1
|
Fatahian R, Erfani R. Surrogate modeling of electrospun PVA/PLA nanofibers using artificial neural network for biomedical applications. Sci Rep 2025; 15:12886. [PMID: 40234455 PMCID: PMC12000562 DOI: 10.1038/s41598-025-94608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Blending poly (lactic acid) (PLA) with poly (vinyl alcohol) (PVA) improves the strength and hydrophilicity of nanofibers, making them suitable for biomedical applications like wound dressings. This study explores how electrospinning parameters-applied voltage, flow rate, and needle-to-collector distance-affect PVA/PLA nanofiber properties, optimizing them using a Taguchi design of experiment (DoE) approach to enhance their mechanical and surface properties for clinical use. Given the high costs and time associated with conducting extensive experimental tests, an artificial neural network based surrogate model is developed to predict experimental outcomes more efficiently, facilitating faster identification of optimal design configurations. Analysis of Variance reveals flow rate as the most significant determinant of fiber diameter. The optimal electrospinning configuration yields nanofibers with an average diameter of 127.6 ± 19.8 nm. These fibers exhibit exceptional tensile strength, flexibility, and a water contact angle of 37°, demonstrating superior hydrophilicity conducive to cell adhesion and proliferation-key factors in promoting wound healing. Comparative analyses confirm that the optimized scaffold (18 cm needle-to-collector distance, 0.6 ml/h flow rate, and 18 kV applied voltage) significantly outperforms alternative configurations, such as 10 cm needle-to-collector distance, 1.2 ml/h flow rate, and 22 kV applied voltage, which display larger diameters, reduced hydrophilicity (contact angle of 72°), and diminished suitability for medical use. Validation experiments affirm the accuracy and reproducibility of the Taguchi optimization, substantiating the methodological rigor and reliability of the findings. This work contributes novel insights into the tunable design of electrospun nanofibers, providing a pathway to developing advanced wound dressings that facilitate tissue integration and accelerate healing. The optimized PVA/PLA nanofibers have the potential to revolutionize wound care by offering a cost-effective and clinically viable solution for enhancing patient recovery, reducing treatment durations, and improving global healthcare outcomes.
Collapse
Affiliation(s)
- Reyhaneh Fatahian
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Rasool Erfani
- Department of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Schock Vaiani J, Broekgaarden M, Coll JL, Sancey L, Busser B. In vivo vectorization and delivery systems for gene therapies and RNA-based therapeutics in oncology. NANOSCALE 2025; 17:5501-5525. [PMID: 39927415 DOI: 10.1039/d4nr05371k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Gene and RNA-based therapeutics represent a promising frontier in oncology, enabling targeted modulation of tumor-associated genes and proteins. This review explores the latest advances in payload vectorization and delivery systems developed for in vivo cancer treatments. We discuss viral and non-viral organic particles, including lipid based nanoparticles and polymeric structures, for the effective transport of plasmids, siRNA, and self-amplifying RNA therapeutics. Their physicochemical properties, strategies to overcome intracellular barriers, and innovations in cell-based carriers and engineered extracellular vesicles are highlighted. Moreover, we consider oncolytic viruses, novel viral capsid modifications, and approaches that refine tumor targeting and immunomodulation. Ongoing clinical trials and regulatory frameworks guide future directions and emphasize the need for safe, scalable production. The potential convergence of these systems with combination therapies paves the way toward personalized cancer medicine.
Collapse
Affiliation(s)
- Julie Schock Vaiani
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Mans Broekgaarden
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Jean-Luc Coll
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Lucie Sancey
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Benoit Busser
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
- Grenoble Alpes Univ. Hospital (CHUGA), 38043 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
3
|
Prasher P, Sharma M, Agarwal V, Singh SK, Gupta G, Dureja H, Dua K. Cationic cycloamylose based nucleic acid nanocarriers. Chem Biol Interact 2024; 395:111000. [PMID: 38614318 DOI: 10.1016/j.cbi.2024.111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nucleic acid delivery by viral and non-viral methods has been a cornerstone for the contemporary gene therapy aimed at correcting the defective genes, replacing of the missing genes, or downregulating the expression of anomalous genes is highly desirable for the management of various diseases. Ostensibly, it becomes paramount for the delivery vectors to intersect the biological barriers for accessing their destined site within the cellular environment. However, the lipophilic nature of biological membranes and their potential to limit the entry of large sized, charged, hydrophilic molecules thus presenting a sizeable challenge for the cellular integration of negatively charged nucleic acids. Furthermore, the susceptibility of nucleic acids towards the degrading enzymes (nucleases) in the lysosomes present in cytoplasm is another matter of concern for their cellular and nuclear delivery. Hence, there is a pressing need for the identification and development of cationic delivery systems which encapsulate the cargo nucleic acids where the charge facilitates their cellular entry by evading the membrane barriers, and the encapsulation shields them from the enzymatic attack in cytoplasm. Cycloamylose bearing a closed loop conformation presents a robust candidature in this regard owing to its remarkable encapsulating tendency towards nucleic acids including siRNA, CpG DNA, and siRNA. The presence of numerous hydroxyl groups on the cycloamylose periphery provides sites for its chemical modification for the introduction of cationic groups, including spermine, (3-Chloro-2 hydroxypropyl) trimethylammonium chloride (Q188), and diethyl aminoethane (DEAE). The resulting cationic cycloamylose possesses a remarkable transfection efficiency and provides stability to cargo oligonucleotides against endonucleases, in addition to modulating the undesirable side effects such as unwanted immune stimulation. Cycloamylose is known to interact with the cell membranes where they release certain membrane components such as phospholipids and cholesterol thereby resulting in membrane destabilization and permeabilization. Furthermore, cycloamylose derivatives also serve as formulation excipients for improving the efficiency of other gene delivery systems. This review delves into the various vector and non-vector-based gene delivery systems, their advantages, and limitations, eventually leading to the identification of cycloamylose as an ideal candidate for nucleic acid delivery. The synthesis of cationic cycloamylose is briefly discussed in each section followed by its application for specific delivery/transfection of a particular nucleic acid.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, 124001, India
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
4
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
5
|
Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm 2024; 653:123864. [PMID: 38309484 DOI: 10.1016/j.ijpharm.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Gene therapy can potentially treat a great number of diseases, from cancer to rare genetic disorders. Very recently, the development and emergency approval of nucleic acid-based COVID-19 vaccines confirmed its strength and versatility. However, gene therapy encounters limitations due to the lack of suitable carriers to vectorize therapeutic genetic material inside target cells. Nanogels are highly hydrated nano-size crosslinked polymeric networks that have been used in many biomedical applications, from drug delivery to tissue engineering and diagnostics. Due to their easy production, tunability, and swelling properties they have called the attention as promising vectors for gene delivery. In this review, nanogels are discussed as vectors for nucleic acid delivery aiming to enlarge gene therapy's therapeutic window. Recent works highlighting the optimization of inherent transfection efficiency and biocompatibility are reviewed here. The importance of the monomer choice, along with the internal structure, surface decoration, and responsive features are outlined for the different transfection modalities. The possible sources of toxicological endpoints in nanogels are analyzed, and the strategies to limit them are compared. Finally, perspectives are discussed to identify the remining challenges for the nanogels before their translation to the market as transfection agents.
Collapse
Affiliation(s)
- Bruno Espuche
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
6
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
7
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
8
|
Chormey DS, Zaman BT, Borahan Kustanto T, Erarpat Bodur S, Bodur S, Tekin Z, Nejati O, Bakırdere S. Biogenic synthesis of novel nanomaterials and their applications. NANOSCALE 2023; 15:19423-19447. [PMID: 38018389 DOI: 10.1039/d3nr03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye
- İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Omid Nejati
- İstinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye
| |
Collapse
|
9
|
Tsacheva I, Todorova Z, Momekova D, Momekov G, Koseva N. Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates. Pharmaceuticals (Basel) 2023; 16:938. [PMID: 37513849 PMCID: PMC10386503 DOI: 10.3390/ph16070938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
This review paper is focused on the design of anthracene and furan-containing Schiff bases and their advanced properties as ligands in complex transition metal ions The paper also provides a brief overview on a variety of biological applications, namely, potent candidates with antibacterial and antifungal activity, antioxidant and chemosensing properties. These advantageous properties are enhanced upon metal complexing. The subject of the review has been extended with a brief discussion on reactivity of Schiff bases with hydrogen phosphonates and the preparation of low and high molecular phosphonates, as well as their application as pharmacological agents. This work will be of interest for scientists seeking new challenges in discovering advanced pharmacological active molecules gaining inspiration from the versatile families of imines and aminophosphonates.
Collapse
Affiliation(s)
- Ivelina Tsacheva
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Zornica Todorova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Neli Koseva
- Bulgarian Academy of Sciences, 1 "15 Noemvri" Str., 1040 Sofia, Bulgaria
| |
Collapse
|
10
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
11
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
12
|
Abstract
To provide long circulating nanoparticles able to carry a gene to tumor cells, we have designed anionic pegylated lipoplexes which are pH sensitive. The reduction of positive charges in nucleic acid carriers allows reducing the elimination rate, increasing circulation time in the blood, leading to improved tumor accumulation of lipid nanoparticles. Anionic pegylated lipoplexes have been prepared from the combined formulation of cationic lipoplexes and pegylated anionic liposomes. The neutralization of the particle surface charge as a function of the pH was monitored by dynamic light scattering in order to determine the ratio between anionic and cationic lipids that would give pH-sensitive complexes. This ratio has been optimized to form particles sensitive to pH change in the range 5.5-6.5. Compaction of DNA into these newly formed anionic complexes was checked by DNA accessibility to Picogreen. The transfection efficiency and pH-sensitive property of these formulations were shown in vitro using bafilomycin, a vacuolar H+-ATPase inhibitor.
Collapse
Affiliation(s)
- Hélène Dhotel
- Université de Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Faculté de Pharmacie, Paris, France
| | - Michel Bessodes
- Université de Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Faculté de Pharmacie, Paris, France
| | - Nathalie Mignet
- Université de Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Faculté de Pharmacie, Paris, France.
| |
Collapse
|
13
|
Fopase R, Panda C, Rajendran AP, Uludag H, Pandey LM. Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery. Front Bioeng Biotechnol 2023; 11:1112755. [PMID: 36814718 PMCID: PMC9939533 DOI: 10.3389/fbioe.2023.1112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Small interfering RNA (siRNA)-mediated mRNA degradation approach have imparted its eminence against several difficult-to-treat genetic disorders and other allied diseases. Viral outbreaks and resulting pandemics have repeatedly threatened public health and questioned human preparedness at the forefront of drug design and biomedical readiness. During the recent pandemic caused by the SARS-CoV-2, mRNA-based vaccination strategies have paved the way for a new era of RNA therapeutics. RNA Interference (RNAi) based approach using small interfering RNA may complement clinical management of the COVID-19. RNA Interference approach will primarily work by restricting the synthesis of the proteins required for viral replication, thereby hampering viral cellular entry and trafficking by targeting host as well as protein factors. Despite promising benefits, the stability of small interfering RNA in the physiological environment is of grave concern as well as site-directed targeted delivery and evasion of the immune system require immediate attention. In this regard, nanotechnology offers viable solutions for these challenges. The review highlights the potential of small interfering RNAs targeted toward specific regions of the viral genome and the features of nanoformulations necessary for the entrapment and delivery of small interfering RNAs. In silico design of small interfering RNA for different variants of SARS-CoV-2 has been discussed. Various nanoparticles as promising carriers of small interfering RNAs along with their salient properties, including surface functionalization, are summarized. This review will help tackle the real-world challenges encountered by the in vivo delivery of small interfering RNAs, ensuring a safe, stable, and readily available drug candidate for efficient management of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Rushikesh Fopase
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Chinmaya Panda
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Amarnath P. Rajendran
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lalit M. Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
14
|
Abosalha AK, Ahmad W, Boyajian J, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications. Expert Opin Drug Discov 2023; 18:149-161. [PMID: 36514963 DOI: 10.1080/17460441.2022.2155630] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION RNA interference (RNAi) using small interfering RNA (siRNA) is a promising strategy to control many genetic disorders by targeting the mRNA of underlying genes and degrade it. However, the delivery of siRNA to targeted organs is highly restricted by several intracellular and extracellular barriers. AREAS COVERED This review discusses various design strategies developed to overcome siRNA delivery obstacles. The applied techniques involve chemical modification, bioconjugation to specific ligands, and carrier-mediated strategies. Nanotechnology-based systems like liposomes, niosomes, solid lipid nanoparticles (SLNs), dendrimers, and polymeric nanoparticles (PNs) are also discussed. EXPERT OPINION Although the mechanism of siRNA as a gene silencer is well-established, only a few products are available as therapeutics. There is a great need to develop and establish siRNA delivery systems that protects siRNAs and delivers them efficiently to the desired sitesare efficient and capable of targeted delivery. Several diseases are reported to be controlled by siRNA at their early stages. However, their targeted delivery is a daunting challenge.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada.,Pharmaceutical Technology department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Nordin AH, Ahmad Z, Husna SMN, Ilyas RA, Azemi AK, Ismail N, Nordin ML, Ngadi N, Siti NH, Nabgan W, Norfarhana AS, Azami MSM. The State of the Art of Natural Polymer Functionalized Fe 3O 4 Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review. Gels 2023; 9:121. [PMID: 36826291 PMCID: PMC9957034 DOI: 10.3390/gels9020121] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Natural polymers have received a great deal of interest for their potential use in the encapsulation and transportation of pharmaceuticals and other bioactive compounds for disease treatment. In this perspective, the drug delivery systems (DDS) constructed by representative natural polymers from animals (gelatin and hyaluronic acid), plants (pectin and starch), and microbes (Xanthan gum and Dextran) are provided. In order to enhance the efficiency of polymers in DDS by delivering the medicine to the right location, reducing the medication's adverse effects on neighboring organs or tissues, and controlling the medication's release to stop the cycle of over- and under-dosing, the incorporation of Fe3O4 magnetic nanoparticles with the polymers has engaged the most consideration due to their rare characteristics, such as easy separation, superparamagnetism, and high surface area. This review is designed to report the recent progress of natural polymeric Fe3O4 magnetic nanoparticles in drug delivery applications, based on different polymers' origins.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Zuliahani Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Siti Muhamad Nur Husna
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia;
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia;
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia;
- Centre for Nanotechnology in Veterinary Medicine (NanoVet), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
| | - Nordin Hawa Siti
- Pharmacology Unit, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia;
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Abd Samad Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh Education Hub, Pagoh Muar 84600, Johor, Malaysia
| | - Mohammad Saifulddin Mohd Azami
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| |
Collapse
|
16
|
Sadeqi Nezhad M. Poly (beta-amino ester) as an in vivo nanocarrier for therapeutic nucleic acids. Biotechnol Bioeng 2023; 120:95-113. [PMID: 36266918 DOI: 10.1002/bit.28269] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Therapeutic nucleic acids are an emerging class of therapy for treating various diseases through immunomodulation, protein replacement, gene editing, and genetic engineering. However, they need a vector to effectively and safely reach the target cells. Most gene and cell therapies rely on ex vivo gene delivery, which is laborious, time-consuming, and costly; therefore, devising a systematic vector for effective and safe in vivo delivery of therapeutic nucleic acids is required to target the cells of interest in an efficient manner. Synthetic nanoparticle vector poly beta amino ester (PBAE), a class of degradable polymer, is a promising candidate for in vivo gene delivery. PBAE is considered the most potent in vivo vector due to its excellent transfection performance and biodegradability. PBAE nanoparticles showed tunable charge density, diverse structural characteristics, excellent encapsulation capacity, high stability, stimuli-responsive release, site-specific delivery, potent binding to nucleic acids, flexible binding ability to various conjugates, and effective endosomal escape. These unique properties of PBAE are an essential contribution to in vivo gene delivery. The current review discusses each of the components used for PBAE synthesis and the impact of various environmental and physicochemical factors of the body on PBAE nanocarrier.
Collapse
Affiliation(s)
- Muhammad Sadeqi Nezhad
- Clinical and Translational Science Institute, Translational Biomedical Science Department, University of Rochester Medical Center, Rochester, New York, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA.,Department of Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
17
|
Ghose D, Swain S, Patra CN, Jena BR, Rao MEB. Advancement and Applications of Platelet-inspired Nanoparticles: A Paradigm for Cancer Targeting. Curr Pharm Biotechnol 2023; 24:213-237. [PMID: 35352648 DOI: 10.2174/1389201023666220329111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Platelet-inspired nanoparticles have ignited the possibility of new opportunities for producing similar biological particulates, such as structural cellular and vesicular components, as well as various viral forms, to improve biocompatible features that could improve the nature of biocompatible elements and enhance therapeutic efficacy. The simplicity and more effortless adaptability of such biomimetic techniques uplift the delivery of the carriers laden with cellular structures, which has created varied opportunities and scope of merits like; prolongation in circulation and alleviating immunogenicity improvement of the site-specific active targeting. Platelet-inspired nanoparticles or medicines are the most recent nanotechnology-based drug targeting systems used mainly to treat blood-related disorders, tumors, and cancer. The present review encompasses the current approach of platelet-inspired nanoparticles or medicines that have boosted the scientific community from versatile fields to advance biomedical sciences. Surprisingly, this knowledge has streamlined to development of newer diagnostic methods, imaging techniques, and novel nanocarriers, which might further help in the treatment protocol of the various diseased conditions. The review primarily focuses on the novel advancements and recent patents in nanoscience and nanomedicine that could be streamlined in the future for the management of progressive cancers and tumor targeting. Rigorous technological advancements like biomimetic stem cells, pH-sensitive drug delivery of nanoparticles, DNA origami devices, virosomes, nano cells like exosomes mimicking nanovesicles, DNA nanorobots, microbots, etc., can be implemented effectively for target-specific drug delivery.
Collapse
Affiliation(s)
- Debashish Ghose
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760 010, Biju Patnaik University of Technology, Rourkela, Odisha-769015, India
| | - Suryakanta Swain
- Department of Pharmacy, School of Health Sciences, The Assam Kaziranga University, Koraikhowa, NH-37, Jorhat, 785006, Assam, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760 010, Biju Patnaik University of Technology, Rourkela, Odisha-769015, India
| | - Bikash Ranjan Jena
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Muddana Eswara Bhanoji Rao
- Calcutta Institute of Pharmaceutical Technology and AHS, Banitabla, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
18
|
Guanidinium-functionalized Block Copolyelectrolyte Micelleplexes for Safe and Efficient siRNA Delivery. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Fortenberry A, Mohammad SA, Werfel TA, Smith AE. Comparative Investigation of the Hydrolysis of Charge-Shifting Polymers Derived from an Azlactone-Based Polymer. Macromol Rapid Commun 2022; 43:e2200420. [PMID: 35820157 PMCID: PMC9780167 DOI: 10.1002/marc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/28/2022] [Indexed: 12/25/2022]
Abstract
Poly 2-vinyl-4,4-dimethylazlactone (PVDMA) has received much attention as a "reactive platform" to prepare charge-shifting polycations via post-polymerization modification with tertiary amines that possess primary amine or hydroxyl reactive handles. Upon hydrolysis of the resulting amide or ester linkages, the polymers can undergo a gradual transition in net charge from cationic to anionic. Herein, a systematic investigation of the hydrolysis rate of PVDMA-derived charge-shifting polymers is described. PVDMA is modified with tertiary amines bearing either primary amine, hydroxyl, or thiol reactive handles. The resulting polymers possess tertiary amine side chains connected to the backbone via amide, ester, or thioester linkages. The hydrolysis rates of each PVDMA derivative are monitored at 25 and 50 °C at pH values of 5.5, 7.5, and 8.5, respectively. While the hydrolysis rate of the amide-functionalized PVDMA is negligible over the period investigated, the hydrolysis rates of the ester- and thioester-functionalized PVDMA increase with increasing temperature and pH. Interestingly, the hydrolysis rate of the thioester-functionalized PVDMA appears to be more rapid than the ester-functionalized PVDMA at all pH values and temperatures investigated. It is believed that these results can be utilized to inform the future preparation of PVDMA-based charge-shifting polymers for biomedical applications.
Collapse
Affiliation(s)
- Alex Fortenberry
- Department of Chemical Engineering, University of Mississippi, MS, USA
| | - Sk Arif Mohammad
- Department of Biomedical Engineering, University of Mississippi, MS, USA
| | - Thomas A. Werfel
- Department of Chemical Engineering, University of Mississippi, MS, USA
- Department of Biomedical Engineering, University of Mississippi, MS, USA
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Adam E. Smith
- Department of Chemical Engineering, University of Mississippi, MS, USA
- Department of Biomedical Engineering, University of Mississippi, MS, USA
| |
Collapse
|
20
|
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14122639. [PMID: 36559133 PMCID: PMC9788411 DOI: 10.3390/pharmaceutics14122639] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.
Collapse
|
21
|
Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/FeO4-PCL/DNA micelles for gene delivery into MCF-7 cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Butt MH, Zaman M, Ahmad A, Khan R, Mallhi TH, Hasan MM, Khan YH, Hafeez S, Massoud EES, Rahman MH, Cavalu S. Appraisal for the Potential of Viral and Nonviral Vectors in Gene Therapy: A Review. Genes (Basel) 2022; 13:1370. [PMID: 36011281 PMCID: PMC9407213 DOI: 10.3390/genes13081370] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Over the past few decades, gene therapy has gained immense importance in medical research as a promising treatment strategy for diseases such as cancer, AIDS, Alzheimer's disease, and many genetic disorders. When a gene needs to be delivered to a target cell inside the human body, it has to pass a large number of barriers through the extracellular and intracellular environment. This is why the delivery of naked genes and nucleic acids is highly unfavorable, and gene delivery requires suitable vectors that can carry the gene cargo to the target site and protect it from biological degradation. To date, medical research has come up with two types of gene delivery vectors, which are viral and nonviral vectors. The ability of viruses to protect transgenes from biological degradation and their capability to efficiently cross cellular barriers have allowed gene therapy research to develop new approaches utilizing viruses and their different genomes as vectors for gene delivery. Although viral vectors are very efficient, science has also come up with numerous nonviral systems based on cationic lipids, cationic polymers, and inorganic particles that provide sustainable gene expression without triggering unwanted inflammatory and immune reactions, and that are considered nontoxic. In this review, we discuss in detail the latest data available on all viral and nonviral vectors used in gene delivery. The mechanisms of viral and nonviral vector-based gene delivery are presented, and the advantages and disadvantages of all types of vectors are also given.
Collapse
Affiliation(s)
- Muhammad Hammad Butt
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Muhammad Zaman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Abrar Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Rahima Khan
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia or (T.H.M.); or (Y.H.K.)
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh;
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia or (T.H.M.); or (Y.H.K.)
| | - Sara Hafeez
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
23
|
Agarwal A, Sarma DK, Chaurasia D, Maan HS. Novel molecular approaches to combat vectors and vector-borne viruses: Special focus on RNA interference (RNAi) mechanisms. Acta Trop 2022; 233:106539. [PMID: 35623398 DOI: 10.1016/j.actatropica.2022.106539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Vector-borne diseases, such as dengue, chikungunya, zika, yellow fever etc pose significant burden among the infectious diseases globally, especially in tropical and sub-tropical regions. Globalization, deforestation, urbanization, climate change, uncontrolled population growth, inadequate waste management and poor vector-management infrastructure have all contributed to the expansion of vector habitats and subsequent increase in vector-borne diseases throughout the world. Conventional vector control methods, such as use of insecticides, have significant negative environmental repercussions in addition to developing resistance in vectors. Till date, a very few vaccines or antiviral therapies have been approved for the treatment of vector borne diseases. In this review, we have discussed emerging molecular approaches like CRISPR (clustered regularly interspaced short palindromic repeats)/Cas-9, sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), Wolbachia (virus transmission blocking) and RNA interference (RNAi) to combat vector and vector-borne viruses. Due to the extensive advancements in RNAi research, a special focus has been given on its types, biogenesis, mechanism of action, delivery and experimental studies evaluating their application as anti-mosquito and anti-viral agent. These technologies appear to be highly promising in terms of contributing to vector control and antiviral drug development, and hence can be used to reduce global vector and vector-borne disease burden.
Collapse
Affiliation(s)
- Ankita Agarwal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India.
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, Madhya Pradesh, India
| | - Deepti Chaurasia
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| | - Harjeet Singh Maan
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| |
Collapse
|
24
|
Chen Q, Su L, He X, Li J, Cao Y, Wu Q, Qin J, He Z, Huang X, Yang H, Li J. Poly(beta-amino ester)-Based Nanoparticles Enable Nonviral Delivery of Base Editors for Targeted Tumor Gene Editing. Biomacromolecules 2022; 23:2116-2125. [PMID: 35388688 DOI: 10.1021/acs.biomac.2c00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Base editing is an emerging genome editing technology with the advantages of precise base corrections, no double-strand DNA breaks, and no need for templates, which provides an alternative treatment option for tumors with point mutations. However, effective nonviral delivery systems for base editors (BEs) are still limited. Herein, a series of poly(beta-amino esters) (PBAEs) with varying backbones, side chains, and end caps were synthesized to deliver plasmids of BEs and sgRNA. Efficient transfection and base editing were achieved in HEK-293T-sEGFP and U87-MG-sEGFP reporter cell lines by using lead PBAEs, which were superior to PEI and lipo3k. A single intratumor injection of PBAE/pDNA nanoparticles induced the robust conversion of stopped-EGFP into EGFP in mice bearing xenograft glioma tumors, indicating successful gene editing by ABEmax-NG. Overall, these results demonstrated that PBAEs can efficiently deliver BEs for tumor gene editing both in vitro and in vivo.
Collapse
Affiliation(s)
- Qimingxing Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Su
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyan He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinwei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Cao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingxia Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianchao Qin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zongxing He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianfeng Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
25
|
Kim D, Han S, Ji Y, Moon S, Nam H, Lee JB. Multimeric RNAs for efficient RNA-based therapeutics and vaccines. J Control Release 2022; 345:770-785. [PMID: 35367477 PMCID: PMC8970614 DOI: 10.1016/j.jconrel.2022.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
There has been a growing interest in RNA therapeutics globally, and much progress has been made in this area, which has been further accelerated by the clinical applications of RNA-based vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Following these successful clinical trials, various technologies have been developed to improve the efficacy of RNA-based drugs. Multimerization of RNA therapeutics is one of the most attractive approaches to ensure high stability, high efficacy, and prolonged action of RNA-based drugs. In this review, we offer an overview of the representative approaches for generating repetitive functional RNAs by chemical conjugation, structural self-assembly, enzymatic elongation, and self-amplification. The therapeutic and vaccine applications of engineered multimeric RNAs in various diseases have also been summarized. By outlining the current status of multimeric RNAs, the potential of multimeric RNA as a promising treatment strategy is highlighted.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yoonbin Ji
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Hyangsu Nam
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| |
Collapse
|
26
|
Shevtsov V, Hsin TY, Shieh YT. Preparation of amphiphilic copolymers via base-catalyzed hydrolysis of quaternized poly[2-(dimethylamino)ethyl methacrylate]. Polym Chem 2022. [DOI: 10.1039/d1py01697k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multi-stimuli-responsiveness of tertiary amine-containing polyacrylates makes them highly attractive for use in a wide range of applications. In the last decade, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) has received exceptionally large attention...
Collapse
|
27
|
Chen M, Wang H, Guo H, Zhang Y, Chen L. Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:85. [PMID: 35008249 PMCID: PMC8750096 DOI: 10.3390/cancers14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-largest cause of cancer death worldwide, while immunotherapy is rapidly being developed to fight HCC with great potential. Nucleic acid drugs are the most important modulators in HCC immunotherapy. To boost the efficacy of therapeutics and amplify the efficiency of genetic materials, biocompatible polymers are commonly used. However, under the strong need of a summary for current developments of biocompatible polymeric nucleic acid carriers for immunotherapy of HCC, there is rare review article specific to this topic to our best knowledge. In this article, we will discuss the current progress of immunotherapy for HCC, biocompatible cationic polymers (BCPs) as nucleic acid carriers used (or potential) to fight HCC, the roles of biocompatible polymeric carriers for nucleic acid delivery, and nucleic acid delivery by biocompatible polymers for immunotherapy. At the end, we will conclude the review and discuss future perspectives. This article discusses biocompatible polymeric nucleic acid carriers for immunotherapy of HCC from multidiscipline perspectives and provides a new insight in this domain. We believe this review will be interesting to polymer chemists, pharmacists, clinic doctors, and PhD students in related disciplines.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hao Wang
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hongying Guo
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Ying Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liang Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| |
Collapse
|
28
|
Muñoz-Úbeda M, Semenzato M, Franco-Romero A, Junquera E, Aicart E, Scorrano L, López-Montero I. Transgene expression in mice of the Opa1 mitochondrial transmembrane protein through bicontinuous cubic lipoplexes containing gemini imidazolium surfactants. J Nanobiotechnology 2021; 19:425. [PMID: 34922554 PMCID: PMC8684174 DOI: 10.1186/s12951-021-01167-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipoplexes are non-viral vectors based on cationic lipids used to deliver DNA into cells, also known as lipofection. The positively charge of the hydrophilic head-group provides the cationic lipids the ability to condensate the negatively charged DNA into structured complexes. The polar head can carry a large variety of chemical groups including amines as well as guanidino or imidazole groups. In particular, gemini cationic lipids consist of two positive polar heads linked by a spacer with different length. As for the hydrophobic aliphatic chains, they can be unsaturated or saturated and are connected to the polar head-groups. Many other chemical components can be included in the formulation of lipoplexes to improve their transfection efficiency, which often relies on their structural features. Varying these components can drastically change the arrangement of DNA molecules within the lamellar, hexagonal or cubic phases that are provided by the lipid matrix. Lipofection is widely used to deliver genetic material in cell culture experiments but the simpler formulations exhibit major drawbacks related to low transfection, low specificity, low circulation half-life and toxicity when scaled up to in vivo experiments. RESULTS So far, we have explored in cell cultures the transfection ability of lipoplexes based on gemini cationic lipids that consist of two C16 alkyl chains and two imidazolium polar head-groups linked with a polyoxyethylene spacer, (C16Im)2(C4O). Here, PEGylated lipids have been introduced to the lipoplex formulation and the transgene expression of the Opa1 mitochondrial transmembrane protein in mice was assessed. The addition of PEG on the surface of the lipid mixed resulted in the formation of Ia3d bicontinuous cubic phases as determined by small angle X-ray scattering. After a single intramuscular administration, the cubic lipoplexes were accumulated in tissues with tight endothelial barriers such as brain, heart, and lungs for at least 48 h. The transgene expression of Opa1 in those organs was identified by western blotting or RNA expression analysis through quantitative polymerase chain reaction. CONCLUSIONS The expression reported here is sufficient in magnitude, duration and toxicity to consolidate the bicontinuous cubic structures formed by (C16Im)2(C4O)-based lipoplexes as valuable therapeutic agents in the field of gene delivery.
Collapse
Affiliation(s)
- Mónica Muñoz-Úbeda
- Instituto de Investigación Biomédica Hospital, 12 de Octubre (imas12), Madrid, Spain.
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain.
| | - Martina Semenzato
- Fondazione Per La Ricerca Biomèdica Avanzata, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anais Franco-Romero
- Fondazione Per La Ricerca Biomèdica Avanzata, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Elena Junquera
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Emilio Aicart
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Luca Scorrano
- Fondazione Per La Ricerca Biomèdica Avanzata, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital, 12 de Octubre (imas12), Madrid, Spain.
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
29
|
Yuan Y, Liu J, Yu X, Liu X, Cheng Y, Zhou C, Li M, Shi L, Deng Y, Liu H, Wang G, Wang L, Wang Z. Tumor-targeting pH/redox dual-responsive nanosystem epigenetically reverses cancer drug resistance by co-delivering doxorubicin and GCN5 siRNA. Acta Biomater 2021; 135:556-566. [PMID: 34496281 DOI: 10.1016/j.actbio.2021.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Multidrug resistance (MDR) is a major cause accounting for chemotherapy failure and recurrence of malignant tumors. A prominent mechanism underlying MDR is overexpression of P-glycoprotein (P-gp, a drug efflux pump). Promoting drug delivery efficacy by targeting tumor and concurrently suppressing drug efflux through down-regulating P-gp emerges as an effective strategy to enhance intracellular drug accumulation for combating MDR tumor. General Control Non-repressed 5 (GCN5), a histone acetyltransferase acting as an epigenetic regulator of multidrug resistance protein 1 (MDR1), positively regulates P-gp levels in drug-resistant cancer cells. Herein, a hyaluronic acid-coated, pH/redox dual-responsive nanosystem (HPMSNs) is fabricated for co-delivering doxorubicin (DOX) and GCN5 siRNA (siGCN5). This nanosystem can effectively encapsulate DOX and siRNA preventing premature leakage and releasing these therapeutics intracellularly via its pH/redox dual responsiveness. Through CD44-mediated targeting, DOX/siGCN5@HPMSNs increases drug internalization in CD44-overexpressing cancer cells, and markedly promotes DOX retention by down-regulating P-gp expression in drug-resistant cancers through silencing GCN5. Of note, in an MDR breast tumor model, DOX and siGCN5 co-delivered HPMSNs inhibits MDR tumor growth by 77%, abolishes P-gp-mediated drug resistance, and eliminates DOX's systemic toxicity. Thus, the tumor-targeting, stimuli-responsive nanosystem is an effective carrier for co-delivering anticancer drug and siRNA for combating cancer drug resistance. STATEMENT OF SIGNIFICANCE: We designed a tumor-targeting, pH/redox dual-responsive nanosystem (HPMSNs) for chemo-drug and siRNA co-delivery. This nanosystem efficiently co-delivered DOX and siGCN5 into drug-resistant cancer cells and significantly inhibited the tumor growth through: (1) HA shell enhanced the cellular internalization of loaded DOX and siGCN5 via CD44-mediated targeting; (2) the pH/redox dual-responsive nanosystem released the cargos in response to the intracellular environment; (3) the released siGCN5 downregulated P-gp epigenetically. In an MDR breast tumor model (MCF7/ADR), DOX and siGCN5 loaded HPMSNs markedly inhibited tumor growth, almost completely abolished P-gp expression, and minimized systemic toxicity of DOX.
Collapse
|
30
|
Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release 2021; 340:221-242. [PMID: 34757195 DOI: 10.1016/j.jconrel.2021.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
A bird's eye view is now demanded in the area of cancer research to suppress the suffering of cancer patient and mediate the lack of treatment related to chemotherapy. Chemotherapy is always preferred over surgery or radiation therapy, but they never met the patient's demand of safe medication. Targeted therapy has now been in research that could hinder the unnecessary effect of drug on normal cells but could affect the tumor cells in much efficient manner. Angiogenesis is process involved in development of new blood vessel that nourishes tumor growth. Integrin receptors are over expressed on cancer cells that play vital role in angiogenesis for growth and metastasis of tumor cell. A delivery of RGD based peptide to integrin targeted site could help in its successful binding and liberation of drug in tumor vasculature. Dendrimers, in addition to its excellent pharmacokinetic properties also helps to carry targeting ligand to site of tumor by successfully conjugating with them. The aim of this review is to bring light upon the role of integrin in cancer progression, interaction of RGD to integrin receptor and more importantly the RGD-dendrimer based targeted therapy for the treatment of various cancers.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
31
|
Diaz IL, Jérôme V, Freitag R, Perez LD. Development of poly(ethyleneimine) grafted amphiphilic copolymers: Evaluation of their cytotoxicity and ability to complex DNA. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211053925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(ethyleneimine) (PEI) is one of the most widely used cationic polymers for gene delivery. The high molecular weight polymer, which is commercially available, is highly efficient but also very cytotoxic. The reduction in charge density by using nonlinear architectures based on low molecular weight (LMW) PEI is a promising approach to produce safer DNA-vectors. Herein, a group of cationic graft copolymers with different composition containing a hydrophobic biocompatible backbone and LMW linear PEI (lPEI) grafts obtained by ring opening polymerization and click chemistry was studied. The self-assembly and DNA complexation behavior of these materials was analyzed by the gel retardation assay, zeta potential measurements, and dynamic light scattering. The copolymers formed positively charged particles in water with average sizes between 270 and 377 nm. After they were added to DNA in serum-free medium, these particles acquired negative/near-neutral charges and increased in size depending on the N/P ratio. All copolymers showed reduced cytotoxicity compared to the 25 kDa lPEI used as reference, but the transfection efficiency was reduced. This result suggested that the cationic segments were too small to fully condense the DNA and promote cellular uptake, even with the use of several grafts and the introduction of hydrophobic domains. The trends found in this research showed that a higher degree of hydrophobicity and a higher grafting density can enhance the interaction between the copolymers and DNA. These trends could direct further structural modifications in the search for effective and safe vectors based on this polycation.
Collapse
Affiliation(s)
- Ivonne L Diaz
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - León D Perez
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| |
Collapse
|
32
|
Hyun J, Eom J, Song J, Seo I, Um SH, Park KM, Bhang SH. Poly(amino ester)-Based Polymers for Gene and Drug Delivery Systems and Further Application toward Cell Culture System. Macromol Biosci 2021; 21:e2100106. [PMID: 34117832 DOI: 10.1002/mabi.202100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Indexed: 11/10/2022]
Abstract
Various synthetic polymers based on poly(amino ester) (PAE) are suggested as candidates for gene and drug delivery owing to their pH-responsiveness, which contributes to efficient delivery performance. PAE-based pH-responsive polymers are more biodegradable and hydrophilic than other types of pH-responsive polymers. The functionality of PAE-based polymers can be reinforced by using different chemical modifications to improve the efficiency of gene and drug delivery. Additionally, PAE-based polymers are used in many ways in the biomedical field, such as in transdermal delivery and stem cell culture systems. Here, the recent novel PAE-based polymers designed for gene and drug delivery systems along with their further applications toward adult stem cell culture systems are reviewed. The synthetic tactics are contemplated and pros and cons of each type of polymer are analyzed, and detailed examples of the different types are analyzed.
Collapse
Affiliation(s)
- Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiin Eom
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihun Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung Min Park
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
33
|
Sun Q, Zhu Y, Du J. Recent progress on charge-reversal polymeric nanocarriers for cancer treatments. Biomed Mater 2021; 16. [PMID: 33971642 DOI: 10.1088/1748-605x/abffb5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Nanocarriers (NCs) for delivery anticancer therapeutics have been under development for decades. Although great progress has been achieved, the clinic translation is still in the infancy. The key challenge lies in the biological barriers which lie between the NCs and the target spots, including blood circulation, tumor penetration, cellular uptake, endo-/lysosomal escape, intracellular therapeutics release and organelle targeting. Each barrier has its own distinctive microenvironment and requires different surface charge. To address this challenge, charge-reversal polymeric NCs have been a hot topic, which are capable of overcoming each delivery barrier, by reversing their charges in response to certain biological stimuli in the tumor microenvironment. In this review, the triggering mechanisms of charge reversal, including pH, enzyme and redox approaches are summarized. Then the corresponding design principles of charge-reversal NCs for each delivery barrier are discussed. More importantly, the limitations and future prospects of charge-reversal NCs in clinical applications are proposed.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China.,Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China.,Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| |
Collapse
|
34
|
Pappuru S, Ramkumar V, Chakraborty D. Benzoxazole phenoxide ligand supported group
IV
catalysts and their application for the ring‐opening polymerization of
rac
‐lactide and
ε
‐caprolactone. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sreenath Pappuru
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | | | | |
Collapse
|
35
|
Cationic Nanoparticle-Based Cancer Vaccines. Pharmaceutics 2021; 13:pharmaceutics13050596. [PMID: 33919378 PMCID: PMC8143365 DOI: 10.3390/pharmaceutics13050596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Cationic nanoparticles have been shown to be surprisingly effective as cancer vaccine vehicles in preclinical and clinical studies. Cationic nanoparticles deliver tumor-associated antigens to dendritic cells and induce immune activation, resulting in strong antigen-specific cellular immune responses, as shown for a wide variety of vaccine candidates. In this review, we discuss the relation between the cationic nature of nanoparticles and the efficacy of cancer immunotherapy. Multiple types of lipid- and polymer-based cationic nanoparticulate cancer vaccines with various antigen types (e.g., mRNA, DNA, peptides and proteins) and adjuvants are described. Furthermore, we focus on the types of cationic nanoparticles used for T-cell induction, especially in the context of therapeutic cancer vaccination. We discuss different cationic nanoparticulate vaccines, molecular mechanisms of adjuvanticity and biodistribution profiles upon administration via different routes. Finally, we discuss the perspectives of cationic nanoparticulate vaccines for improving immunotherapy of cancer.
Collapse
|
36
|
Zou M, Du Y, Liu R, Zheng Z, Xu J. Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1648. [PMID: 33682310 DOI: 10.1002/wrna.1648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related death in women in the United States. Because success in early screening is limited, and most patients with advanced disease develop resistance to multiple treatment modalities, the overall prognosis of ovarian cancer is poor. Despite the revolutionary role of surgery and chemotherapy in curing ovarian cancer, recurrence remains a major challenge in treatment. Thus, improving our understanding of the pathogenesis of ovarian cancer is essential for developing more effective treatments. In this review, we analyze the underlying molecular mechanisms leading to chemotherapy resistance. We discuss the clinical benefits and potential challenges of using nanocarrier-delivered small interfering RNA to treat chemotherapy-resistant ovarian cancer. We aim to elicit collaborative studies on nanocarrier-delivered small interfering RNA to improve the long-term survival rate and quality of life of patients with ovarian cancer. This article is categorized under: RNA Methods > RNA Nanotechnology Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhen Liu
- The First People's Hospital of Wu'an, Wu'an, Hebei, China
| | - Zeliang Zheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Patil NA, Kandasubramanian B. Functionalized polylysine biomaterials for advanced medical applications: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Diaz Ariza IL, Jérôme V, Pérez Pérez LD, Freitag R. Amphiphilic Graft Copolymers Capable of Mixed-Mode Interaction as Alternative Nonviral Transfection Agents. ACS APPLIED BIO MATERIALS 2021; 4:1268-1282. [DOI: 10.1021/acsabm.0c01123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ivonne L. Diaz Ariza
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C. 11001, Colombia
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, Bayreuth 95447, Germany
| | - León D. Pérez Pérez
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C. 11001, Colombia
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
39
|
van den Berg AIS, Yun CO, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J Control Release 2021; 331:121-141. [PMID: 33453339 DOI: 10.1016/j.jconrel.2021.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Gene therapy using nucleic acids has many clinical applications for the treatment of diseases with a genetic origin as well as for the development of innovative vaccine formulations. Since nucleic acids in their free form are rapidly degraded by nucleases present in extracellular matrices, have poor pharmacokinetics and hardly pass cellular membranes, carrier systems are required. Suitable carriers that protect the nucleic acid payload against enzymatic attack, prolong circulation time after systemic administration and assist in cellular binding and internalization are needed to develop nucleic acid based drug products. Viral vectors have been investigated and are also clinically used as delivery vehicles. However, some major drawbacks are associated with their use. Therefore there has been substantial attention on the use of non-viral carrier systems based on cationic lipids and polymers. This review focuses on the properties of polymer-based nucleic acid formulations, also referred as polyplexes. Different polymeric systems are summarized, and the cellular barriers polyplexes encounter and ways to tackle these are discussed. Finally attention is given to the clinical status of non-viral nucleic acid formulations.
Collapse
Affiliation(s)
- Annette I S van den Berg
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Chae-Ok Yun
- Institute of Nano Science and Technology, Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
40
|
Song H, Hart SL, Du Z. Assembly strategy of liposome and polymer systems for siRNA delivery. Int J Pharm 2021; 592:120033. [PMID: 33144189 DOI: 10.1016/j.ijpharm.2020.120033] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, gene therapy has made tremendous progress in the development of disease treatment. Among them, siRNA offers specificity of gene silencing, ease of synthesis, and short development period, and has been intensively studied worldwide. However, siRNA as the hydrophilic polyanion is easily degraded in vivo and poorly taken up into cells and so, the benefits of its powerful gene silencing ability will not be realized until better carriers are developed that are capable of protecting siRNA and delivering it intact to the cytoplasm of the target cells. Cationic liposomes (CL) and cationic polymers (CP) are the main non-viral siRNA vectors, there have been a lot of reports on the use of these two carriers to deliver siRNA. Whereas, as far as we know, there have been few review articles that provide an in-depth summary of the siRNA loading principle and internal structures of the siRNA delivery system. We summarize the formation principle and assembly structure of the cationic liposome-siRNA and polymer-siRNA complexes, and point out their advantages and characteristics and also show how to perfect their assembly and improve their clinical application in the future. It supports some useful suggestions for siRNA therapy, specifically, safe and efficient delivery.
Collapse
Affiliation(s)
- Huiling Song
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Stephen L Hart
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Zixiu Du
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
41
|
Kheiriabad S, Dolatabadi JEN, Hamblin MR. Dendrimers for gene therapy. DENDRIMER-BASED NANOTHERAPEUTICS 2021:285-309. [DOI: 10.1016/b978-0-12-821250-9.00026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Non-viral delivery systems of DNA into stem cells: Promising and multifarious actions for regenerative medicine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Cho JY, Bhowmik P, Polowick PL, Dodard SG, El-Bakkari M, Nowak G, Fenniri H, Hemraz UD. Cellular Delivery of Plasmid DNA into Wheat Microspores Using Rosette Nanotubes. ACS OMEGA 2020; 5:24422-24433. [PMID: 33015458 PMCID: PMC7528298 DOI: 10.1021/acsomega.0c02830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Plant genetic engineering offers promising solutions to the increasing demand for efficient, sustainable, and high-yielding crop production as well as changing environmental conditions. The main challenge for gene delivery in plants is the presence of a cell wall that limits the transportation of genes within the cells. Microspores are plant cells that are, under the right conditions, capable of generating embryos, leading to the formation of haploid plants. Here, we designed cationic and fluorescent rosette nanotubes (RNTs) that penetrate the cell walls of viable wheat microspores under mild conditions and in the absence of an external force. These nanomaterials can capture plasmid DNA to form RNT-DNA complexes and transport their DNA cargo into live microspores. The nanomaterials and the complexes formed were nontoxic to the microspores.
Collapse
Affiliation(s)
- Jae-Young Cho
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Patricia L Polowick
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sabine G Dodard
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Mounir El-Bakkari
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Goska Nowak
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Hicham Fenniri
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
- Departments of Chemical, Biomedical Engineering, Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Usha D Hemraz
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
44
|
Myung SH, Park J, Han JH, Kim TH. Development of the Mammalian Expression Vector System that can be Induced by IPTG and/or Lactose. J Microbiol Biotechnol 2020; 30:1124-1131. [PMID: 32423185 PMCID: PMC9728253 DOI: 10.4014/jmb.2003.03030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022]
Abstract
Techniques used for the regulation of gene expression facilitate studies of gene function and treatment of diseases via gene therapy. Many tools have been developed for the regulation of gene expression in mammalian cells. The Lac operon system induced with isopropyl β-D-1- thiogalactopyranoside (IPTG) is one of the employed inducible systems. IPTG mimics the molecular structure of allolactose and has a strong affinity for the corresponding repressor. IPTG is known to rapidly penetrate into mammalian cells and exhibits low toxicity. In the present study, we developed a new inducible expression system that could regulate the expression of genes in mammalian cells using IPTG. Here we confirm that unlike other vector systems based on the Lac operon, this expression system allows regulation of gene expression with lactose in the mammalian cells upon transfection. The co-treatment with IPTG and lactose could improve the regulatory efficiency of the specific target gene expression. The regulation of gene expression with lactose has several benefits. Lactose is safe in humans as compared to other chemical substances and is easily available, making this technique very cost-effective.
Collapse
Affiliation(s)
- Seung-Hyun Myung
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwang-Ju 61452, Republic of Korea
| | - Junghee Park
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwang-Ju 61452, Republic of Korea
| | - Ji-Hye Han
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwang-Ju 61452, Republic of Korea
| | - Tae-Hyoung Kim
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwang-Ju 61452, Republic of Korea,Corresponding author Phone: +82-62-230-6294 Fax: +82-62-226-4165 E-mail:
| |
Collapse
|
45
|
Elsayed RE, Madkour TM, Azzam RA. Tailored-design of electrospun nanofiber cellulose acetate/poly(lactic acid) dressing mats loaded with a newly synthesized sulfonamide analog exhibiting superior wound healing. Int J Biol Macromol 2020; 164:1984-1999. [PMID: 32771511 DOI: 10.1016/j.ijbiomac.2020.07.316] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022]
Abstract
To effectively allow for controlled release of a newly synthesized sulfonamide analog, biodegradable poly(lactic acid) nanofibrous dressing mats tailored-designed for maximum wound healing efficacy were developed. The heterocyclic analog, N-(3,4-diamino-7-(benzo [d]thiazol-2-yl)-6-oxo-1H-pyrazolo[4,3-c]pyridin-5(6H)-yl)benzenesulfonamide, has been specifically synthesized to possess superior antibacterial and anti-inflammatory characteristics. Hydrophilic cellulose acetate and/or poly(ethylene oxide) were blended with the hydrophobic PLA to control the hydrophilicity/hydrophobicity ratio for the sustained release of the drug. SEM detected no drug crystals on the surface of the nanofibers confirming the homogeneous dispersion and compatibility of the drug with the nanofibers. BET indicated almost-reversible Type II sorption isotherms. The swelling studies revealed that the presence of hydrogen bonds between the hydroxyl groups of CA with the carbonyl ester groups of PLA limited the ability of CA molecules to leach from the polymer matrix. Water vapor permeability were all determined to be within the range of 15-19 g/m2/h. In-vitro cell viability and cell proliferation studies revealed the superiority of the fabricated dressing mats in terms of its bioactivity and cellular interaction. In-vivo studies confirmed the major improvement in its wound healing capabilities attributed to an enhanced epithelization, anti-inflammation, neo-angiogenesis, fibroplasias and collagen deposition that surpassed that of commercially available ones.
Collapse
Affiliation(s)
- Rasha E Elsayed
- Department of Chemistry, Helwan University, Ain-Helwan 11795, Egypt; The Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Tarek M Madkour
- The Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt.
| | - Rasha A Azzam
- Department of Chemistry, Helwan University, Ain-Helwan 11795, Egypt
| |
Collapse
|
46
|
Muhammad K, Zhou J, Ullah I, Zhao J, Muhammad A, Xia S, Zhang W, Feng Y. Bioreducible cationic random copolymer for gene delivery. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jiaying Zhou
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Ihsan Ullah
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jing Zhao
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Ayaz Muhammad
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine Affiliated Hospital LogisticsUniversity of People's Armed Police Force Tianjin China
| | - Wencheng Zhang
- Department of Physiology and PathophysiologyLogistics University of People's Armed Police Force Tianjin China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- Chemical EngineeringCollaborative Innovation Center of Chemical Science Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin China
| |
Collapse
|
47
|
Li Z, Ho W, Bai X, Li F, Chen YJ, Zhang XQ, Xu X. Nanoparticle depots for controlled and sustained gene delivery. J Control Release 2020; 322:622-631. [DOI: 10.1016/j.jconrel.2020.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/29/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022]
|
48
|
Proulx J, Joshi C, Vijayaraghavalu S, Saraswathy M, Labhasetwar V, Ghorpade A, Borgmann K. Arginine-Modified Polymers Facilitate Poly (Lactide-Co-Glycolide)-Based Nanoparticle Gene Delivery to Primary Human Astrocytes. Int J Nanomedicine 2020; 15:3639-3647. [PMID: 32547019 PMCID: PMC7250304 DOI: 10.2147/ijn.s250865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/24/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Astrocyte dysfunction is a hallmark of central nervous system injury or infection. As a primary contributor to neurodegeneration, astrocytes are an ideal therapeutic target to combat neurodegenerative conditions. Gene therapy has arisen as an innovative technique that provides excellent prospect for disease intervention. Poly (lactide-co-glycolide) (PLGA) and polyethylenimine (PEI) are polymeric nanoparticles commonly used in gene delivery, each manifesting their own set of advantages and disadvantages. As a clinically approved polymer by the Federal Drug Administration, well characterized for its biodegradability and biocompatibility, PLGA-based nanoparticles (PLGA-NPs) are appealing for translational gene delivery systems. However, our investigations revealed PLGA-NPs were ineffective at facilitating exogenous gene expression in primary human astrocytes, despite their success in other cell lines. Furthermore, PEI polymers illustrate high delivery efficiency but induce cytotoxicity. The purpose of this study is to develop viable and biocompatible NPsystem for astrocyte-targeted gene therapy. MATERIALS AND METHODS Successful gene expression by PLGA-NPs alone or in combination with arginine-modified PEI polymers (AnPn) was assessed by a luciferase reporter gene encapsulated in PLGA-NPs. Cytoplasmic release and nuclear localization of DNA were investigated using fluorescent confocal imaging with YOYO-labeled plasmid DNA (pDNA). NP-mediated cytotoxicity was assessed via lactate dehydrogenase in primary human astrocytes and neurons. RESULTS Confocal imaging of YOYO-labeled pDNA confirmed PLGA-NPs delivered pDNA to the cytoplasm in a dose and time-dependent manner. However, co-staining revealed pDNA delivered by PLGA-NPs did not localize to the nucleus. The addition of AnPn significantly improved nuclear localization of pDNA and successfully achieved gene expression in primary human astrocytes. Moreover, these formulations were biocompatible with both astrocytes and neurons. CONCLUSION By co-transfecting two polymeric NPs, we developed an improved system for gene delivery and expression in primary human astrocytes. These findings provide a basis for a biocompatible and clinically translatable method to regulate astrocyte function during neurodegenerative diseases and disorders.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Chaitanya Joshi
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manju Saraswathy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX76107, USA,Correspondence: Kathleen Borgmann Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX76107, USATel +1 817 735-0339Fax +1 817 735-2610 Email
| |
Collapse
|
49
|
Investigating the Impact of Delivery System Design on the Efficacy of Self-Amplifying RNA Vaccines. Vaccines (Basel) 2020; 8:vaccines8020212. [PMID: 32397231 PMCID: PMC7348957 DOI: 10.3390/vaccines8020212] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
messenger RNA (mRNA)-based vaccines combine the positive attributes of both live-attenuated and subunit vaccines. In order for these to be applied for clinical use, they require to be formulated with delivery systems. However, there are limited in vivo studies which compare different delivery platforms. Therefore, we have compared four different cationic platforms: (1) liposomes, (2) solid lipid nanoparticles (SLNs), (3) polymeric nanoparticles (NPs) and (4) emulsions, to deliver a self-amplifying mRNA (SAM) vaccine. All formulations contained either the non-ionizable cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium bromide (DDA) and they were characterized in terms of physico-chemical attributes, in vitro transfection efficiency and in vivo vaccine potency. Our results showed that SAM encapsulating DOTAP polymeric nanoparticles, DOTAP liposomes and DDA liposomes induced the highest antigen expression in vitro and, from these, DOTAP polymeric nanoparticles were the most potent in triggering humoral and cellular immunity among candidates in vivo.
Collapse
|
50
|
Ros S, Freitag JS, Smith DM, Stöver HDH. Charge-Shifting Polycations Based on N, N-(dimethylamino)ethyl Acrylate for Improving Cytocompatibility During DNA Delivery. ACS OMEGA 2020; 5:9114-9122. [PMID: 32363263 PMCID: PMC7191589 DOI: 10.1021/acsomega.9b03734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/11/2020] [Indexed: 05/22/2023]
Abstract
Synthetic polycations are studied extensively as DNA delivery agents because of their ease of production, good chemical stability, and low cost relative to viral vectors. This report describes the synthesis of charge-shifting polycations based on N,N-(dimethylamino)ethyl acrylate (DMAEA) and 3-aminopropylmethacryamide (APM), called PAD copolymers, and their use for in vitro DNA delivery into HeLa cells. PAD copolymers of varying compositions were prepared by RAFT polymerization to yield polymers of controlled molecular weights with low dispersities. Model hydrolysis studies were carried out to assess the rate of charge-shifting of the polycations by loss of the cationic dimethylaminoethanol side chains. They showed reduction in the net cationic charge by about 10-50% depending on composition after 2 days at pH 7, forming polyampholytes comprising permanent cationic groups, residual DMAEA, as well as anionic acrylic acid groups. HeLa cells exposed for 4 h to PAD copolymers with the greatest charge-shifting ability showed comparable or higher viability at high concentrations, relative to the noncharge shifting polycations PAPM and polyethyleneimine (PEI) 2 days post-exposure. Cell uptake efficiency of PAD/60bp-Cy3 DNA polyplexes at 2.5:1 N/P ratio was very high (>95%) for all compositions, exceeding the uptake efficiency of PEI polyplexes of equivalent composition. These results suggest that these PAD copolymers, and in particular PAD80 containing 80 mol % DMAEA, have suitable rates of charge-shifting hydrolysis for DNA delivery, as PAD80 showed reduced cytotoxicity at high concentrations, while still retaining high uptake efficiencies. In addition, the polyampholytes formed during DMAEA hydrolysis in PAD copolymers can offer enhanced long-term cytocompatibility.
Collapse
Affiliation(s)
- Samantha Ros
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Jessica S. Freitag
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Saxony, Germany
| | - David M. Smith
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Saxony, Germany
| | - Harald D. H. Stöver
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|