coating technique. The degradation behavior of polymeric coatings was evaluated by polymer mass loss measurements of the PCL-blend-PEG during immersion in SBF up to 16 weeks and correlated with those yielded from electrochemical experiments. The results are thoroughly supported by extensive compositional and surface analyses (FTIR, GIXRD, SEM, and wettability investigations). We found that the degradation behavior of PCL-blend-PEG coatings is governed by the properties of the main polymer constituents: the PEG solubilizes fast, immediately after the immersion, while the PCL degrades slowly over the whole period of time. Furthermore, the results evidence that the alteration of blend coatings is strongly enhanced by the increase in PEG content. The biological assessment unveiled the beneficial influence of PCL-blend-PEG coatings for the adhesion and spreading of both human-derived mesenchymal stem cells and endothelial cells.
Collapse
|
43
|
Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020; 8:1801-1822. [PMID: 32048689 PMCID: PMC7155776 DOI: 10.1039/c9tb01849b] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases, especially ones involving narrowed or blocked blood vessels with diameters smaller than 6 millimeters, are the leading cause of death globally. Vascular grafts have been used in bypass surgery to replace damaged native blood vessels for treating severe cardio- and peripheral vascular diseases. However, autologous replacement grafts are not often available due to prior harvesting or the patient's health. Furthermore, autologous harvesting causes secondary injury to the patient at the harvest site. Therefore, artificial blood vessels have been widely investigated in the last several decades. In this review, the progress and potential outlook of small-diameter blood vessels (SDBVs) engineered in vitro are highlighted and summarized, including material selection and development, fabrication techniques, surface modification, mechanical properties, and bioactive functionalities. Several kinds of natural and synthetic polymers for artificial SDBVs are presented here. Commonly used fabrication techniques, such as extrusion and expansion, electrospinning, thermally induced phase separation (TIPS), braiding, 3D printing, hydrogel tubing, gas foaming, and a combination of these methods, are analyzed and compared. Different surface modification methods, such as physical immobilization, surface adsorption, plasma treatment, and chemical immobilization, are investigated and are compared here as well. Mechanical requirements of SDBVs are also reviewed for long-term service. In vitro biological functions of artificial blood vessels, including oxygen consumption, nitric oxide (NO) production, shear stress response, leukocyte adhesion, and anticoagulation, are also discussed. Finally, we draw conclusions regarding current challenges and attempts to identify future directions for the optimal combination of materials, fabrication methods, surface modifications, and biofunctionalities. We hope that this review can assist with the design, fabrication, and application of SDBVs engineered in vitro and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA and School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
44
|
Joshi A, Xu Z, Ikegami Y, Yamane S, Tsurashima M, Ijima H. Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling. Int J Biol Macromol 2020; 151:186-192. [PMID: 32070734 DOI: 10.1016/j.ijbiomac.2020.02.163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022]
Abstract
Endothelization of a tissue-engineered substrate is important for its application as an artificial vascular graft. Despite recent advancements in artificial graft fabrication, a graft of <5 mm is difficult to fabricate owing to insufficient endothelization that results in thrombosis after transplantation. We aimed to perform a co-culture of adipose-derived mesenchymal stem cells (MSCs) with human umbilical vein endothelial cells (HUVECs) on antithrombogenic polycaprolactone (PCL)/heparin-gelatin co-spun nanofibers to evaluate the role of co-culturing in promoting quick endothelization of vascular substrates without surface modification by growth factors or other ECM proteins that trigger the endothelization process. Using a co-axial electrospinning technique, we attempted to fabricate our scaffold balancing between mechanical properties and biocompatibility. Antithrombogenic characteristics were then imparted to the fabricated nanofiber substrate by grafting of heparin. Finally, we performed a co-culture of MSCs and HUVECs on the fabricated co-spun nanofiber substrate to obtain proper endothelization of our material under the in-vitro culture. Staining for CD-31 at seven days of culture revealed enhanced CD-31 expression under the co-culture condition; actin staining revealed healthy cobblestone HUVEC morphology, suggesting that MSCs can aid in proper endothelization. Hence, we conclude that co-culture is effective for quick endothelization of vascular substrates.
Collapse
Affiliation(s)
- Akshat Joshi
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Zhe Xu
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Soichiro Yamane
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Masanori Tsurashima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
45
|
Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020; 148:1084-1097. [PMID: 31917213 DOI: 10.1016/j.ijbiomac.2019.12.275] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
In recent years, electrospun fibers have found wide use, especially in pharmaceutical area and biomedical applications, related to the various advantages such as high surface-volume ratio, high solubility and having wide usage areas they have provided. Biocompatible and biodegradable fibers can be obtained by using peptide-protein structures of plant and animal derived along with synthetic polymers. Plant-derived proteins used in nanofiber production can be listed as, zein, soy protein, and gluten and animal derived proteins can be listed as casein, silk fibroin, hemoglobine, bovine serum albumin, elastin, collagen, gelatin, and keratin. Plant and animal proteins and synthetic peptides used in electrospun fiber production were reviewed in detail. In addition, the important physical properties of these materials for the electrospinning process and their use in pharmaceutical and biomedical areas were discussed.
Collapse
Affiliation(s)
- Ayşegül Yıldız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Adnan Altuğ Kara
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
46
|
Chang C, Ginn B, Livingston NK, Yao Z, Slavin B, King MW, Chung S, Mao HQ. Medical Fibers and Biotextiles. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Guo H, Tan S, Gao J, Wang L. Sequential release of drugs form a dual-delivery system based on pH-responsive nanofibrous mats towards wound care. J Mater Chem B 2020; 8:1759-1770. [DOI: 10.1039/c9tb02522g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using Chitosan/PEO as the shell and PCL as the core, chitosan–polyethylene oxide/polycaprolactone nanofibrous mats were prepared successfully by coaxial electrospinning for co-load and sequential co-delivery of two drugs.
Collapse
Affiliation(s)
- Huiwen Guo
- Key Laboratory of Textile Science and Technology of Ministry of Education
- College of Textiles Donghua University
- Shanghai
- China
| | - Shaojie Tan
- Key Laboratory of Textile Science and Technology of Ministry of Education
- College of Textiles Donghua University
- Shanghai
- China
| | - Jing Gao
- Key Laboratory of Textile Science and Technology of Ministry of Education
- College of Textiles Donghua University
- Shanghai
- China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education
- College of Textiles Donghua University
- Shanghai
- China
| |
Collapse
|
48
|
Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci 2020; 8:4073-4094. [DOI: 10.1039/d0bm00266f] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lack of proper vascularization after skin trauma causes delayed wound healing. This has sparked the development of various tissue engineering strategies to improve vascularization.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | - Arman Jafari
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | | | - Seyedeh-Sara Hashemi
- Burn & Wound Healing Research Center
- Shiraz University of Medical Science
- Shiraz 71345-1978
- Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Department of Bioengineering
| | - Mohammad Khorram
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| |
Collapse
|
49
|
Udomluck N, Koh WG, Lim DJ, Park H. Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering. Int J Mol Sci 2019; 21:E99. [PMID: 31877799 PMCID: PMC6981959 DOI: 10.3390/ijms21010099] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 01/22/2023] Open
Abstract
Bone tissue engineering is an alternative therapeutic intervention to repair or regenerate lost bone. This technique requires three essential components: stem cells that can differentiate into bone cells, growth factors that stimulate cell behavior for bone formation, and scaffolds that mimic the extracellular matrix. Among the various kinds of scaffolds, highly porous nanofibrous scaffolds are a potential candidate for supporting cell functions, such as adhesion, delivering growth factors, and forming new tissue. Various fabricating techniques for nanofibrous scaffolds have been investigated, including electrospinning, multi-axial electrospinning, and melt writing electrospinning. Although electrospun fiber fabrication has been possible for a decade, these fibers have gained attention in tissue regeneration owing to the possibility of further modifications of their chemical, biological, and mechanical properties. Recent reports suggest that post-modification after spinning make it possible to modify a nanofiber's chemical and physical characteristics for regenerating specific target tissues. The objectives of this review are to describe the details of recently developed fabrication and post-modification techniques and discuss the advanced applications and impact of the integrated system of nanofiber-based scaffolds in the field of bone tissue engineering. This review highlights the importance of nanofibrous scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Nopphadol Udomluck
- School of Integrative Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, YONSEI University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Dong-Jin Lim
- Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hansoo Park
- School of Integrative Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| |
Collapse
|
50
|
Ahmadi N, Kharaziha M, Labbaf S. Core-shell fibrous membranes of PVDF-Ba 0.9Ca 0.1TiO 3/PVA with osteogenic and piezoelectric properties for bone regeneration. ACTA ACUST UNITED AC 2019; 15:015007. [PMID: 31694002 DOI: 10.1088/1748-605x/ab5509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The goal of this research was to promote the bioactivity and osteogenic characteristics of polyvinylidene fluoride(PVDF) fibrous membrane, while preserving its piezoelectric property for bone regeneration. In this regard, core-shell fibrous membrane of PVDF-Ba0.9Ca0.1TiO3/polyvinyl alcohol(PVA) was developed via emulsion electrospinning approach. While PVA was in the outer layer of fibers with thickness of 53 ± 18 nm, the Ba0.9Ca0.1TiO3 nanoparticles was uniformly dispersed in the PVDF core. The formation of PVA shell resulted in significant improvement of its hydrophilicity (3 times) and degradation rate, while piezoelectricity did noticeably modulate. In addition, incorporation of Ba0.9Ca0.1TiO3 nanopowder remarkably improved bioactivity, protein adsorption and mechanical properties of PVDF/PVA fibrous membranes. Finally, the osteogenic differentiation of mesenchymal stem cells on the nanocomposite fibrous membranes, in the absence of osteogenic supplements, was also observed. Overall, the results confirmed the promising potential of PVDF-Ba0.9Ca0.1TiO3/PVA fibrous membrane containing 1-2 wt% nanopowder for bone regeneration.
Collapse
Affiliation(s)
- Narges Ahmadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | | |
Collapse
|