1
|
Embedding of Poorly Water-Soluble Drugs in Orodispersible Films-Comparison of Five Formulation Strategies. Pharmaceutics 2022; 15:pharmaceutics15010017. [PMID: 36678646 PMCID: PMC9864024 DOI: 10.3390/pharmaceutics15010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The poor bioavailability of many newly developed active pharmaceutical ingredients (APIs) poses a major challenge in formulation development. To overcome this issue, strategies such as the preparation of amorphous solid dispersions (ASDs), and the application of the APIs in lipid nanocarriers or the wet-milling of the substances into nanoparticles have been introduced. In addition to an efficient formulation strategy, a dosage form that is accepted by all patients is also of great importance. To enable a simple application of the oral dosage form for all patients, orodispersible films (ODFs) are a very promising delivery platform for the APIs because the films directly disintegrate in the mouth. In this study, two poorly water-soluble APIs, fenofibrate and naproxen, were formulated using five different formulation strategies and then embedded in ODFs. It was found that the deliverable amount of API with one ODF highly depends on the formulation strategy as well as the physicochemical properties of the formulated API. The most promising film formulations were ASD-ODFs as well as films with API-loaded lipid nanoemulsions. Both showed a reduction of the dissolution time of the APIs from the ODF compared to an ODF with unformulated API micro particles. In addition, short disintegration times were achieved, although the mechanical film properties were slightly worse compared to the API-free film formulation.
Collapse
|
2
|
Steiner D, Schumann LV, Bunjes H. Processing of Lipid Nanodispersions into Solid Powders by Spray Drying. Pharmaceutics 2022; 14:pharmaceutics14112464. [PMID: 36432654 PMCID: PMC9696983 DOI: 10.3390/pharmaceutics14112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Spray drying is a promising technology for drying lipid nanodispersions. These formulations can serve as carrier systems for poorly water-soluble active pharmaceutical ingredients (APIs) that are loaded into the lipid matrix to improve their bioavailability. Once the API-loaded nanocarriers have been further processed into solid dosage forms, they could be administered orally, which is usually preferred by patients. Various solid lipids as well as oils were used in this study to prepare lipid nanodispersions, and it was shown that their nanoparticulate properties could be maintained when lactose in combination with SDS was used as matrix material in the spray-drying process. In addition, for lipid nanoemulsions loaded with fenofibrate, a good redispersibility with particle sizes below 300 nm at a lipid content of 26.8 wt.% in the powders was observed. More detailed investigations on the influence of the drying temperature yielded good results when the inlet temperature of the drying air was set at 110 °C or above, enabling the lactose to form an amorphous matrix around the embedded lipid particles. A tristearin suspension was developed as a probe to measure the temperature exposure of the lipid particles during the drying process. The results with this approach indicate that the actual temperature the particles were exposed to during the drying process could be higher than the outlet temperature.
Collapse
Affiliation(s)
- Denise Steiner
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
- Correspondence:
| | - Leonie V. Schumann
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - Heike Bunjes
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Dong P, Stellmacher J, Bouchet LM, Nieke M, Kumar A, Osorio‐Blanco ER, Nagel G, Lohan SB, Teutloff C, Patzelt A, Schäfer‐Korting M, Calderón M, Meinke MC, Alexiev U. A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pin Dong
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Freie Universität Berlin Institute of Pharmacy Berlin Germany
| | - Johannes Stellmacher
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| | - Lydia M. Bouchet
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | - Marius Nieke
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
- Humboldt-Universität zu Berlin Institute of Biology Berlin Germany
| | - Amit Kumar
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | | | - Gregor Nagel
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | - Silke B. Lohan
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Christian Teutloff
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | | | - Marcelo Calderón
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
- POLYMAT Faculty of Chemistry University of the Basque Country UPV/EHU 20018 Donostia-San Sebastián Spain
- IKERBASQUE Basque Foundation for Science 48013 Bilbao Spain
| | - Martina C. Meinke
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ulrike Alexiev
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| |
Collapse
|
4
|
Dong P, Stellmacher J, Bouchet LM, Nieke M, Kumar A, Osorio‐Blanco ER, Nagel G, Lohan SB, Teutloff C, Patzelt A, Schäfer‐Korting M, Calderón M, Meinke MC, Alexiev U. A Dual Fluorescence-Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM-EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:14938-14944. [PMID: 33544452 PMCID: PMC8251738 DOI: 10.1002/anie.202012852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/27/2021] [Indexed: 12/30/2022]
Abstract
Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo.
Collapse
Affiliation(s)
- Pin Dong
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Freie Universität BerlinInstitute of PharmacyBerlinGermany
| | - Johannes Stellmacher
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| | - Lydia M. Bouchet
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | - Marius Nieke
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
- Humboldt-Universität zu BerlinInstitute of BiologyBerlinGermany
| | - Amit Kumar
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | | | - Gregor Nagel
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | - Silke B. Lohan
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Christian Teutloff
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | | | - Marcelo Calderón
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
- POLYMATFaculty of ChemistryUniversity of the Basque CountryUPV/EHU20018Donostia-San SebastiánSpain
- IKERBASQUEBasque Foundation for Science48013BilbaoSpain
| | - Martina C. Meinke
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Ulrike Alexiev
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| |
Collapse
|
5
|
Francke NM, Schneider F, Baumann K, Bunjes H. Formulation of Cannabidiol in Colloidal Lipid Carriers. Molecules 2021; 26:1469. [PMID: 33800445 PMCID: PMC7962959 DOI: 10.3390/molecules26051469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, the general processability of cannabidiol (CBD) in colloidal lipid carriers was investigated. Due to its many pharmacological effects, the pharmaceutical use of this poorly water-soluble drug is currently under intensive research and colloidal lipid emulsions are a well-established formulation option for such lipophilic substances. To obtain a better understanding of the formulability of CBD in lipid emulsions, different aspects of CBD loading and its interaction with the emulsion droplets were investigated. Very high drug loads (>40% related to lipid content) could be achieved in emulsions of medium chain triglycerides, rapeseed oil, soybean oil and trimyristin. The maximum CBD load depended on the type of lipid matrix. CBD loading increased the particle size and the density of the lipid matrix. The loading capacity of a trimyristin emulsion for CBD was superior to that of a suspension of solid lipid nanoparticles based on trimyristin (69% vs. 30% related to the lipid matrix). In addition to its localization within the lipid core of the emulsion droplets, cannabidiol was associated with the droplet interface to a remarkable extent. According to a stress test, CBD destabilized the emulsions, with phospholipid-stabilized emulsions being more stable than poloxamer-stabilized ones. Furthermore, it was possible to produce emulsions with pure CBD as the dispersed phase, since CBD demonstrated such a pronounced supercooling tendency that it did not recrystallize, even if cooled to -60 °C.
Collapse
Affiliation(s)
- Nadine Monika Francke
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany;
| | - Frederic Schneider
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany; (F.S.); (K.B.)
| | - Knut Baumann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany; (F.S.); (K.B.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - Heike Bunjes
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany;
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Arnold-Brüning FS, Blaschke T, Kramer K, Lademann J, Thiede G, Fluhr JW, Patzelt A, Meinke MC. Application of parelectric spectroscopy to detect skin cancer-A pilot study. Skin Res Technol 2020; 26:234-240. [PMID: 31549768 DOI: 10.1111/srt.12785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The early detection of skin cancer is still challenging and calls for objective, fast diagnostic, and ideally non-invasive methods in order to leave the potentially malignant tumor cells unaltered. In this paper, the parelectric spectroscopy was applied to evaluate the potential of a non-invasive detection of basal cell carcinoma (BCC) and malignant melanoma. MATERIALS AND METHODS A prototype of parelectric spectroscopy was used to investigate non-invasively dipole density and mobility of suspicious skin lesions. The differences in investigated tissue were analyzed compared to pathohistological findings in a clinical study on 51 patients with suspected BCC and malignant melanoma. RESULTS The non-invasive parelectric spectroscopy could differentiate between normal skin, BCC, and melanoma but failed to distinguish between different types of skin cancer. The data were normalized to unsuspected nearby skin because the different skin locations influence dipole density and mobility. CONCLUSION The results of the pilot study indicate that the parelectric spectroscopy might be an additional, useful non-invasive diagnostic procedure to distinguish between normal skin and skin cancer.
Collapse
Affiliation(s)
- Frederike S Arnold-Brüning
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | | | | | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Gisela Thiede
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Joachim W Fluhr
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alexa Patzelt
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Gad HA, Abd El-Rahman FA, Hamdy GM. Chamomile oil loaded solid lipid nanoparticles: A naturally formulated remedy to enhance the wound healing. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Doktorovova S, Souto EB, Silva AM. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm Dev Technol 2017; 23:96-105. [DOI: 10.1080/10837450.2017.1384491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Slavomira Doktorovova
- Department of Biology and Environment, School of Life and Environmental Sciences, (ECVA, UTAD), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, (ECVA, UTAD), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), Vila-Real, Portugal
| |
Collapse
|
9
|
Drug distribution in nanostructured lipid particles. Eur J Pharm Biopharm 2017; 110:19-23. [DOI: 10.1016/j.ejpb.2016.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/16/2016] [Accepted: 10/22/2016] [Indexed: 11/21/2022]
|
10
|
Lohan SB, Saeidpour S, Solik A, Schanzer S, Richter H, Dong P, Darvin ME, Bodmeier R, Patzelt A, Zoubari G, Unbehauen M, Haag R, Lademann J, Teutloff C, Bittl R, Meinke MC. Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy. Eur J Pharm Biopharm 2016; 116:102-110. [PMID: 28043865 DOI: 10.1016/j.ejpb.2016.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
An improvement of the penetration efficiency combined with the controlled release of actives in the skin can facilitate the medical treatment of skin diseases immensely. Dexamethasone (Dx), a synthetic glucocorticoid, is frequently used for the treatment of inflammatory skin diseases. To investigate the penetration of nano-sized lipid particles (NLP) loaded with Dx in comparison to a commercially available base cream, different techniques were applied. Electron paramagnetic resonance (EPR) spectroscopy was used to monitor the penetration of Dx, which was covalently labeled with the spin probe 3-(Carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA). The penetration into hair follicles was studied using confocal laser scanning microscopy (CLSM) with curcumin-loaded NLP. The penetration of the vehicle was followed by confocal Raman microscopy (CRM). Penetration studies using excised porcine skin revealed a more than twofold higher penetration efficiency for DxPCA into the stratum corneum (SC) after 24h incubation compared to 4h incubation when loaded to the NLP, whereas when applied in the base cream, almost no further penetration was observed beyond 4h. The distribution of DxPCA within the SC was investigated by consecutive tape stripping. The release of DxPCA from the base cream after 24h in deeper SC layers and the viable epidermis was shown by EPR. For NLP, no release from the carrier was observed, although DxPCA was detectable in the skin after the complete SC was removed. This phenomenon can be explained by the penetration of the NLP into the hair follicles. However, penetration profiles measured by CRM indicate that NLP did not penetrate as deeply into the SC as the base cream formulation. In conclusion, NLP can improve the accumulation of Dx in the skin and provide a reservoir within the SC and in the follicular infundibula.
Collapse
Affiliation(s)
- Silke B Lohan
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany.
| | | | - Agnieszka Solik
- Freie Universität Berlin, Pharmazeutische Technologie, Institut für Pharmazie, Berlin, Germany
| | - Sabine Schanzer
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Heike Richter
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Pin Dong
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Roland Bodmeier
- Freie Universität Berlin, Pharmazeutische Technologie, Institut für Pharmazie, Berlin, Germany
| | - Alexa Patzelt
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Gaith Zoubari
- Freie Universität Berlin, Pharmazeutische Technologie, Institut für Pharmazie, Berlin, Germany
| | - Michael Unbehauen
- Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | | | - Robert Bittl
- Freie Universität Berlin, Fachbereich Physik, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
11
|
Lohan S, Icken N, Teutloff C, Saeidpour S, Bittl R, Lademann J, Fleige E, Haag R, Haag S, Meinke M. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers. Int J Pharm 2016; 501:271-7. [DOI: 10.1016/j.ijpharm.2016.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/02/2023]
|
12
|
|
13
|
Kupetz E, Bunjes H. Lipid nanoparticles: drug localization is substance-specific and achievable load depends on the size and physical state of the particles. J Control Release 2014; 189:54-64. [PMID: 24933601 DOI: 10.1016/j.jconrel.2014.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Lipid nanoemulsions and -suspensions are being intensively investigated as carriers for poorly water soluble drugs. The question on where model compounds or probes are localized within the dispersions has been the subject of several studies. However, only little data exists for pharmaceutically relevant molecules in dispersions composed of pharmaceutically relevant excipients. In this work, the localization of drugs and drug-like substances was studied in lipid nanoemulsions and -suspensions. Conclusions about the drug localization were drawn from the relations between lipid mass, specific particle surface area and drug load in the dispersions. Additionally, the achievable drug loads of the liquid and the solid lipid particles were compared. Nanoemulsions and -suspensions comprised trimyristin as lipid matrix and poloxamer 188 as emulsifier and were prepared with different well-defined particle sizes. These pre-formed dispersions were passively loaded with either amphotericin B, curcumin, dibucaine, fenofibrate, mefenamic acid, propofol, or a porphyrin derivative. The physico-chemical properties of the particles were characterized; drug load and lipid content were quantified by UV spectroscopy and high performance liquid chromatography, respectively. For all drugs the passive loading procedure was successful in both emulsions and suspensions. Solid particles accommodate drug molecules preferably at the particle surface. Liquid particles can accommodate drugs at the particle surface as well as in the core; the distribution between the two sites is drug specific. It is also drug specific whether solid or liquid particles yield higher drug loads. As a general rule, smaller particles led to higher drug loads than larger ones. Propofol and the porphyrin derivative displayed eutectic interaction with the lipid and crystal growth after loading, respectively.
Collapse
Affiliation(s)
- Eva Kupetz
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany.
| | - Heike Bunjes
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany.
| |
Collapse
|
14
|
Karn-orachai K, Smith SM, Phunpee S, Treethong A, Puttipipatkhachorn S, Pratontep S, Ruktanonchai UR. The effect of surfactant composition on the chemical and structural properties of nanostructured lipid carriers. J Microencapsul 2014; 31:609-18. [DOI: 10.3109/02652048.2014.911374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Ali-von Laue C, Zoschke C, Do N, Lehnen D, Küchler S, Mehnert W, Blaschke T, Kramer KD, Plendl J, Weindl G, Korting HC, Hoeller Obrigkeit D, Merk HF, Schäfer-Korting M. Improving topical non-melanoma skin cancer treatment: In vitro efficacy of a novel guanosine-analog phosphonate. Skin Pharmacol Physiol 2014; 27:173. [PMID: 24503861 DOI: 10.1159/000354118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 07/01/2013] [Indexed: 11/19/2022]
Abstract
Actinic keratosis, a frequent carcinoma in situ of non-melanoma skin cancer (NMSC), can transform into life-threatening cutaneous squamous cell carcinoma. Current treatment is limited due to low complete clearance rates and asks for novel therapeutic concepts; the novel purine nucleotide analogue OxBu may be an option. In order to enhance skin penetration, solid lipid nanoparticles (SLN, 136-156 nm) were produced with an OxBu entrapment efficiency of 96.5 ± 0.1%. For improved preclinical evaluation, we combined tissue engineering with clinically used keratin-18 quantification. Three doses of 10(-3) mol/l OxBu, dissolved in phosphate-buffered saline as well as loaded to SLN, were effective on reconstructed NMSC. Tumour response and apoptosis induction were evaluated by an increase in caspase-cleaved fragment of keratin-18, caspase-7 activation as well as by reduced expression of matrix metallopeptidase-2 and Ki-67. OxBu efficacy was superior to equimolar 5-fluorouracil solution, and thus the drug should be subjected to the next step in preclinical evaluation.
Collapse
Affiliation(s)
- C Ali-von Laue
- Institute for Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu D, Chen L, Jiang S, Zhu S, Qian Y, Wang F, Li R, Xu Q. Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology. J Liposome Res 2013; 24:17-26. [PMID: 24236407 DOI: 10.3109/08982104.2013.826241] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To successfully prepare the diclofenac sodium (DS)-loaded solid lipid nanoparticles (SLNs), phospholipid complexes (PCs) technology was applied here to improve the liposolubility of DS. Solid lipid nanoparticles (SLNs) loaded with phospholipid complexes (PCs) were prepared by the modified emulsion/solvent evaporation method. DS could be solubilized effectively in the organic solvents with the existence of phospholipid and apparent partition coefficient of DS in PCs increased significantly. X-ray diffraction analysis suggested that DS in PCs was either molecularly dispersed or in an amorphous form. However, no significant difference was observed between the Fourier transform infrared spectroscopy (FT-IR) spectra of physical mixture and that of PCs. Particles with small sizes, narrow polydispersity indexes and high entrapment efficiencies could be obtained with the addition of PCs. Furthermore, according to the transmission electron microscopy, a core-shell structure was likely to be formed. The presence of PCs caused the change of zeta potential and retarded the drug release of SLNs, which indicated that phospholipid formed multilayers around the solid lipid core of SLNs. Both FT-IR and differential scanning calorimetry analysis also illustrated that some weak interactions between DS and lipid materials might take place during the preparation of SLNs. In conclusion, the model hydrophilic drug-DS can be formulated into the SLNs with the help of PCs.
Collapse
Affiliation(s)
- Dongfei Liu
- School of Pharmacy, Nanjing Medical University , Nanjing , People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yoon G, Park JW, Yoon IS. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): recent advances in drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0087-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Transdermal microgels of gentamicin. Eur J Pharm Biopharm 2013; 84:345-54. [DOI: 10.1016/j.ejpb.2012.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 10/17/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
|
19
|
Localization and reactivity of a hydrophobic solute in lecithin and caseinate stabilized solid lipid nanoparticles and nanoemulsions. J Colloid Interface Sci 2013; 394:20-5. [DOI: 10.1016/j.jcis.2012.12.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/20/2022]
|
20
|
Haag S, Chen M, Peters D, Keck C, Taskoparan B, Fahr A, Teutloff C, Bittl R, Lademann J, Schäfer-Korting M, Meinke M. Nanostructured lipid carriers as nitroxide depot system measured by electron paramagnetic resonance spectroscopy. Int J Pharm 2011; 421:364-9. [DOI: 10.1016/j.ijpharm.2011.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 11/25/2022]
|
21
|
Structural properties of solid lipid based colloidal drug delivery systems. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2011.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Haag SF, Fleige E, Chen M, Fahr A, Teutloff C, Bittl R, Lademann J, Schäfer-Korting M, Haag R, Meinke MC. Skin penetration enhancement of core-multishell nanotransporters and invasomes measured by electron paramagnetic resonance spectroscopy. Int J Pharm 2011; 416:223-8. [PMID: 21745556 DOI: 10.1016/j.ijpharm.2011.06.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/25/2011] [Indexed: 11/25/2022]
Abstract
In order to cross the skin barrier several techniques and carrier systems were developed to increase skin penetration of topical dermatics and to reduce systemic adverse effects by avoiding systemic application. Ultra-flexible vesicles, e.g. invasomes and core-multishell (CMS) nanotransporters are efficient drug delivery systems for dermatological applications. Electron paramagnetic resonance (EPR) spectroscopic techniques were used for the determination of localization and distribution of the spin label 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA; logP=-1.7) within the carrier systems and the ability of the carriers to promote penetration of PCA into the skin. The results show an exclusive localization of PCA in the hydrophilic compartments of the invasome dispersion and the CMS nanotransporter solution. PCA penetration was enhanced 2.5 fold for CMS and 1.9 fold for invasomes compared to PCA solution. Investigation of penetration depth by step-wise removal of the stratum corneum by tape stripping revealed deepest PCA penetration for invasomes. UV-irradiation of PCA-exposed skin samples revealed that the spin label is still reactive. In conclusion novel polymer-based CMS nanotransporters and invasomes can favor the penetration of PCA or hydrophilic drugs. This offers possibilities for e.g. improved photodynamic therapy.
Collapse
Affiliation(s)
- S F Haag
- Freie Universität Berlin, Institut für Pharmazie, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Q, Gong T, Sun X, Zhang Z. Structural characterization of novel phospholipid lipid nanoparticles for controlled drug delivery. Colloids Surf B Biointerfaces 2011; 84:406-12. [DOI: 10.1016/j.colsurfb.2011.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 01/20/2011] [Accepted: 01/22/2011] [Indexed: 11/28/2022]
|
24
|
Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12:62-76. [PMID: 21174180 DOI: 10.1208/s12249-010-9563-0] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/30/2010] [Indexed: 01/28/2023] Open
Abstract
Lipid nanoparticles based on solid matrix have emerged as potential drug carriers to improve gastrointestinal (GI) absorption and oral bioavailability of several drugs, especially lipophilic compounds. These formulations may also be used for sustained drug release. Solid lipid nanoparticle (SLN) and the newer generation lipid nanoparticle, nanostructured lipid carrier (NLC), have been studied for their capability as oral drug carriers. Biodegradable, biocompatible, and physiological lipids are generally used to prepare these nanoparticles. Hence, toxicity problems related with the polymeric nanoparticles can be minimized. Furthermore, stability of the formulations might increase than other liquid nano-carriers due to the solid matrix of these lipid nanoparticles. These nanoparticles can be produced by different formulation techniques. Scaling up of the production process from lab scale to industrial scale can be easily achieved. Reasonably high drug encapsulation efficiency of the nanoparticles was documented. Oral absorption and bioavailability of several drugs were improved after oral administration of the drug-loaded SLNs or NLCs. In this review, pros and cons, different formulation and characterization techniques, drug incorporation models, GI absorption and oral bioavailability enhancement mechanisms, stability and storage condition of the formulations, and recent advances in oral delivery of the lipid nanoparticles based on solid matrix will be discussed.
Collapse
|
25
|
Schlupp P, Blaschke T, Kramer K, Höltje HD, Mehnert W, Schäfer-Korting M. Drug Release and Skin Penetration from Solid Lipid Nanoparticles and a Base Cream: A Systematic Approach from a Comparison of Three Glucocorticoids. Skin Pharmacol Physiol 2011; 24:199-209. [DOI: 10.1159/000324053] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 12/27/2010] [Indexed: 12/29/2022]
|
26
|
Lipid-based colloidal systems (nanoparticles, microemulsions) for drug delivery to the skin: materials and end-product formulations. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50005-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Jensen LB, Magnussson E, Gunnarsson L, Vermehren C, Nielsen HM, Petersson K. Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int J Pharm 2010; 390:53-60. [DOI: 10.1016/j.ijpharm.2009.10.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 11/17/2022]
|
28
|
Küchler S, Herrmann W, Panek-Minkin G, Blaschke T, Zoschke C, Kramer KD, Bittl R, Schäfer-Korting M. SLN for topical application in skin diseases--characterization of drug-carrier and carrier-target interactions. Int J Pharm 2010; 390:225-33. [PMID: 20153414 DOI: 10.1016/j.ijpharm.2010.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
The modes of drug-particle interactions considerably influence drug delivery by nanoparticulate carrier systems and drug penetration into the skin. The exact mechanism of the drug loading and its release are still ambiguous. Therefore, the loading process, the interaction of the agent and the lipid matrix of solid lipid nanoparticles (SLNs) as well as the uptake of the loaded agent by skin lipids were analysed by electron spin resonance (ESR) and parelectric spectroscopy (PS) using spin probes (TEMPO, TEMPOL, and CAT-1) as model drugs differing in their lipophilicity. The spin probes were closely attached to the particles lipid surface (TEMPO) or located in the layers of the surfactant (CAT-1), respectively. Furthermore, two distinct sub-compartments on the SLN were found. To simulate the processes at the phase boundary SLN dispersion/skin, skin lipid mixtures were prepared and the transfer process of the spin labels was followed by ESR tomography. Transfer rates were related to the lipophilicity of the spin probe, the lipid mixture and the applied pharmaceutical formulation, SLN dispersion and aqueous solution, respectively. In particular, SLN accelerated in particular the distribution of the lipophilic agents.
Collapse
Affiliation(s)
- Sarah Küchler
- Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Küchler S, Wolf NB, Heilmann S, Weindl G, Helfmann J, Yahya MM, Stein C, Schäfer-Korting M. 3D-wound healing model: influence of morphine and solid lipid nanoparticles. J Biotechnol 2010; 148:24-30. [PMID: 20138929 DOI: 10.1016/j.jbiotec.2010.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/11/2009] [Accepted: 01/06/2010] [Indexed: 11/28/2022]
Abstract
For efficient pain reduction in severe skin wounds, topically applied opioids may be a new option. Moreover, by stimulating keratinocyte migration opioids may also accelerate wound healing. Yet, conventional formulations failed to consistently provide sufficient pain control in patients which may be due to local drug degradation or insufficient concentrations at the target site. After having excluded major morphine glucuronidation by keratinocytes and fibroblasts, we next aimed for an optimised formulation. Since long intervals for painful wound dressing changes are intended, the formulations should allow for prolonged opioid release and should not impair the healing process. We developed morphine-loaded solid lipid nanoparticles (SLN, mean size about 180 nm), and tested improvement of wound closure in a new human-based 3D-wound healing model. Standardised wounds were induced by CO(2)-laser irradiation of reconstructed human full-thickness skin equivalents (EpiDermFT). Morphine, morphine-loaded and unloaded SLN accelerated reepithelialization. Keratinocytes almost completely covered the dermis equivalent after 4 days, which was not the case when applying the vehicle. In conclusion, acceleration of wound closure, low cytotoxicity and irritation as well as possible prolonged morphine release make SLN an interesting approach for innovative wound management.
Collapse
Affiliation(s)
- Sarah Küchler
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2-4, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Topical drug application is less prone to severe systemic side-effects than systemic application. Starting with the liposomes, various types of nanosized and microsized drug carriers have been developed to increase the notoriously low penetration of active agents into the skin, which limits not only the topical therapy of skin disease but also transdermal therapy. Today, liposome- and microsponge-based preparations are approved for dermatomycosis, acne and actinic keratosis. Under investigation are drug carriers such as lipid nanoparticles, polymeric particles, dendrimers, and dendritic-core multi-shell nanotransporters. According to the rapidly increasing research in this field, both in academia and industry, a breakthrough appears likely, once stability problems (nanoparticles) and safety concerns (dendrimers) are overcome. Technical approaches and results of in vitro, ex vivo and in vivo testing are described, taking into account pharmacokinetic, efficacy and safety aspects.
Collapse
Affiliation(s)
- Hans Christian Korting
- Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-Universität, Frauenlobstrasse 9-11, 80337 München, Germany.
| | | |
Collapse
|
31
|
Jia LJ, Zhang DR, Li ZY, Feng FF, Wang YC, Dai WT, Duan CX, Zhang Q. Preparation and characterization of silybin-loaded nanostructured lipid carriers. Drug Deliv 2009; 17:11-8. [PMID: 19941406 DOI: 10.3109/10717540903431586] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanostructured lipid carriers (NLC) are a new generation of lipid nanoparticles, which are produced by controlled mixing of solid lipids with spatially incompatible liquid lipids leading to special nanostructures with improved drug incorporation and release properties. In this study, silybin-loaded nanostructured lipid carriers with various liquid lipid content were successfully prepared by the method of emulsion evaporation at a high temperature and solidification at a low temperature. The size and morphology of nanoparticles were significantly influenced by the liquid lipid content. As the liquid lipid content increased to 20 wt%, the obtained particles showed distinguished smaller size. Compared with solid lipid nanoparticles (SLN), NLC presented improved drug loading capacity which increased with increasing the liquid lipid content. The differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis indicated that the incorporation of liquid lipids could interfere with the crystallization of solid lipids. The drug in vitro release behavior from NLC displayed a biphasic drug release pattern with burst release at the initial stage and prolonged release afterwards, and the successful controlled release rate can be achieved by controlling the liquid lipid content.
Collapse
Affiliation(s)
- Le-Jiao Jia
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nanoparticles for skin penetration enhancement – A comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm 2009; 71:243-50. [DOI: 10.1016/j.ejpb.2008.08.019] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/30/2008] [Accepted: 08/07/2008] [Indexed: 11/18/2022]
|
33
|
Moll KP, Herrmann W, Stößer R, Borchert HH. Changes of the Properties in the Upper Layers of Human Skin on Treatment with Models of Different Pharmaceutical Formulations—An Ex vivo ESR Imaging Study. ChemMedChem 2008; 3:653-9. [DOI: 10.1002/cmdc.200700277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|