1
|
Chaves de Souza MP, Carvalho SG, Spósito L, Furquim de Camargo BA, Bauab TM, Meneguin AB, Chorilli M. Chitosan/hydroxypropylmethylcellulose based-mucoadhesive gastroretentive microparticles containing curcumin intended for the prevention of gastric ulcers. Int J Pharm 2025; 674:125454. [PMID: 40068803 DOI: 10.1016/j.ijpharm.2025.125454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Gastric ulcer (GU) is a disease characterized by ulcerative lesions on the surface of the stomach mucosa caused mainly by health-related conditions, non-steroidal anti-inflammatory drugs (NSAIDs) use, and Helicobacter pylori infections. The treatment for this disease requires that the drug remains in contact with the site of action, however, the residence time of conventional dosage forms in this organ is limited due to gastric emptying. Curcumin (CUR) is a compound obtained from the rhizomes of the Curcuma longa plant and has been used in traditional Indian medicine for many centuries. However, its use is limited because it has low solubility in aqueous media. In addition, the treatment of gastric diseases requires the drug to remain in contact with the area, but the residence time of conventional dosage forms in this organ is limited. One strategy to overcome these limitations is the use of a gastroretentive and mucoadhesive delivery system. Therefore, this study aimed to develop polymeric chitosan and hydroxypropylmethylcellulose-based microparticles for the release of CUR and to evaluate their in vivo gastroprotective action. The microparticles had a spherical shape and size between 620 and 820 µm, and the encapsulation efficiency was over 50 %, with complete release of CUR after 24 h. Thermal analysis showed changes in the structure of the polymers and CUR, suggesting the establishment of new supramolecular interactions. Microparticles showed high bioadhesive forces to the mucin disc. This set of results, suggest that these systems are promising tools for the prevention of gastric lesions associated with the use of NSAIDs, with a gastroprotective index similar to that conferred by omeprazole.
Collapse
Affiliation(s)
- Maurício Palmeira Chaves de Souza
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Larissa Spósito
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Tais Maria Bauab
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
2
|
Liang S, Zhao D, Liu X, Liu B, Li Y. The stomach, small intestine, and colon-specific gastrointestinal tract delivery systems for bioactive nutrients. Adv Colloid Interface Sci 2025; 341:103503. [PMID: 40209595 DOI: 10.1016/j.cis.2025.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/13/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
Oral administration is a convenient way to deliver bioactive nutrients. However, the complex and dynamic environment of the gastrointestinal (GI) tract poses distinct challenges. These include the acidic environment of the stomach, limited transport across the GI mucosa, and the risk of enzymatic degradation, all of which can compromise the nutritional effectiveness of orally delivered nutrients. In response to these challenges, various GI tract delivery systems have been developed to target specific regions, such as the stomach, small intestine, or colon, to precisely control the release of bioactive nutrients and enhance their health-promoting benefits. This review critically examines the principles underlying stomach-, small intestine-, and colon-targeted delivery systems, highlighting the selection of appropriate wall materials and the interactions between delivery systems and the mucosal epithelial barrier. Moreover, we describe relevant biological models and quantitative analyses to measure these interactions. In particular, we emphasize the significant advantages offered by colon-targeted delivery systems in maintaining a healthy colonic microenvironment. This review aims to inspire novel concepts and stimulate further research into GI tract delivery systems, offering promising avenues for maximizing the therapeutic effects of bioactive nutrients in practical applications.
Collapse
Affiliation(s)
- Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Central Laboratory, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Dongyu Zhao
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangyu Liu
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Panraksa P, Chaiwarit T, Chanabodeechalermrung B, Worajittiphon P, Jantrawut P. Fabrication of Cellulose Derivatives-Based Highly Porous Floating Tablets for Gastroretentive Drug Delivery via Sugar Templating Method. Polymers (Basel) 2025; 17:485. [PMID: 40006147 PMCID: PMC11859971 DOI: 10.3390/polym17040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
This work presents an innovative application of the sugar templating method to fabricate highly porous floating tablets based on cellulose derivatives for gastroretentive drug delivery systems (GRDDS). Ethyl cellulose (EC) and hydroxypropyl methylcellulose (HPMC) were utilized to develop formulations that optimize porosity, buoyancy, and drug release. Among the tested formulations, E10H5/CPM, consisting of 10% w/w EC and 5% w/w HPMC loaded with chlorpheniramine maleate (CPM), exhibited the most favorable properties, including high porosity (94.4%), uniform pore distribution, immediate buoyancy, and over 24 h of floating time. E10H5/CPM tablets demonstrated superior drug release performance compared to an EC-only formulation (E10/CPM), attributed to the presence of HPMC, which facilitated improved hydration and diffusion. The in vitro release study showed that E10H5/CPM achieved a cumulative release of 79.01% over 72 h, following a Fickian diffusion mechanism. However, a limitation was noted in drug loading, with E10H5/CPM incorporating 6.40 mg of CPM, compared to 8.72 mg in E10/CPM. Future work should focus on enhancing drug load and further optimizing polymer composition to improve the release profile. Overall, this study underscores the potential of sugar templating in developing cost-effective, scalable floating tablet formulations for improved gastric retention and localized drug delivery.
Collapse
Affiliation(s)
- Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| | - Baramee Chanabodeechalermrung
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| |
Collapse
|
4
|
Shah K, Singh D, Agrawal R, Garg A. Current Developments in the Delivery of Gastro-Retentive Drugs. AAPS PharmSciTech 2025; 26:57. [PMID: 39920556 DOI: 10.1208/s12249-025-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
The pharmaceutical industry has expressed a lot of interest in site specific drug delivery & oral controlled release to increase treatment efficiency. The idea of a unique drug delivery system was developed to address several concerns with the physicochemical characteristics of drug molecules and the associated formulations. The use of gastro retentive systems for drug delivery, which focus on site-specific drug release for either systemic or local effects in the stomach, is one of these cutting-edge strategies for lengthening gastric residency time. This approach is especially useful for drugs that have a small window of upper gastro intestinal tract absorption. This review has discussed various gastro-retentive techniques, including floating & non-floating systems. With a focus on the numerous gastro retentive approaches that have lately emerged as the most efficient methods for site specific oral controlled release drug administration, the aim of this study on gastro retentive drug delivery systems was to synthesise the most current findings. We have highlighted the major reasons affecting gastric retention so that you may comprehend the many physiological challenges involved. Next, we discussed the different gastro retentive strategies that have been developed and improved to date, including floating, high density, mucoadhesive, unfoldable, expandable, super porous hydrogel, & magnetic systems. The benefits of gastro retentive medication administration techniques were then thoroughly discussed.
Collapse
Affiliation(s)
- Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India.
| | - Disha Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| |
Collapse
|
5
|
Heidarrezaei M, Mauriello G, Shokravi H, Lau WJ, Ismail AF. Delivery of Probiotic-Loaded Microcapsules in the Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2025; 17:193-211. [PMID: 38907825 DOI: 10.1007/s12602-024-10311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Probiotics are live microorganisms that inhabit the gastrointestinal tract and confer health benefits to consumers. However, a sufficient number of viable probiotic cells must be delivered to the specific site of interest in the gastrointestinal tract to exert these benefits. Enhanced viability and tolerance to sublethal gastrointestinal stress can be achieved using appropriate coating materials and food matrices for orally consumed probiotics. The release mechanism and interaction of probiotic microcapsules with the gastrointestinal tract have been minimally explored in the literature to date. To the authors' knowledge, no review has been published to discuss the nature of release and the challenges in the targeted delivery of probiotics. This review addresses gastrointestinal-related complications in the formulation of targeted delivery and controlled release of probiotic strains. It investigates the impacts of environmental stresses during the transition stage and delivery to the target region in the gastrointestinal tract. The influence of factors such as pH levels, enzymatic degradation, and redox conditions on the release mechanisms of probiotics is presented. Finally, the available methods to evaluate the efficiency of a probiotic delivery system, including in vitro and in vivo, are reviewed and assessed. The paper concludes with a discussion highlighting the emerging technologies in the field and emphasising key areas in need of future study.
Collapse
Affiliation(s)
- Mahshid Heidarrezaei
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049, Naples, Italy
| | - Hoofar Shokravi
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Woei Jye Lau
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Ahmad Fauzi Ismail
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
6
|
Shan T, Chen X, Zhou X, Wang N, Ren B, Cheng L. Stimulus-responsive biomaterials for Helicobacter pylori eradication. J Adv Res 2024; 66:209-222. [PMID: 38160707 PMCID: PMC11675045 DOI: 10.1016/j.jare.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori), the only bacterium classified as a type I (definite) carcinogen, is strongly associated with the development of gastric inflammation and adenocarcinoma. It infects the stomach of approximately half of the global population, equivalent to nearly 4.4 billion people. However, due to physiological barriers in the stomach, microbial barriers and increased antibiotic resistance, the therapeutic efficiency of standard antibiotic therapy is limited and cannot meet the clinical needs in some areas. Combining stimulus-responsive biomaterials with certain stimuli is an emerging antibacterial strategy. Stimulus-responsive biomaterials can respond to chemical, biological or physical cues in the environment with corresponding changes in their own properties and functions, highlighting a more intelligent, targeting and efficient aspect for H. pylori therapy. AIM OF REVIEW This review describes the critical obstacles in the current treatment of H. pylori, summarizes the recent advances in stimulus-responsive biomaterials against H. pylori by elucidating their working mechanisms and antibacterial performances under different types of stimuli (pH, enzymes, light, magnetic and ultrasound irradiations), and attempts to analyze the future prospects of such smart biomaterial for H. pylori eradication. Key Scientific Concepts of Review: Any characteristic property or change in the biomilieu at the H. pylori infected site (endogenous stimuli) or specific iatrogenic conditions in vitro (exogenous stimuli) can act as cues to activate or potentiate the antibacterial activity of responsive biomaterials. The responsiveness of these materials to endogenous stimuli enhances antimicrobial targeting, and makes physiological barriers that would otherwise hinder conventional H. pylori therapies a key factor in facilitating antibacterial effects. The responsiveness to exogenous stimuli greatly prolongs the action time of antimicrobial materials and pinpoints the site of infection, thereby reducing toxic side effects. These findings pave the way for the development of more precise and effective anti-H. pylori treatment.
Collapse
Affiliation(s)
- Tiantian Shan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nanxi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
8
|
Han A, Chang YH. Physicochemical, structural, and in-vitro release properties of carboxymethyl cellulose-based cryogel beads incorporating resveratrol-loaded microparticles for colon-targeted delivery system. Food Chem 2024; 457:140153. [PMID: 38908240 DOI: 10.1016/j.foodchem.2024.140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The objective of this study was to investigate the physicochemical, structural, and in vitro release properties of carboxymethyl cellulose (CMC)-based cryogel beads incorporating resveratrol-loaded microparticles (MP) for colon-targeted delivery system. CMC-based cryogel beads were produced by ionic cross-linking with different concentrations (2%, 3%, and 4%) of AlCl3. Based on FE-SEM images, CMC-based cryogel beads showed a smoother surface and more compact internal structure with increasing AlCl3 concentrations, which was proven to be due to the new cross-linking between the -COO- group of CMC and Al3+ by FT-IR analysis. The encapsulation efficiency of the cryogel beads was significantly increased from 79.48% to 85.74% by elevating the concentrations of AlCl3 from 2% to 4%, respectively. In vitro release study showed that all CMC-based cryogel beads had higher stability for resveratrol than MP in simulated gastric conditions and can efficiently deliver resveratrol to colon without the premature release.
Collapse
Affiliation(s)
- Areum Han
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Mora-Castaño G, Domínguez-Robles J, Himawan A, Millán-Jiménez M, Caraballo I. Current trends in 3D printed gastroretentive floating drug delivery systems: A comprehensive review. Int J Pharm 2024; 663:124543. [PMID: 39094921 DOI: 10.1016/j.ijpharm.2024.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Gastrointestinal (GI) environment is influenced by several factors (gender, genetics, sex, disease state, food) leading to oral drug absorption variability or to low bioavailability. In this scenario, gastroretentive drug delivery systems (GRDDS) have been developed in order to solve absorption problems, to lead to a more effective local therapy or to allow sustained drug release during a longer time period than the typical oral sustained release dosage forms. Among all GRDDS, floating systems seem to provide a promising and practical approach for achieving a long intra-gastric residence time and sustained release profile. In the last years, a novel technique is being used to manufacture this kind of systems: three-dimensional (3D) printing technology. This technique provides a versatile and easy process to manufacture personalized drug delivery systems. This work presents a systematic review of the main 3D printing based designs proposed up to date to manufacture floating systems. We have also summarized the most important parameters involved in buoyancy and sustained release of the systems, in order to facilitate the scale up of this technology to industrial level. Finally, a section discussing about the influence of materials in drug release, their biocompatibility and safety considerations have been included.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
10
|
Grosso R, Benito E, Carbajo-Gordillo AI, Díaz MJ, García-Martín MG, de-Paz MV. Advanced interpenetrating polymer networks for innovative gastroretentive formulations targeting Helicobacter pylori gastric colonization. Eur J Pharm Sci 2024; 200:106840. [PMID: 38909691 DOI: 10.1016/j.ejps.2024.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The escalating challenges of Helicobacter pylori-induced gastric complications, driven by rising antibiotic resistance and persistent cancer risks, underscore the demand for innovative therapeutic strategies. This study addresses this urgency through the development of tailored semi-interpenetrating polymer networks (semi-IPN) serving as gastroretentive matrices for amoxicillin (AMOX). They are biodegradable, absorb significant volume of simulated gastric fluid (swelling index > 360 %) and exhibit superporous microstructures, remarkable mucoadhesion, and buoyancy. The investigation includes assessment at pH 1.2 for comparative analysis with prior studies and, notably, at pH 5.0, reflecting the acidic environment in H. pylori-infected stomachs. The semi-IPN demonstrated gel-like structures, maintaining integrity throughout the 24-hour controlled release study, and disintegrating upon completing their intended function. Evaluated in gastroretentive drug delivery system performance, AMOX release at pH 1.2 and pH 5.0 over 24 h (10 %-100 %) employed experimental design methodology, elucidating dominant release mechanisms. Their mucoadhesive, buoyant, three-dimensional scaffold stability, and gastric biodegradability make them ideal for accommodating substantial AMOX quantities. Furthermore, exploring the inclusion of the potassium-competitive acid blocker (P-CAB) vonoprazan (VONO) in AMOX-loaded formulations shows promise for precise and effective drug delivery. This innovative approach has the potential to combat H. pylori infections, thereby preventing the gastric cancer induced by this pathogen.
Collapse
Affiliation(s)
- Roberto Grosso
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain
| | - Elena Benito
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain.
| | - Ana I Carbajo-Gordillo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain
| | | | - M Gracia García-Martín
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain
| | - M-Violante de-Paz
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain.
| |
Collapse
|
11
|
Waqar MA, Mubarak N, Khan AM, Khan R, Shaheen F, Shabbir A. Advanced polymers and recent advancements on gastroretentive drug delivery system; a comprehensive review. J Drug Target 2024; 32:655-671. [PMID: 38652465 DOI: 10.1080/1061186x.2024.2347366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Oral route of drug administration is typically the initial option for drug administration because it is both practical and affordable. However, major drawback of this route includes the release of drug at a specified place thus reduces the bioavailability. This could be overcome by utilising the gastroretentive drug delivery system (GRRDS). Prolonged stomach retention improves bioavailability and increases solubility for medicines that are unable to dissolve in high pH environments. Many recent advancements in the floating, bio adhesive, magnetic, expandable, raft forming and ion exchange systems have been made that had led towards advanced form of drug delivery. From the past few years, floating drug delivery system has been most commonly utilised for the delivery of drug in a delayed manner. Various polymers have been utilised for manufacturing of these systems, including alginates, chitosan, pectin, carrageenan's, xanthan gum, hydroxypropyl cellulose, carbomer, polyethylene oxide and sodium carboxy methyl cellulose. Chitosan, pectin and xanthan gum have been found to be most commonly used polymers in the manufacturing of drug inclusion complex for gastroretentive drug delivery. This study aimed to define various types and advanced polymers as well as also highlights recent advances and future perspectives of gastroretentive drug delivery system.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Rabeel Khan
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Farwa Shaheen
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Afshan Shabbir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| |
Collapse
|
12
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
13
|
Milián-Guimerá C, McCabe R, Thamdrup LHE, Ghavami M, Boisen A. Smart pills and drug delivery devices enabling next generation oral dosage forms. J Control Release 2023; 364:S0168-3659(23)00702-2. [PMID: 39491170 DOI: 10.1016/j.jconrel.2023.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Oral dosage forms are the preferred solution for systemic treatment and prevention of disease conditions. However, traditional dosage forms face challenges regarding treatment adherence and delivery of biologics. Oral therapies that require frequent administrations face difficulties with patient compliance. In addition, only a few peptide- and protein-based drugs have been commercialized for oral administration so far, presenting a bioavailability that is generally low. Therefore, research and development on novel formulation strategies for oral drug delivery has bloomed massively in the last decade to overcome these challenges. On the one hand, approaches based on lumen-release of drugs such as 3D-printed capsules and prolonged gastric residence dosage forms have been explored to offer personalized medicine to the patient and reduce frequent dosing of small drug compounds that are currently in the market as powdered tablet or capsules. On the other hand, strategies based on mucus interfacing such as gastrointestinal patches, or even epithelium injections have been investigated in order to enhance the permeability of biologic macromolecules, which are mostly commercialized in the form of subcutaneous injections. Despite the fact that these methods are at an early development stage, promising results have been revealed in terms of personalized medicine and improved bioavailability. In this review, we offer a critical overview of novel ingestible millimeter-sized devices and technologies for oral drug delivery that are currently used in the clinic as well as those that could emerge on the market in a not too distant future.
Collapse
Affiliation(s)
- Carmen Milián-Guimerá
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Reece McCabe
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Geng Y, Williams GR. Developing and scaling up captopril-loaded electrospun ethyl cellulose fibers for sustained-release floating drug delivery. Int J Pharm 2023; 648:123557. [PMID: 39491226 DOI: 10.1016/j.ijpharm.2023.123557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
In this work ethyl cellulose (EC) was used as the matrix polymer and loaded with captopril, with the goal to fabricate electrospun fibers as potential sustained-release floating gastro-retentive drug delivery systems. Fibers were prepared with monoaxial and coaxial electrospinning, and both bench-top and scaled-up (needle-based) methods were explored. With monoaxial electrospinning, EC-based fibers in the shape of cylinders and with smooth surfaces were obtained both at 1 and 20 mL/h. For coaxial electrospinning, the drug was encapsulated in the core end fibers generated with core/shell feeding rates of 0.5/1 and 5/10 mL/h. The fibers were cylindrical in shape with a wrinkled surface, and confocal microscopy suggested them to have a core/shell structure. X-ray diffraction and differential scanning calorimetry results showed that all the fibers were amorphous. The encapsulation efficiency of all the formulations was almost 100%. Release studies in simulated gastric fluid indicated that the monoaxial electrospun fibers gave slower release profiles compared with a physical mixture of captopril and EC, but there was still an initial "burst" of release at the start of the experiment. Fibers with low drug-loading (9.09% w/w) showed a slower release than fibers with high loading (23.08% w/w). The coaxial fibers exhibited sustained release profiles with reduced initial burst release. Both monoaxial and coaxial fibers could float on the surface of simulated gastric fluid for over 24 hours at 37 °C. After storage under ambient conditions (19-21°C, relative humidity 30-40%) for 8 weeks, all the fibers remained amorphous and the release profiles had no significant changes compared with fresh fibers. This work thus highlights the potential of coaxial electrospinning for fabricating a sustained-release floating gastro-retentive drug delivery system for captopril.
Collapse
Affiliation(s)
- Yuhao Geng
- UCL School of Pharmacy, 29 - 39 Brunswick Square, London, WC1N 1AX
| | | |
Collapse
|
15
|
Gupta A, Shetty S, Mutalik S, Chandrashekar H R, K N, Mathew EM, Jha A, Mishra B, Rajpurohit S, Ravi G, Saha M, Moorkoth S. Treatment of H. pylori infection and gastric ulcer: Need for novel Pharmaceutical formulation. Heliyon 2023; 9:e20406. [PMID: 37810864 PMCID: PMC10550623 DOI: 10.1016/j.heliyon.2023.e20406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Peptic ulcer disease (PUD) is one of the most prevalent gastro intestinal disorder which often leads to painful sores in the stomach lining and intestinal bleeding. Untreated Helicobacter pylori (H. pylori) infection is one of the major reasons for chronic PUD which, if left untreated, may also result in gastric cancer. Treatment of H. pylori is always a challenge to the treating doctor because of the poor bioavailability of the drug at the inner layers of gastric mucosa where the bacteria resides. This results in ineffective therapy and antibiotic resistance. Current treatment regimens available for gastric ulcer and H. pylori infection uses a combination of multiple antimicrobial agents, proton pump inhibitors (PPIs), H2-receptor antagonists, dual therapy, triple therapy, quadruple therapy and sequential therapy. This polypharmacy approach leads to patient noncompliance during long term therapy. Management of H. pylori induced gastric ulcer is a burning issue that necessitates alternative treatment options. Novel formulation strategies such as extended-release gastro retentive drug delivery systems (GRDDS) and nanoformulations have the potential to overcome the current bioavailability challenges. This review discusses the current status of H. pylori treatment, their limitations and the formulation strategies to overcome these shortcomings. Authors propose here an innovative strategy to improve the H. pylori eradication efficiency.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nandakumar K
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Elizabeth Mary Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gundawar Ravi
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
16
|
Vrettos NN, Wang P, Wang Y, Roberts CJ, Xu J, Yao H, Zhu Z. Controlled release of MT-1207 using a novel gastroretentive bilayer system comprised of hydrophilic and hydrophobic polymers. Pharm Dev Technol 2023; 28:724-742. [PMID: 37493413 DOI: 10.1080/10837450.2023.2238822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
In the present study, novel gastroretentive bilayer tablets were developed that are promising for the once-a-day oral delivery of the drug candidate MT-1207. The gastroretentive layer consisted of a combination of hydrophilic and hydrophobic polymers, namely polyethylene oxide and Kollidon® SR. A factorial experiment was conducted, and the results revealed a non-effervescent gastroretentive layer that, unlike most gastroretentive layers reported in the literature, was easy to prepare, and provided immediate tablet buoyancy (mean floating lag time of 1.5 s) that lasted over 24 h in fasted state simulated gastric fluid (FaSSGF) pH 1.6, irrespective of the drug layer, thereby allowing a 24-hour sustained release of MT-1207 from the drug layer of the tablets. Furthermore, during in vitro buoyancy testing of the optimised bilayer tablets in media of different pH values (1.0, 3.0, 6.0), the significant difference (one-way ANOVA, p < 0.001) between the respective total floating times indicated that stomach pH effects on tablet buoyancy are important to be considered during the development of non-effervescent gastroretentive formulations and the choice of dosing regimen. To the best of our knowledge, this has not been reported before, and it should probably be factored in when designing dosing regimens. Finally, a pharmacokinetic study in Beagle dogs indicated a successful in vivo 24-hour sustained release of MT-1207 from the optimised gastroretentive bilayer tablet formulations with the drug plasma concentration remaining above the estimated minimum effective concentration of 1 ng/mL at the 24-hour timepoint and also demonstrated the gastroretentive capabilities of the hydrophilic and hydrophobic polymer combination. The optimised formulations will be forwarded to clinical development.
Collapse
Affiliation(s)
| | - Peng Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuhan Wang
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Clive J Roberts
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Hong Yao
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Zheying Zhu
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
17
|
Alqahtani AA, Mohammed AA, Fatima F, Ahmed MM. Fused Deposition Modelling 3D-Printed Gastro-Retentive Floating Device for Propranolol Hcl Tablets. Polymers (Basel) 2023; 15:3554. [PMID: 37688178 PMCID: PMC10490505 DOI: 10.3390/polym15173554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Three-dimensional printing has revolutionized drug manufacturing and has provided a solution to the limitations associated with the conventional manufacturing method by designing complex drug delivery systems with customized drug release profiles for personalized therapies. The present investigation aims to design a gastric floating tablet with prolonged gastric floating time and sustained drug release profile. In the present study, a gastro retentive floating device (GRFD) was designed and fabricated using a fused deposition modelling (FDM)-based 3D printing technique. This device acts as a multifunctional dosage form exhibiting prolonged gastric retention time and sustained drug release profile with improved oral bioavailability in the upper gastrointestinal tract. Commercial polyvinyl alcohol (PVA) and polylactic acid (PLA) filaments were used to design GRFD, which was comprised of dual compartments. The outer sealed compartment acts as an air-filled chamber that imparts buoyancy to the device and the inner compartment is filled with a commercial propranolol hydrochloride immediate-release tablet. The device is designed as a round-shaped shell with a central opening of varying size (1 mm, 2 mm, 3 mm, and 4 mm), which acts as a drug release window. Scanning electron microscope (SEM) images were used to determine morphological characterization. The in vitro buoyancy and drug release were evaluated using the USP type II dissolution apparatus. All the designed GRFDs exhibit good floating ability and sustained drug release profiles. GRFDs fabricated using PLA filament show maximum buoyancy (>24 h) and sustained drug release for up to 10 h. The floating ability and drug release from the developed devices were governed by the drug release window opening size and the filament material affinity towards the gastric fluid. The designed GRFDs show great prospects in modifying the drug release characteristics and could be applied to any conventional immediate-release product.
Collapse
Affiliation(s)
- Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
18
|
A Micro-In-Macro Gastroretentive System for the Delivery of Narrow-Absorption Window Drugs. Polymers (Basel) 2023; 15:polym15061385. [PMID: 36987166 PMCID: PMC10055986 DOI: 10.3390/polym15061385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
A micro-in-macro gastroretentive and gastrofloatable drug delivery system (MGDDS), loaded with the model-drug ciprofloxacin, was developed in this study to address the limitations commonly experienced in narrow-absorption window (NAW) drug delivery. The MGDDS, which consists of microparticles loaded in a gastrofloatable macroparticle (gastrosphere) was designed to modify the release of ciprofloxacin, allowing for an increased drug absorption via the gastrointestinal tract. The prepared inner microparticles (1–4 µm) were formed by crosslinking chitosan (CHT) and Eudragit® RL 30D (EUD), with the outer gastrospheres prepared from alginate (ALG), pectin (PEC), poly(acrylic acid) (PAA) and poly(lactic-co-glycolic) acid (PLGA). An experimental design was utilized to optimize the prepared microparticles prior to Fourier Transition Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and in vitro drug release studies. Additionally, the in vivo analysis of the MGDDS, employing a Large White Pig model and molecular modeling of the ciprofloxacin-polymer interactions, were performed. The FTIR results determined that the crosslinking of the respective polymers in the microparticle and gastrosphere was achieved, with the SEM analysis detailing the size of the microparticles formed and the porous nature of the MGDDS, which is essential for drug release. The in vivo drug release analysis results further displayed a more controlled ciprofloxacin release profile over 24 h and a greater bioavailability for the MGDDS when compared to the marketed immediate-release ciprofloxacin product. Overall, the developed system successfully delivered ciprofloxacin in a control-release manner and enhanced its absorption, thereby displaying the potential of the system to be used in the delivery of other NAW drugs.
Collapse
|
19
|
Rump A, Tetyczka C, Littringer E, Kromrey ML, Bülow R, Roblegg E, Weitschies W, Grimm M. In Vitro and In Vivo Evaluation of Carbopol 71G NF-Based Mucoadhesive Minitablets as a Gastroretentive Dosage Form. Mol Pharm 2023; 20:1624-1630. [PMID: 36705398 DOI: 10.1021/acs.molpharmaceut.2c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gastroretentive dosage forms are intended to stay inside the stomach for a long period of time while releasing an active pharmaceutical ingredient. Such systems may offer significant benefits for numerous drugs compared to other sustained release systems, such as improved pharmacokinetics/bioavailability and reduced intake frequency and thereby improved adherence to the medical therapy. However, there is no gastroretentive product on the market with proven reliable gastroretentive properties in humans. A major obstacle is the motility pattern of the stomach in the fasting state in humans, which reliably ensures gastric emptying of even large indigestible objects into the small intestine. One promising approach to avoid gastric emptying is adhesion of the drug delivery system to the gastric mucosa. In order to achieve mucoadhesive properties, minitablets containing Carbopol 71G NF were developed and compared to minitablets without adhesive properties. In a specialized mucoadhesive test system, the adhesion time was prolonged for adhesive minitablets (240 min) compared to non-adhesive minitablets (30 min). The in vivo transit behavior was investigated using magnetic resonance imaging in 11 healthy volunteers in fasted state in a crossover setup. It was found that the gastric residence time (GRT) of the adhesive minitablets (median of 37.5 min with IQR = 22.5-52.5) was statistically significantly prolonged compared to the non-adhesive minitablets (median of 7.5 with IQR = 7.5-22.5), indicating a delay in gastric emptying by adhesion to the gastric mucosa. However, the system needs further improvement to create a clinical benefit. Furthermore, it was observed that for 9 of 22 administrations (three minitablets were given simultaneously with every administration), the minitablets were not emptied together but showed different GRTs.
Collapse
Affiliation(s)
- Adrian Rump
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| | - Carolin Tetyczka
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| | | | - Marie-Luise Kromrey
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| | - Werner Weitschies
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| | - Michael Grimm
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
20
|
Mora-Castaño G, Millán-Jiménez M, Caraballo I. Hydrophilic High Drug-Loaded 3D Printed Gastroretentive System with Robust Release Kinetics. Pharmaceutics 2023; 15:pharmaceutics15030842. [PMID: 36986703 PMCID: PMC10057139 DOI: 10.3390/pharmaceutics15030842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Three-dimensional printing (3DP) technology enables an important improvement in the design of new drug delivery systems, such as gastroretentive floating tablets. These systems show a better temporal and spatial control of the drug release and can be customized based on individual therapeutic needs. The aim of this work was to prepare 3DP gastroretentive floating tablets designed to provide a controlled release of the API. Metformin was used as a non-molten model drug and hydroxypropylmethyl cellulose with null or negligible toxicity was the main carrier. High drug loads were assayed. Another objective was to maintain the release kinetics as robust as possible when varying drug doses from one patient to another. Floating tablets using 10–50% w/w drug-loaded filaments were obtained by Fused Deposition Modelling (FDM) 3DP. The sealing layers of our design allowed successful buoyancy of the systems and sustained drug release for more than 8 h. Moreover, the effect of different variables on the drug release behaviour was studied. It should be highlighted that the robustness of the release kinetics was affected by varying the internal mesh size, and therefore the drug load. This could represent a step forward in the personalization of the treatments, a key advantage of 3DP technology in the pharmaceutical field.
Collapse
|
21
|
pH-Responsive Super-Porous Hybrid Hydrogels for Gastroretentive Controlled-Release Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030816. [PMID: 36986676 PMCID: PMC10053105 DOI: 10.3390/pharmaceutics15030816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Super-porous hydrogels are considered a potential drug delivery network for the sedation of gastric mechanisms with retention windows in the abdomen and upper part of the gastrointestinal tract (GIT). In this study, a novel pH-responsive super-porous hybrid hydrogels (SPHHs) was synthesized from pectin, poly 2-hydroxyethyl methacrylate (2HEMA), and N, N methylene-bis-acrylamide (BIS) via the gas-blowing technique, and then loaded with a selected drug (amoxicillin trihydrate, AT) at pH 5 via an aqueous loading method. The drug-loaded SPHHs-AT carrier demonstrated outstanding (in vitro) gastroretentive drug delivery capability. The study attributed excellent swelling and delayed drug release to acidic conditions at pH 1.2. Moreover, in vitro controlled-release drug delivery systems at different pH values, namely, 1.2 (97.99%) and 7.4 (88%), were studied. These exceptional features of SPHHs—improved elasticity, pH responsivity, and high swelling performance—should be investigated for broader drug delivery applications in the future.
Collapse
|
22
|
Donoso-Meneses D, Figueroa-Valdés AI, Khoury M, Alcayaga-Miranda F. Oral Administration as a Potential Alternative for the Delivery of Small Extracellular Vesicles. Pharmaceutics 2023; 15:pharmaceutics15030716. [PMID: 36986578 PMCID: PMC10053447 DOI: 10.3390/pharmaceutics15030716] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
Small extracellular vesicles (sEVs) have burst into biomedicine as a natural therapeutic alternative for different diseases. Considered nanocarriers of biological origin, various studies have demonstrated the feasibility of their systemic administration, even with repeated doses. However, despite being the preferred route of physicians and patients, little is known about the clinical use of sEVs in oral administration. Different reports show that sEVs can resist the degradative conditions of the gastrointestinal tract after oral administration, accumulating regionally in the intestine, where they are absorbed for systemic biodistribution. Notably, observations demonstrate the efficacy of using sEVs as a nanocarrier system for a therapeutic payload to obtain a desired biological (therapeutic) effect. From another perspective, the information to date indicates that food-derived vesicles (FDVs) could be considered future nutraceutical agents since they contain or even overexpress different nutritional compounds of the foods from which they are derived, with potential effects on human health. In this review, we present and critically analyze the current information on the pharmacokinetics and safety profile of sEVs when administered orally. We also address the molecular and cellular mechanisms that promote intestinal absorption and that command the therapeutic effects that have been observed. Finally, we analyze the potential nutraceutical impact that FDVs would have on human health and how their oral use could be an emerging strategy to balance nutrition in people.
Collapse
Affiliation(s)
- Darío Donoso-Meneses
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620086, Chile
| | - Aliosha I. Figueroa-Valdés
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620086, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620086, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago 7550101, Chile
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- Cells for Cells, Santiago 7620157, Chile
| | - Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620086, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago 7550101, Chile
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- Cells for Cells, Santiago 7620157, Chile
- Correspondence:
| |
Collapse
|
23
|
Rauf-ur-Rehman, Shoaib MH, Ahmed FR, Yousuf RI, Siddiqui F, Saleem MT, Qazi F, Khan MZ, Irshad A, Bashir L, Naz S, Farooq M, Mahmood ZA. SeDeM expert system with I-optimal mixture design for oral multiparticulate drug delivery: An encapsulated floating minitablets of loxoprofen Na and its in silico physiologically based pharmacokinetic modeling. Front Pharmacol 2023; 14:1066018. [PMID: 36937845 PMCID: PMC10022826 DOI: 10.3389/fphar.2023.1066018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: A SeDeM expert tool-driven I-optimal mixture design has been used to develop a directly compressible multiparticulate based extended release minitablets for gastro-retentive drug delivery systems using loxoprofen sodium as a model drug. Methods: Powder blends were subjected to stress drug-excipient compatibility studies using FTIR, thermogravimetric analysis, and DSC. SeDeM diagram expert tool was utilized to assess the suitability of the drug and excipients for direct compression. The formulations were designed using an I-optimal mixture design with proportions of methocel K100M, ethocel 10P and NaHCO3 as variables. Powder was compressed into minitablets and encapsulated. After physicochemical evaluation lag-time, floating time, and drug release were studied. Heckel analysis for yield pressure and accelerated stability studies were performed as per ICH guidelines. The in silico PBPK Advanced Compartmental and Transit model of GastroPlus™ was used for predicting in vivo pharmacokinetic parameters. Results: Drug release follows first-order kinetics with fickian diffusion as the main mechanism for most of the formulations; however, a few formulations followed anomalous transport as the mechanism of drug release. The in-silico-based pharmacokinetic revealed relative bioavailability of 97.0%. Discussion: SeDeM expert system effectively used in QbD based development of encapsulated multiparticulates for once daily administration of loxoprofen sodium having predictable in-vivo bioavailability.
Collapse
Affiliation(s)
- Rauf-ur-Rehman
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
- *Correspondence: Muhammad Harris Shoaib, ,
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Faaiza Qazi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Momina Zarish Khan
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Asma Irshad
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Lubna Bashir
- Department of Pharmaceutics, Faculty of Pharmacy, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Shazia Naz
- Department of Pharmaceutics, Faculty of Pharmacy, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Muhammad Farooq
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Zafar Alam Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| |
Collapse
|
24
|
Pinheiro de Souza F, Sonego Zimmermann E, Tafet Carminato Silva R, Novaes Borges L, Villa Nova M, Miriam de Souza Lima M, Diniz A. Model-Informed drug development of gastroretentive release systems for sildenafil citrate. Eur J Pharm Biopharm 2023; 182:81-91. [PMID: 36516889 DOI: 10.1016/j.ejpb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Gastroretentive drug delivery systems (GRDDS) are modified-release dosage forms designed to prolong their residence time in the upper gastrointestinal tract, where some drugs are preferentially absorbed, and increase the drug bioavailability. This work aimed the development of a novel GRDDS containing 60 mg of sildenafil citrate, and the evaluation of the feasibility of the proposed formulation for use in the treatment of pulmonary arterial hypertension (PAH), for once a day administration, by using in silico pharmacokinetic (PK) modeling and simulations using GastroPlusTM. The Model-Informed Drug Development (MIDD) approach was used in formulation design and pharmacokinetic exposure prospecting. A 22 factorial design with a central point was used for optimization of the formulation, which was produced by direct compression and characterized by some tests, including buoyancy test, assay, impurities, and in vitro dissolution. A compartmental PK model was built using the GatroPlusTM software for virtual bioequivalence of the proposed formulations in comparison with the defined target release profile provided by an immediate release (IR) tablet formulation containing 20 mg of sildenafil administered three times a day (TID). The results of the factorial design showed a direct correlation between the dissolution rate and the amount of hydroxypropyl methyl cellulose (HPMC) in the formulations. By comparing the PK parameters predicted by the virtual bioequivalence, the formulations F1, F2, F3 and F5 failed on bioequivalence. The F4 showed bioequivalence to the reference and was considered the viable formulation to substitute the IR. Thus, GRDDS could be a promising alternative for controlling the release of drugs with a pH-dependent solubility and narrow absorption window, specifically in the gastric environment, and an interesting way to reduce dose frequency and increase the drug bioavailability. The MIDD approach increases the level of information about the pharmaceutical product and guide the drug development for more assertive ways.
Collapse
Affiliation(s)
- Fabio Pinheiro de Souza
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Estevan Sonego Zimmermann
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, FL, USA
| | - Raizza Tafet Carminato Silva
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Luiza Novaes Borges
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Mônica Villa Nova
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Marli Miriam de Souza Lima
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Andréa Diniz
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil.
| |
Collapse
|
25
|
Expandable Drug Delivery Systems Based on Shape Memory Polymers: Impact of Film Coating on Mechanical Properties and Release and Recovery Performance. Pharmaceutics 2022; 14:pharmaceutics14122814. [PMID: 36559306 PMCID: PMC9786903 DOI: 10.3390/pharmaceutics14122814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Retentive drug delivery systems (DDSs) are intended for prolonged residence and release inside hollow muscular organs, to achieve either local or systemic therapeutic goals. Recently, formulations based on shape memory polymers (SMPs) have gained attention in view of their special ability to recover a shape with greater spatial encumbrance at the target organ (e.g., urinary bladder or stomach), triggered by contact with biological fluids at body temperature. In this work, poly(vinyl alcohol) (PVA), a pharmaceutical-grade SMP previously shown to be an interesting 4D printing candidate, was employed to fabricate expandable organ-retentive prototypes by hot melt extrusion. With the aim of improving the mechanical resistance of the expandable DDS and slowing down relevant drug release, the application of insoluble permeable coatings based on either Eudragit® RS/RL or Eudragit® NE was evaluated using simple I-shaped specimens. The impact of the composition and thickness of the coating on the shape memory, swelling, and release behavior as well as on the mechanical properties of these specimens was thoroughly investigated and the effectiveness of the proposed strategy was demonstrated by the results obtained.
Collapse
|
26
|
Administration strategies and smart devices for drug release in specific sites of the upper GI tract. J Control Release 2022; 348:537-552. [PMID: 35690278 DOI: 10.1016/j.jconrel.2022.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Targeting the release of drugs in specific sites of the upper GI tract would meet local therapeutic goals, improve the bioavailability of specific drugs and help overcoming compliance-related limitations, especially in chronic illnesses of great social/economic impact and involving polytherapies (e.g. Parkinson's and Alzeimer's disease, tubercolosis, malaria, HIV, HCV). It has been traditionally pursued using gastroretentive (GR) systems, i.e. low-density, high-density, magnetic, adhesive and expandable devices. More recently, the interest towards oral administration of biologics has prompted the development of novel drug delivery systems (DDSs) provided with needles and able to inject different formulations in the mucosa of the upper GI tract and particularly of esophagus, stomach or small intestine. Besides comprehensive literature analysis, DDSs identified as smart devices in view of their high degree of complexity in terms of design, working mechanism, materials employed and manufacturing steps were discussed making use of graphic tools.
Collapse
|
27
|
Farhadnejad H, Mortazavi SA, Jamshidfar S, Rakhshani A, Motasadizadeh H, Fatahi Y, Mahdieh A, Darbasizadeh B. Montmorillonite-Famotidine/Chitosan Bio-nanocomposite Hydrogels as a Mucoadhesive/Gastroretentive Drug Delivery System. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e127035. [PMID: 36060919 PMCID: PMC9420228 DOI: 10.5812/ijpr-127035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
The main purpose of the present study was to fabricate mucoadhesive bio-nanocomposite hydrogels to prolong the drug retention time in the stomach. In these bio-nanocomposite hydrogels, chitosan (CH) was used as a bioadhesive matrix, montmorillonite (MMT) was applied to modulate the release rate, and tripolyphosphate (TPP) was the cross-linking agent. The test samples were analyzed via different methods such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Drug incorporation efficacy and mucoadhesive strength of these nanocomposite hydrogel beads were studied. Swelling and in vitro drug release behaviors of these bio-nanocomposite hydrogels were evaluated in simulated gastric fluid (SGF; pH 1.2). The optimized MMT-famotidine (FMT)/CH bio-nanocomposite hydrogels displayed a controllable and sustainable drug release profile with suitable mucoadhesion and prolonged retention time in the stomach. Thus, the results demonstrated that the fabricated mucoadhesive bio-nanocomposite hydrogels could remarkably increase the therapeutic efficacy and bioavailability of FMT by the oral route.
Collapse
Affiliation(s)
- Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research and Development Department, Varian Pharmed Pharmaceutical Company, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sanaz Jamshidfar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rakhshani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network, Tehran, Iran
| | - Athar Mahdieh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Naseem F, Shah SU, Rashid SA, Farid A, Almehmadi M, Alghamdi S. Metronidazole Based Floating Bioadhesive Drug Delivery System for Potential Eradication of H. pylori: Preparation and In Vitro Characterization. Polymers (Basel) 2022; 14:polym14030519. [PMID: 35160508 PMCID: PMC8838680 DOI: 10.3390/polym14030519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Metronidazole has the potential to produce local stomach specific action in order to treat Helicobacter pylori induced peptic ulcer disease. The current project executes the development of osmotically controlled bioadhesive metronidazole loaded effervescent floating tablets with optimized floating and swelling behavior. Direct compression technique was used to prepare the tablets. The designed formulations exhibited physico-chemical properties within acceptable optimum limits as per pharmacopeial requirements. The results of tablet floating studies revealed that all formulations, except F1 and F5, had good buoyancy characteristics (TFT > 12 h except F2 and F8 with TFT of 6 h). Formulation F2 containing guar gum in higher concentration with carbopol and formulation F8 containing guar gum in 50% decreased concentration in combination with HPMC and carbopol had enhanced FLT appreciably, with least TFT as compared to formulations F3, F4, and F6 (ANOVA; p ≤ 0.05). Formulation batches of F3, F4, and F6 exhibited appreciable FLT as well as TFT and were optimized formulations. Out of the above mentioned optimized batches, F4 and F6 formulations showed low FLT (4 and 5 s respectively). The results of the swelling study indicated a proportionate increase in the swelling index with increase in time. A significantly higher swelling ratio was found with formulation F6 and F4 compared with that of F7 and F8 (ANOVA; p ≤ 0.05). Additionally, the impact of pH change, agitational intensity, as well as increasing concentration of NaCl was investigated on drug release. It was observed that agitational intensity had no effect on drug release rate while increasing concentration of NaCl produced an increased drug release from the dosage form as compared to the drug release exhibited by the formulations in the absence of NaCl. Overall, this project could have valuable contribution in the fabrication of metronidazole loaded effervescent floating tablets. Gastro-retentive systems are expected to enhance local stomach specific action of anti H. pylori agents based on their buoyancy and swelling behavior.
Collapse
Affiliation(s)
- Faiza Naseem
- Skin/Regenerative Medicine and Drug Delivery Research, GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.N.); (S.U.S.)
| | - Shefaat Ullah Shah
- Skin/Regenerative Medicine and Drug Delivery Research, GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.N.); (S.U.S.)
| | - Sheikh Abdur Rashid
- Skin/Regenerative Medicine and Drug Delivery Research, GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.N.); (S.U.S.)
- Correspondence: (S.A.R.); (M.A.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Mazen Almehmadi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif 26571, Saudi Arabia
- Correspondence: (S.A.R.); (M.A.)
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah al-Mukarramah 24382, Saudi Arabia;
| |
Collapse
|
29
|
Factorial design approach to fabricate and optimize floating tablets based on combination of natural polymer and rice bran wax. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-021-00186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The aim of the present research work was to fabricate a novel gastroretentive drug delivery system in the form of tablets using a combination of natural polymer and rice bran wax with an intention to control drug delivery and to enhance the gastric residence time of the model drug Famotidine in the gastrointestinal tract.
Results
The results of the preliminary trial batches prepared by using the hot melt granulation technique resulting in six different formulations showed good physicochemical characteristics and tablets conformed to the Pharmacopoeial specifications. Gastroretentive tablets containing natural polymer showed prolonged drug release comparable to Methocel. The optimized formulation (C3) using 32 factorial design showed FLT 27 ± 2.47 s, SI 92.68 ± 1.36% and % CDR 98.89 ± 0.39% at 12 h. The stability studies indicated the stability of the formulation during storage.
Conclusions
It was concluded that the release profile fitted best to zero-order equation with non-Fickian diffusion mechanism of drug release which demonstrates swelling-controlled drug release mechanism. Thus, the formulated tablets have the potential for improved release and gastroretentive properties.
Graphical Abstract
Collapse
|
30
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1450-1466. [DOI: 10.1093/jpp/rgab176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022]
|
31
|
Dugam S, Nangare S, Gore A, Wairkar S, Patil P, Choudary L, Jadhav N. Crystallinity modulated silk fibroin electrospun nanofibers based floating scaffold as a candidate for controlled release of felodipine. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1981318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shailesh Dugam
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Anil Gore
- Institute of Chemical Science, UKA Tarsadia University, Bardoli 394350, Gujarat, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| | - Pramod Patil
- School of Nanoscience and Technology, Shivaji University, Kolhapur, India
| | - Latika Choudary
- School of Nanoscience and Technology, Shivaji University, Kolhapur, India
| | - Namdeo Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| |
Collapse
|
32
|
Vrettos NN, Roberts CJ, Zhu Z. Gastroretentive Technologies in Tandem with Controlled-Release Strategies: A Potent Answer to Oral Drug Bioavailability and Patient Compliance Implications. Pharmaceutics 2021; 13:pharmaceutics13101591. [PMID: 34683884 PMCID: PMC8539558 DOI: 10.3390/pharmaceutics13101591] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
There have been many efforts to improve oral drug bioavailability and therapeutic efficacy and patient compliance. A variety of controlled-release oral delivery systems have been developed to meet these needs. Gastroretentive drug delivery technologies have the potential to achieve retention of the dosage form in the upper gastrointestinal tract (GIT) that can be sufficient to ensure complete solubilisation of the drugs in the stomach fluids, followed by subsequent absorption in the stomach or proximal small intestine. This can be beneficial for drugs that have an “absorption window” or are absorbed to a different extent in various segments of the GIT. Therefore, gastroretentive technologies in tandem with controlled-release strategies could enhance both the therapeutic efficacy of many drugs and improve patient compliance through a reduction in dosing frequency. The paper reviews different gastroretentive drug delivery technologies and controlled-release strategies that can be combined and summarises examples of formulations currently in clinical development and commercially available gastroretentive controlled-release products. The different parameters that need to be considered and monitored during formulation development for these pharmaceutical applications are highlighted.
Collapse
|
33
|
Formulation & assessment of combined antibiotics in a floating oblong tablet for treatment of H. pylori: (A) Radiological imaging to prove the floating of a high-weight oblong tablet. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Luo Z, Paunović N, Leroux JC. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 2021; 175:113814. [PMID: 34052229 DOI: 10.1016/j.addr.2021.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Overcoming the gastrointestinal (GI) barriers is a formidable challenge in the oral delivery of active macromolecules such as peptide- and protein- based drugs. In the past four decades, a plethora of formulation strategies ranging from permeation enhancers, nanosized carriers, and chemical modifications of the drug's structure has been investigated to increase the oral absorption of these macromolecular compounds. However, only limited successes have been achieved so far, with the bioavailability of marketed oral peptide drugs remaining generally very low. Recently, a few approaches that are based on physical interactions, such as magnetic, acoustic, and mechanical forces, have been explored in order to control and improve the drug permeability across the GI mucosa. Although in the early stages, some of these methods have shown great potential both in terms of improved bioavailability and spatiotemporal delivery of drugs. Here, we offer a concise, yet critical overview of these rather unconventional technologies with a particular focus on their potential and possible challenges for further clinical translation.
Collapse
|
35
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev 2021; 173:216-237. [PMID: 33774118 DOI: 10.1016/j.addr.2021.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Shape memory materials (SMMs), including alloys and polymers, can be programmed into a temporary configuration and then recover the original shape in which they were processed in response to a triggering external stimulus (e.g. change in temperature or pH, contact with water). For this behavior, SMMs are currently raising a lot of attention in the pharmaceutical field where they could bring about important innovations in the current treatments. 4D printing involves processing of SMMs by 3D printing, thus adding shape evolution over time to the already numerous customization possibilities of this new manufacturing technology. SMM-based drug delivery systems (DDSs) proposed in the scientific literature were here reviewed and classified according to the target pursued through the shape recovery process. Administration route, therapeutic goal, temporary and original shape, triggering stimulus, main innovation features and possible room for improvement of the DDSs were especially highlighted.
Collapse
|
36
|
de Souza MPC, de Camargo BAF, Spósito L, Fortunato GC, Carvalho GC, Marena GD, Meneguin AB, Bauab TM, Chorilli M. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections. Crit Rev Microbiol 2021; 47:435-460. [PMID: 33725462 DOI: 10.1080/1040841x.2021.1895721] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Due to the high adaptability of Helicobacter pylori and the low targeting specificity of the drugs normally used in pharmacological therapy, the strains are becoming increasingly resistant to these drugs, making it difficult to eradicate the infection. Thus, the search for new therapeutic approaches has been considered urgent. The incorporation of drugs in advanced drug delivery systems, such as nano and microparticles, would allow the improvement of the retention time in the stomach and the prolongation of drug release rates at the target site. Because of this, the present review article aims to highlight the use of micro and nanoparticles as important technological tools for the treatment of H. pylori infections, focussing on the main nanotechnological systems, including nanostructured lipid carriers, liposomes, nanoemulsion, metallic nanoparticles, and polymeric nanoparticles, as well as microtechnological systems such as gastroretentive dosage forms, among them mucoadhesive, magnetic and floating systems were highlighted.
Collapse
Affiliation(s)
| | | | - Larissa Spósito
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | | | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| |
Collapse
|
37
|
Andretto V, Rosso A, Briançon S, Lollo G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv Transl Res 2021; 11:445-470. [PMID: 33534107 DOI: 10.1007/s13346-021-00905-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Oral delivery is considered the favoured route of administration for both local and systemic delivery of active molecules. Formulation of drugs in conventional systems and nanoparticles has provided opportunities for targeting the gastrointestinal (GI) tract, increasing drug solubility and bioavailability. Despite the achievements of these delivery approaches, the development of a product with the ability of delivering drug molecules at a specific site and according to patients' needs remains a challenging endeavour. The complexity of the physicochemical properties of colloidal systems, their stability in different regions of the gastrointestinal tract, and interaction with the restrictive biological barriers hampered their success for oral precise medicine. To overcome these issues, nanoparticles have been combined with polymers to create hybrid nanosystems, namely nanocomposites. They offer enormous possibilities of structural and mechanical modifications to both nanoparticles and polymeric matrixes to generate systems with new properties, functions, and applications for oral delivery. In this review, nanocomposites' physicochemical and functional properties intended to target specific regions of the GI tract-oral cavity, stomach, small bowel, and colon-are analysed. In parallel, it is provided an insight in the nanocomposite solutions for oral delivery intended for systemic and local absorption, together with a focus on inflammatory bowel diseases (IBDs). Additional difficulties in managing IBD related to the alteration in the physiology of the intestine are described. Finally, future perspectives and opportunities for advancement in this field are discussed.
Collapse
Affiliation(s)
- Valentina Andretto
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Annalisa Rosso
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Stéphanie Briançon
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Giovanna Lollo
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France.
| |
Collapse
|
38
|
Le TN, Her J, Sim T, Jung CE, Kang JK, Oh KT. Preparation of Gastro-retentive Tablets Employing Controlled Superporous Networks for Improved Drug Bioavailability. AAPS PharmSciTech 2020; 21:320. [PMID: 33180220 DOI: 10.1208/s12249-020-01851-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
The development of an oral formulation that ensures increased bioavailability of drugs is a great challenge for pharmaceutical scientists. Among many oral formulation systems, a drug delivery system employing superporous networks was developed to provide a prolonged gastro-retention time as well as improved bioavailability of drugs with a narrow absorption window in the gastrointestinal tract. Superporous networks (SPNs) were prepared from chitosan by crosslinking with glyoxal and poly(vinyl alcohol) (PVA). The SPNs showed less porosity and decreased water uptake with an increase in the crosslinking density and content of PVA. Gastro-retentive tablets (GRTs) were formulated using hydroxypropyl methylcellulose (HPMC, a hydrophilic polymer) and the prepared SPNs. Ascorbic acid (AA), which is mainly absorbed in the proximal part of the small intestine, was selected as a model drug. The formulated GRTs exhibited no floating lag time and stayed afloat until the end of the dissolution test. The in vitro drug release from the GRTs decreased with a decrease in the water uptake of the SPNs. The profile of drug release from the GRTs corresponded to the first-order and Higuchi drug-release models. Overall, floating tablets composed of the SPNs and HPMC have potential as a favorable platform to ensure sustained release and improved bioavailability of drugs that are absorbed in the proximal part of the small intestine.
Collapse
|
39
|
Intragastric amorphous calcium carbonate consumption triggered generation of in situ hydrogel piece for sustained drug release. Int J Pharm 2020; 590:119880. [DOI: 10.1016/j.ijpharm.2020.119880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
|
40
|
Singh MP, Kumar M, Shankar R. Development and Optimization of Methscopolamine Bromide Gastroretentive Floating Tablets Using 32 Factorial Design. Drug Res (Stuttg) 2020; 70:576-582. [PMID: 32992345 DOI: 10.1055/a-1249-8186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of this study was to formulate methscopolamine floating drug delivery system to increase its gastro retention for further enhancement of absorption and overall bioavailability. METHOD Direct compression method was used to formulate floating drug delivery system of methscopolamine bromide.: Different amount of HPMC, PVP K25, and MCC were used for preparation of tablets. RESULT The prepared tablets were evaluated for thickness, hardness, weight variation, floating lag time, swelling index and in-vitro drug release. All the formulations showed less than 10% of weight variation. The hardness and thickness of all the formulations were within the range of 3.7-4.2 kg/cm2 and 3.63-3.83 mm respectively. Floating lag time for all the formulations was reported in seconds. The degree of swelling was reported in range of 82.10-85.83%. In vitro release was carried out for 24 h. The maximum release was shown by F1 (93.947%) while the minimum release was observed for F4 (90.420%). The best formulation was optimized on the basis of percentage cumulative drug release, floating lag time and swelling index. F1 found to be the best formulation. Further on analyzing the drug release mechanism, F1 found to exhibit korsmeyer peppas model of drug release. CONCLUSION Floating gastroretentive tablet of methscopolamine bromide was successfully developed using direct compression method with potential to enhance the drug absorption and effective treatment of peptic ulcer.
Collapse
Affiliation(s)
- Maninder Pal Singh
- CT Institute of Pharmaceutical Sciences, Shahpur, Jalandhar Punjab.,MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana -Ambala
| | - Manish Kumar
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana -Ambala
| | | |
Collapse
|
41
|
Namdev A, Jain D. Floating Drug Delivery Systems: An Emerging Trend for the Treatment of Peptic Ulcer. Curr Drug Deliv 2020; 16:874-886. [PMID: 31894738 DOI: 10.2174/1567201816666191018163519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/13/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Abstract
Floating drug delivery system (FDDS) is the main approach to prolonging the gastric residence time in the stomach in which the bilayer floating tablet has the main role. It is more suitable for the treatment of local infections such as peptic ulcer, gastritis, Zollinger-Ellision syndrome, indigestion, and other local infections related to the gastrointestinal tract and also used for systemic applications. FDDS provides protection for those drugs which are acid labile and have a short half-life. It also improves bioavailability, reduces drug waste, and enhances the residence time of drugs. Nowadays, various technologies are being used for the development of FDDS. Novel drug delivery systems incorporation into bilayer floating tablets have also broadened the role of FDDS. Polymers have the main role in the development of FDDS, which serve as carriers for the drug and determine the gastric retention time and drug protection. FDDS is also an easy, cheap, and more convenient method for dual drug delivery of drugs.
Collapse
Affiliation(s)
- Ankit Namdev
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (MP), India
| | - Dharmendra Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (MP), India
| |
Collapse
|
42
|
Souza MPCD, Sábio RM, Ribeiro TDC, Santos AMD, Meneguin AB, Chorilli M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int J Biol Macromol 2020; 159:804-822. [PMID: 32425271 PMCID: PMC7232078 DOI: 10.1016/j.ijbiomac.2020.05.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The development of gastroretentive systems have been growing lately due to the high demand for carriers that increase drug bioavailability and therapeutic effectiveness after oral administration. Most of systems reported up to now are based on chitosan (CS) due to its peculiar properties, such as cationic nature, biodegradability, biocompatibility and important mucoadhesiveness, which make CS a promising biopolymer to design effective gastroretentive systems. In light of this, we reported in this review the CS versatility to fabricate different types of nano- and microstructured gastroretentive systems. For a better understanding of the gastric retention mechanisms, we highlighted expandable, density-based, magnetic, mucoadhesive and superporous systems. The biological and chemical properties of CS, anatomophysiological aspects related to gastrointestinal tract (GIT) and some applications of these systems are also described here. Overall, this review may assist researchers to explore new strategies to design safe and efficient gastroretentive systems in order to popularize them in the treatment of diseases and clinical practices.
Collapse
Affiliation(s)
- Maurício Palmeira Chaves de Souza
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Tais de Cassia Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Aline Martins Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|
43
|
3D-Printed Gastroretentive Sustained Release Drug Delivery System by Applying Design of Experiment Approach. Molecules 2020; 25:molecules25102330. [PMID: 32429452 PMCID: PMC7287939 DOI: 10.3390/molecules25102330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
This study aimed to develop a novel oral drug delivery system for gastroretentive sustained drug release by using a capsular device. A capsular device that can control drug release rates from the inner immediate release (IR) tablet while floating in the gastric fluid was fabricated and printed by a fused deposition modeling 3D printer. A commercial IR tablet of baclofen was inserted into the capsular device. The structure of the capsular device was optimized by applying a design of experiment approach to achieve sustained release of a drug while maintaining sufficient buoyancy. The 2-level factorial design was used to identify the optimal sustained release with three control factors: size, number, and height of drug-releasing holes of the capsular device. The drug delivery system was buoyant for more than 24 h and the average time to reach 80% dissolution (T80) was 1.7–6.7 h by varying the control factors. The effects of the different control factors on the response factor, T80, were predicted by using the equation of best fit. Finally, drug delivery systems with predetermined release rates were prepared with a mean prediction error ≤ 15.3%. This approach holds great promise to develop various controlled release drug delivery systems.
Collapse
|
44
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
45
|
Raza A, Hayat U, Wang HJ, Wang JY. Preparation and evaluation of captopril loaded gastro-retentive zein based porous floating tablets. Int J Pharm 2020; 579:119185. [PMID: 32112929 DOI: 10.1016/j.ijpharm.2020.119185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022]
Abstract
In this study, gastro-retentive porous floating tablets of captopril based on zein are reported using l-menthol as a porogen. Tablets were prepared by the direct compression method. Removing of l-menthol through sublimation process generated pores in tablets, which decreased the density to promote floating over gastric fluid. Prepared tablets showed no floating lag time and prolong total floating time (>24 h). Drug release was found dependent upon porosity of tablets, an increase in porosity of tablets resulted in increased drug release, so it can be tuned by varying concentration of l-menthol. In addition to floating and sustained release properties, porous tablets showed robust mechanical behavior in wet conditions, which can enable them to withstand real gastric environment stress. In vivo studies using New Zealand rabbits also confirmed the prolonged gastric retention (24 h) and plasma drug concentration-time profile showed sustained release of captopril with higher Tmax and MRT as compared to marketed immediate-release tablets. Overall, it was concluded that effective gastric retention can be achieved using porous zein tablets using l-menthol as a porogen.
Collapse
Affiliation(s)
- Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hua-Jie Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; JiaxingYaojiao Medical Device Co. Ltd., 321 Jiachuang Road, Jiaxing 314032, China
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
46
|
Lowinger MB, Maier EY, Williams RO, Zhang F. Hydrophilic Poly(urethanes) Are an Effective Tool for Gastric Retention Independent of Drug Release Rate. J Pharm Sci 2020; 109:1967-1977. [PMID: 32087181 DOI: 10.1016/j.xphs.2020.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/12/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Abstract
Acyclovir is a poorly permeable, short half-life drug with poor colonic absorption, and current conventional controlled release formulations are unable to decrease the frequency of administration. We designed acyclovir dosage forms to be administered less frequently by being retained in the stomach and releasing drug over an extended duration. We developed a conventional modified-release matrix tablet to sustain the release of acyclovir and surrounded it with a hydrophilic poly(urethane) layer. When hydrated, the porous poly(urethane) swells to a size near or beyond that of the relaxed pylorus diameter and does not affect drug release rate. We demonstrated that the formulation is retained in the stomach for extended durations as it slowly releases drug, allowing for similar area under the curve but delayed tmax relative to a nongastroretentive control tablet. Unlike many other gastroretentive formulations, this dosage form design decouples drug release rate from gastric retention time, allowing them to be modulated independently. It also effectively retains in the stomach regardless of the prandial state, differentiating from other approaches. Our direct observation of excised rat stomachs allowed for a rigorous assessment of the impact of polymer swelling extent and the prandial state on both the dosage form integrity and retention time.
Collapse
Affiliation(s)
- Michael B Lowinger
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712; MRL, Merck & Co, Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065
| | - Esther Y Maier
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712
| | - Feng Zhang
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712.
| |
Collapse
|
47
|
Lin HL, Chen LC, Cheng WT, Cheng WJ, Ho HO, Sheu MT. Preparation and Characterization of a Novel Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) for Enhanced Oral Bioavailability of Nilotinib. Pharmaceutics 2020; 12:pharmaceutics12020137. [PMID: 32041184 PMCID: PMC7076507 DOI: 10.3390/pharmaceutics12020137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023] Open
Abstract
Regarding compliance and minimization of side effects of nilotinib therapy, there is a medical need to have a gastroretentive drug delivery system (GRDDS) to enhance the oral bioavailability that is able to administer an optimal dose in a quaque die (QD) or daily manner. In this study, the influence on a swelling and floating (sf) GRDDS composed of a polymeric excipient (HPMC 90SH 100K, HEC 250HHX, or PEO 7000K) and Kollidon® SR was examined. Results demonstrated that PEO 7000K/Kollidon SR (P/K) at a 7/3 ratio was determined to be a basic GRDDS formulation with optimal swelling and floating abilities. MCC PH102 or HPCsssl,SFP was further added at a 50% content to this basic formulation to increase the tablet hardness and release all of the drug within 24 h. Also, the caplet form and capsule form containing the same formulation demonstrated higher hardness for the former and enhanced floating ability for the latter. A pharmacokinetic study on rabbits with pH values in stomach and intestine similar to human confirmed that the enhanced oral bioavailability ranged from 2.65–8.39-fold with respect to Tasigna, a commercially available form of nilotinib. In conclusion, the multiple of enhancement of the oral bioavailability of nilotinib with sfGRDDS could offer a pharmacokinetic profile with therapeutic effectiveness for the QD administration of a reasonable dose of nilotinib, thereby increasing compliance and minimizing side effects.
Collapse
Affiliation(s)
- Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan;
| | - Wen-Ting Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.-T.C.); (W.-J.C.)
| | - Wei-Jie Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.-T.C.); (W.-J.C.)
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.-T.C.); (W.-J.C.)
- Correspondence: (H.-O.H.); (M.-T.S.); Tel.: +886-2-27361661 (ext. 6112) (M.-T.S.); Fax: +886-2-23771942 (M.-T.S.)
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.-T.C.); (W.-J.C.)
- Correspondence: (H.-O.H.); (M.-T.S.); Tel.: +886-2-27361661 (ext. 6112) (M.-T.S.); Fax: +886-2-23771942 (M.-T.S.)
| |
Collapse
|
48
|
Improvement of fucoxanthin oral efficacy via vehicles based on gum Arabic, gelatin and alginate hydrogel. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103573] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
49
|
Krause J, Bogdahn M, Schneider F, Koziolek M, Weitschies W. Design and characterization of a novel 3D printed pressure-controlled drug delivery system. Eur J Pharm Sci 2019; 140:105060. [DOI: 10.1016/j.ejps.2019.105060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 07/17/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
|
50
|
Swellable and porous bilayer tablet for gastroretentive drug delivery: Preparation and in vitro-in vivo evaluation. Int J Pharm 2019; 572:118783. [DOI: 10.1016/j.ijpharm.2019.118783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 10/10/2019] [Indexed: 11/20/2022]
|