1
|
Park K. PLGA-based long-acting injectable (LAI) formulations. J Control Release 2025; 382:113758. [PMID: 40268201 PMCID: PMC12065662 DOI: 10.1016/j.jconrel.2025.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Long-acting injectable (LAI) formulations, which deliver drugs over weeks or months, have been in use for more than three decades. Most clinically approved LAI products are formulated using poly(lactide-co-glycolide) (PLGA) polymers. Historically, the development of PLGA-based LAI formulations has relied predominantly on trial-and-error methods, primarily due to a limited understanding of the complex factors involved in LAI formulations and insufficient analytical techniques available for characterizing individual PLGA polymers of the prepared formulations. This article offers a personal perspective on recent advancements in characterization methods for PLGA polymers within final formulations, i.e., products, as well as enhanced insights into the drug release mechanisms associated with LAI products. With a deeper understanding of PLGA polymer properties and drug release mechanisms, the formulation development process can transition from traditional trial-and-error practices to a more systematic Quality by Design (QbD) approach. Additionally, this article explores the emerging role of artificial intelligence (AI) in formulation science and its potential, when applied carefully, to enhance the future development of PLGA-based LAI formulations.
Collapse
Affiliation(s)
- Kinam Park
- Purdue University, Weldon School of Biomedical Engineering and Department of Industrial and Molecular Pharmaceutics, West Lafayette, IN 47907, USA; Akina, Inc., 3495 Kent Avenue, West Lafayette, IN 47906, USA.
| |
Collapse
|
2
|
Zhang J, Sun R, Kudryavtseva V, Gould DJ, Sukhorukov GB. Fabrication of uniform biodegradable microcages with predesigned shape printed from microarrays for sustained release of small hydrophilic molecules. Biomater Sci 2025. [PMID: 40421747 DOI: 10.1039/d5bm00154d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Drug delivery vehicles have aroused increasing attention over the years due to their ability to protect and control the release of encapsulated cargo. However, several challenges significantly limit their wide applications including poor size distribution, uncontrollable size and shape, and leakage of loaded small hydrophilic cargos. This work introduces a novel and scalable microarray-based printing technique for preparing uniform biodegradable "microcages" with predesigned shapes for encapsulating and controlling the release of small hydrophilic molecules. The drugs encapsulated in the microcage are centrally located within solid microparticles without being exposed to the surface or dispersed throughout the polymer matrix. Here, 5(6)-carboxyfluorescein (CF) as a small and hydrophilic model drug are successfully loaded into polylactide acid (PLA) microcages with the dry loading method. Additionally, blending polycaprolactone (PCL) with PLA increases the permeability of the microcage polymer shells for controlled release. A higher PCL content results in a faster release rate of the encapsulated drug. Approximately 28 pg of CF particles can be encapsulated within individual microcages. This microcage printing technique provides a novel, scalable method for producing uniform biodegradable microcages, extending microprinting beyond microfilms and microparticles. A unique dry loading approach, independent of drug solubility, further broadens its utility for diverse biomedical applications.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Rui Sun
- Centre for Oral Bioengineering, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | - Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - David J Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 143025, Russia
| |
Collapse
|
3
|
Bairagi RD, Reon RR, Hasan MM, Sarker S, Debnath D, Rahman MT, Rahman S, Islam MA, Siddique MAT, Bokshi B, Rahman MM, Acharzo AK. Ocular drug delivery systems based on nanotechnology: a comprehensive review for the treatment of eye diseases. DISCOVER NANO 2025; 20:75. [PMID: 40317427 PMCID: PMC12049359 DOI: 10.1186/s11671-025-04234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/07/2025] [Indexed: 05/07/2025]
Abstract
Ocular drug delivery is a significant challenge due to the intricate anatomy of the eye and the various physiological barriers. Conventional therapeutic approaches, while effective to some extent, often fall short in effectively targeting ocular diseases, resulting in suboptimal therapeutic outcomes due to factors such as poor ocular bioavailability, frequent dosing requirements, systemic side effects, and limited penetration through ocular barriers. This review elucidates the eye's intricate anatomy and physiology, prevalent ocular diseases, traditional therapeutic modalities, and the inherent pharmacokinetic and pharmacodynamic limitations associated with these modalities. Subsequently, it delves into nanotechnology-based solutions, presenting breakthroughs in nanoformulations such as nanocrystals, liposomes, dendrimers, and nanoemulsions that have demonstrated enhanced drug stability, controlled release, and deeper ocular penetration. Additionally, it explores a range of nanosized carriers, including nano-structured lipid carriers, hydrogels, nanogels, nanoenzymes, microparticles, conjugates, exosomes, nanosuspensions, viral vectors, and polymeric nanoparticles, and their applications. Unique insights include emerging innovations such as nanowafers and transcorneal iontophoresis, which indicate paradigm shifts in non-invasive ocular drug delivery. Furthermore, it sheds light on the advantages and limitations of these nanotechnology-based platforms in addressing the challenges of ocular drug delivery. Though nano-based drug delivery systems are drawing increasing attention due to their potential to enhance bioavailability and therapeutic efficacy, the review ends up emphasizing the imperative need for further research to drive innovation and improve patient outcomes in ophthalmology.
Collapse
Affiliation(s)
- Rahul Dev Bairagi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Raiyan Rahman Reon
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mahbub Hasan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Sumit Sarker
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, 140001, India
| | - Dipa Debnath
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, 221005, India
| | - Md Tawhidur Rahman
- Department of Pharmacy, Northern University of Bangladesh, Dhaka, 1230, Bangladesh
| | - Sinthia Rahman
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | - Md Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, East West University, Dhaka, 1212, Bangladesh
| | - Md Abu Talha Siddique
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Bishwajit Bokshi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mustafizur Rahman
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | | |
Collapse
|
4
|
Shaik R, Brown J, Xu J, Lamichhane R, Wang Y, Hong Y, Zhang G. Cardiac Matrix-Derived Granular Hydrogel Enhances Cell Function in 3D Culture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58346-58356. [PMID: 39413287 PMCID: PMC11542188 DOI: 10.1021/acsami.4c12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Hydrogels derived from decellularized porcine myocardial matrix have demonstrated significant potential as therapeutic delivery platforms for promoting cardiac repair after injury. Our previous study developed a fibrin-enriched cardiac matrix hydrogel to enhance its angiogenic capacities. However, the bulk hydrogel structure may limit their full potential in cell delivery. Recently, granular hydrogels have emerged as a promising class of biomaterials, offering unique features such as a highly interconnected porous structure that facilitates nutrient diffusion and enhances cell viability. Several techniques have been developed for fabricating various types of granular hydrogels, among which extrusion fragmentation is particularly appealing due to its adaptability to many types of hydrogels, low cost, and high scalability. In this study, we first confirmed the effects of the bulk cardiac matrix hydrogel on the viability of encapsulated human umbilical vein endothelial cells and human mesenchymal stem cells. We then tested the feasibility of producing granular hydrogels from both cardiac matrix and fibrin-enriched cardiac matrix through cellular cross-linking of microgels fabricated by extrusion fragmentation. Afterward, we examined the roles of the produced granular hydrogels in the embedded cells and cell spheroids. Our in vitro data demonstrate that cardiac matrix-derived granular hydrogels support optimal viability of encapsulated cells and promote sprouting of human mesenchymal stem cell spheroids. Additionally, granular hydrogel derived from fibrin-enriched cardiac matrix accelerates angiogenic sprouting of embedded human mesenchymal stem cell spheroids. The results obtained from this study lay an important foundation for the future exploration of using cardiac matrix-derived granular hydrogels for cardiac cell therapy.
Collapse
Affiliation(s)
- Rubia Shaik
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jacob Brown
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Rabina Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16801, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
5
|
Crane R, Makia MS, Zeibak S, Tebbe L, Ikele L, Woods CR, Conley SM, Acharya G, Naash MI, Al-Ubaidi MR. Effective intravitreal gene delivery to retinal pigment epithelium with hyaluronic acid nanospheres. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102222. [PMID: 38868364 PMCID: PMC11168490 DOI: 10.1016/j.omtn.2024.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Inherited retinal degeneration (IRD) can cause a wide range of different forms of vision loss and blindness, and in spite of extensive advancements in gene therapy research, therapeutic approaches for targeting IRDs are still lacking. We have recently developed an approach for the intravitreal co-delivery of hyaluronic-acid nanospheres (HA-NSs) with sulfotyrosine (ST), effectively reaching the outer retina from the vitreal cavity. Here, our goal was to understand whether DNA-filled HA-NSs could generate gene expression in the outer retina. TxRed-labeled HA-NSs were compacted with plasmid DNA carrying a GFP reporter gene and intravitreally injected into the mouse retina. Follow-up at 4 weeks showed widespread gene expression in the outer retina and reduced, albeit present, expression at 8 weeks post-injection. Further analysis revealed this expression to be largely localized to the retinal pigment epithelium (RPE). These data show that intravitreal delivery of HA-NSs is a promising non-viral platform for the delivery of therapeutic genes and can generate pan-tissue, persistent gene expression in the RPE.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Mustafa S. Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Stephanie Zeibak
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Larissa Ikele
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | | | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ghanashyam Acharya
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Bektas C, Mao Y. Hydrogel Microparticles for Bone Regeneration. Gels 2023; 10:28. [PMID: 38247752 PMCID: PMC10815488 DOI: 10.3390/gels10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogel microparticles (HMPs) stand out as promising entities in the realm of bone tissue regeneration, primarily due to their versatile capabilities in delivering cells and bioactive molecules/drugs. Their significance is underscored by distinct attributes such as injectability, biodegradability, high porosity, and mechanical tunability. These characteristics play a pivotal role in fostering vasculature formation, facilitating mineral deposition, and contributing to the overall regeneration of bone tissue. Fabricated through diverse techniques (batch emulsion, microfluidics, lithography, and electrohydrodynamic spraying), HMPs exhibit multifunctionality, serving as vehicles for drug and cell delivery, providing structural scaffolding, and functioning as bioinks for advanced 3D-printing applications. Distinguishing themselves from other scaffolds like bulk hydrogels, cryogels, foams, meshes, and fibers, HMPs provide a higher surface-area-to-volume ratio, promoting improved interactions with the surrounding tissues and facilitating the efficient delivery of cells and bioactive molecules. Notably, their minimally invasive injectability and modular properties, offering various designs and configurations, contribute to their attractiveness for biomedical applications. This comprehensive review aims to delve into the progressive advancements in HMPs, specifically for bone regeneration. The exploration encompasses synthesis and functionalization techniques, providing an understanding of their diverse applications, as documented in the existing literature. The overarching goal is to shed light on the advantages and potential of HMPs within the field of engineering bone tissue.
Collapse
Affiliation(s)
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA;
| |
Collapse
|
7
|
Gong N, Han X, Xue L, El-Mayta R, Metzloff AE, Billingsley MM, Hamilton AG, Mitchell MJ. In situ PEGylation of CAR T cells alleviates cytokine release syndrome and neurotoxicity. NATURE MATERIALS 2023; 22:1571-1580. [PMID: 37696939 DOI: 10.1038/s41563-023-01646-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2023] [Indexed: 09/13/2023]
Abstract
Chimeric antigen receptor T (CAR T) cell immunotherapy is successful at treating many cancers. However, it often induces life-threatening cytokine release syndrome (CRS) and neurotoxicity. Here, we show that in situ conjugation of polyethylene glycol (PEG) to the surface of CAR T cells ('PEGylation') creates a polymeric spacer that blocks cell-to-cell interactions between CAR T cells, tumour cells and monocytes. Such blockage hinders intensive tumour lysing and monocyte activation by CAR T cells and, consequently, decreases the secretion of toxic cytokines and alleviates CRS-related symptoms. Over time, the slow expansion of CAR T cells decreases PEG surface density and restores CAR T cell-tumour-cell interactions to induce potent tumour killing. This occurs before the restoration of CAR T cell-monocyte interactions, opening a therapeutic window for tumour killing by CAR T cells before monocyte overactivation. Lethal neurotoxicity is also lower when compared with treatment with the therapeutic antibody tocilizumab, demonstrating that in situ PEGylation of CAR T cells provides a materials-based strategy for safer cellular immunotherapy.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann E Metzloff
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Arriaga MA, Amieva JA, Quintanilla J, Jimenez A, Ledezma J, Lopez S, Martirosyan KS, Chew SA. The application of electrosprayed minocycline-loaded PLGA microparticles for the treatment of glioblastoma. Biotechnol Bioeng 2023; 120:3409-3422. [PMID: 37605630 PMCID: PMC10592149 DOI: 10.1002/bit.28527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi-synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.e., U87-MG) cells. The results from this study demonstrated that solvent mixture of dicholoromethane (DCM) and methanol is the optimal solvent combination for minocycline and larger amount of methanol (i.e., 70:30) resulted in a higher drug loading. All three solvent ratios of DCM:methanol tested produced microparticles that were both spherical and smooth, all in the micron size range. The electrosprayed microparticles were able to elicit a cytotoxic response in U87-MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work provides proof of concept to the hypothesis that electrosprayed minocycline-loaded PLGA microparticles can be a promising agent for the treatment of GBM and could have potential application for cancer therapies.
Collapse
Affiliation(s)
- Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Juan A. Amieva
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Jaqueline Quintanilla
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Angela Jimenez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Julio Ledezma
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Silverio Lopez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Karen S. Martirosyan
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| |
Collapse
|
9
|
Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, Xu J, Zhou G. Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5459. [PMID: 37570163 PMCID: PMC10419642 DOI: 10.3390/ma16155459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The treatment of skin wounds caused by trauma and pathophysiological disorders has been a growing healthcare challenge, posing a great economic burden worldwide. The use of appropriate wound dressings can help to facilitate the repair and healing rate of defective skin. Natural polymer biomaterials such as collagen and hyaluronic acid with excellent biocompatibility have been shown to promote wound healing and the restoration of skin. However, the low mechanical properties and fast degradation rate have limited their applications. Skin wound dressings based on biodegradable and biocompatible synthetic polymers can not only overcome the shortcomings of natural polymer biomaterials but also possess favorable properties for applications in the treatment of skin wounds. Herein, we listed several biodegradable and biocompatible synthetic polymers used as wound dressing materials, such as PVA, PCL, PLA, PLGA, PU, and PEO/PEG, focusing on their composition, fabrication techniques, and functions promoting wound healing. Additionally, the future development prospects of synthetic biodegradable polymer-based wound dressings are put forward. Our review aims to provide new insights for the further development of wound dressings using synthetic biodegradable polymers.
Collapse
Affiliation(s)
- Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yifeng Fang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Zhao Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yajie Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Li Gan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510030, China
| | - Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| |
Collapse
|
10
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
11
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
12
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
13
|
Chakraborty M, Banerjee D, Mukherjee S, Karati D. Exploring the advancement of polymer-based nano-formulations for ocular drug delivery systems: an explicative review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Mandal M, Banerjee I, Mandal M. Nanoparticle-mediated gene therapy as a novel strategy for the treatment of retinoblastoma. Colloids Surf B Biointerfaces 2022; 220:112899. [DOI: 10.1016/j.colsurfb.2022.112899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
15
|
Moore TL, Cook AB, Bellotti E, Palomba R, Manghnani P, Spanò R, Brahmachari S, Di Francesco M, Palange AL, Di Mascolo D, Decuzzi P. Shape-specific microfabricated particles for biomedical applications: a review. Drug Deliv Transl Res 2022; 12:2019-2037. [PMID: 35284984 PMCID: PMC9242933 DOI: 10.1007/s13346-022-01143-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The storied history of controlled the release systems has evolved over time; from degradable drug-loaded sutures to monolithic zero-ordered release devices and nano-sized drug delivery formulations. Scientists have tuned the physico-chemical properties of these drug carriers to optimize their performance in biomedical/pharmaceutical applications. In particular, particle drug delivery systems at the micron size regime have been used since the 1980s. Recent advances in micro and nanofabrication techniques have enabled precise control of particle size and geometry-here we review the utility of microplates and discoidal polymeric particles for a range of pharmaceutical applications. Microplates are defined as micrometer scale polymeric local depot devices in cuboid form, while discoidal polymeric nanoconstructs are disk-shaped polymeric particles having a cross-sectional diameter in the micrometer range and a thickness in the hundreds of nanometer range. These versatile particles can be used to treat several pathologies such as cancer, inflammatory diseases and vascular diseases, by leveraging their size, shape, physical properties (e.g., stiffness), and component materials, to tune their functionality. This review highlights design and fabrication strategies for these particles, discusses their applications, and elaborates on emerging trends for their use in formulations.
Collapse
Affiliation(s)
- Thomas L Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy.
| | - Alexander B Cook
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Elena Bellotti
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Purnima Manghnani
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| |
Collapse
|
16
|
Co-Injection of Sulfotyrosine Facilitates Retinal Uptake of Hyaluronic Acid Nanospheres Following Intravitreal Injection. Pharmaceutics 2021; 13:pharmaceutics13091510. [PMID: 34575586 PMCID: PMC8469555 DOI: 10.3390/pharmaceutics13091510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Gene and drug delivery to the retina is a critical therapeutic goal. While the majority of inherited forms of retinal degeneration affect the outer retina, specifically the photoreceptors and retinal pigment epithelium, effective targeted delivery to this region requires invasive subretinal delivery. Our goal in this work was to evaluate two innovative approaches for increasing both the persistence of delivered nanospheres and their penetration into the outer retina while using the much less invasive intravitreal delivery method. We formulated novel hyaluronic acid nanospheres (HA-NS, 250 nm and 500 nm in diameter) conjugated to fluorescent reporters and delivered them intravitreally to the adult Balb/C mouse retina. They exhibited persistence in the vitreous and along the inner limiting membrane (ILM) for up to 30 days (longest timepoint examined) but little retinal penetration. We thus evaluated the ability of the small molecule, sulfotyrosine, to disrupt the ILM, and found that 3.2 µg/µL sulfotyrosine led to significant improvement in delivery to the outer retina following intravitreal injections without causing retinal inflammation, degeneration, or loss of function. Co-delivery of sulfotyrosine and HA-NS led to robust improvements in penetration of HA-NS into the retina and accumulation along the interface between the photoreceptors and the retinal pigment epithelium. These exciting findings suggest that sulfotyrosine and HA-NS may be an effective strategy for outer retinal targeting after intravitreal injection.
Collapse
|
17
|
Narayana S, Ahmed MG, Gowda BHJ, Shetty PK, Nasrine A, Thriveni M, Noushida N, Sanjana A. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00331-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Angiogenic ocular diseases address the main source of vision impairment or irreversible vision loss. The angiogenesis process depends on the balance between the pro-angiogenic and anti-angiogenic factors. An imbalance between these factors leads to pathological conditions in the body. The vascular endothelial growth factor is the main cause of pathological conditions in the ocular region. Intravitreal injections of anti-angiogenic drugs are selective, safe, specific and revolutionized treatment for ocular angiogenesis. But intravitreal injections are invasive techniques with other severe complications. The area of targeting vascular endothelial growth factor receptors progresses with novel approaches and therapeutically based hope for best clinical outcomes for patients through the developments in anti-angiogenic therapy.
Main text
The present review article gathers prior knowledge about the vascular endothelial growth factor and associated receptors with other angiogenic and anti-angiogenic factors involved in ocular angiogenesis. A focus on the brief mechanism of vascular endothelial growth factor inhibitors in the treatment of ocular angiogenesis is elaborated. The review also covers various recent novel approaches available for ocular drug delivery by comprising a substantial amount of research works. Besides this, we have also discussed in detail the adoption of nanotechnology-based drug delivery systems in ocular angiogenesis by comprising literature having recent advancements. The clinical applications of nanotechnology in terms of ocular drug delivery, risk analysis and future perspectives relating to the treatment approaches for ocular angiogenesis have also been presented.
Conclusion
The novel ocular drug delivery systems involving nanotechnologies are of great importance in the ophthalmological sector to overcome traditional treatments with many drawbacks. This article gives a detailed insight into the various approaches that are currently available to be a road map for future research in the field of ocular angiogenesis disease management.
Collapse
|
18
|
Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, Lobo GP, Valapala M, Kerur N, Passaglia CL, Mohapatra SS, Biswal MR. Emerging Nano-Formulations and Nanomedicines Applications for Ocular Drug Delivery. NANOMATERIALS 2021; 11:nano11010173. [PMID: 33445545 PMCID: PMC7828028 DOI: 10.3390/nano11010173] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Ocular diseases can deteriorate vision to the point of blindness and thus can have a major impact on the daily life of an individual. Conventional therapies are unable to provide absolute therapy for all ocular diseases due to the several limitations during drug delivery across the blood-retinal barrier, making it a major clinical challenge. With recent developments, the vast number of publications undergird the need for nanotechnology-based drug delivery systems in treating ocular diseases. The tool of nanotechnology provides several essential advantages, including sustained drug release and specific tissue targeting. Additionally, comprehensive in vitro and in vivo studies have suggested a better uptake of nanoparticles across ocular barriers. Nanoparticles can overcome the blood-retinal barrier and consequently increase ocular penetration and improve the bioavailability of the drug. In this review, we aim to summarize the development of organic and inorganic nanoparticles for ophthalmic applications. We highlight the potential nanoformulations in clinical trials as well as the products that have become a commercial reality.
Collapse
Affiliation(s)
- Dawin Khiev
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Zeinab A. Mohamed
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Riddhi Vichare
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Ryan Paulson
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
| | - Sofia Bhatia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Glenn P. Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Mallika Valapala
- School of Optometry, Indiana University, Bloomington, IN 47401, USA;
| | - Nagaraj Kerur
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | | | - Shyam S. Mohapatra
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Manas R. Biswal
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-8333
| |
Collapse
|
19
|
Liang H, Wang S, Lu Y, Ren P, Li G, Yang F, Chen Y. Highly efficient and cheap treatment of dye by graphene-doped TiO 2 microspheres. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:223-232. [PMID: 33460420 DOI: 10.2166/wst.2020.545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly efficient dye wastewater treatment by photocatalytic catalysis commonly requires expensive catalysts, long degradation time and a complicated procedure. Here, we for the first time prepared cheap graphene-doped titanium dioxide microspheres with a simple procedure to degrade dye with high efficiency. When the catalyst concentration was 0.2 g·L-1, the photocatalysis degradation extent of methylene blue solution, methylene green solution and 1,9-dimethyl methylene blue solution reached 96.4, 85.9 and 98.7%, respectively. The results showed that the degradation reactions accorded with the Langmuir-Hinshelwood model, and the photocatalytic reactions belonged to a first-order reaction in the primary stage. Furthermore, different photocatalytic degradation mechanisms were proposed, which have not been found in other literature. This work opened a new route for simple preparation of cheap microspheres in photocatalytic dye wastewater treatment with high efficiency.
Collapse
Affiliation(s)
- Honglian Liang
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China E-mail:
| | - Shujun Wang
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China E-mail:
| | - Yanhong Lu
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China E-mail:
| | - Ping Ren
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China E-mail:
| | - Guihua Li
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China E-mail:
| | - Fenghao Yang
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China E-mail:
| | - Yu Chen
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China E-mail:
| |
Collapse
|
20
|
Nauruzbayeva J, Sun Z, Gallo A, Ibrahim M, Santamarina JC, Mishra H. Electrification at water-hydrophobe interfaces. Nat Commun 2020; 11:5285. [PMID: 33082321 PMCID: PMC7576844 DOI: 10.1038/s41467-020-19054-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
The mechanisms leading to the electrification of water when it comes in contact with hydrophobic surfaces remains a research frontier in chemical science. A clear understanding of these mechanisms could, for instance, aid the rational design of triboelectric generators and micro- and nano-fluidic devices. Here, we investigate the origins of the excess positive charges incurred on water droplets that are dispensed from capillaries made of polypropylene, perfluorodecyltrichlorosilane-coated glass, and polytetrafluoroethylene. Results demonstrate that the magnitude and sign of electrical charges vary depending on: the hydrophobicity/hydrophilicity of the capillary; the presence/absence of a water reservoir inside the capillary; the chemical and physical properties of aqueous solutions such as pH, ionic strength, dielectric constant and dissolved CO2 content; and environmental conditions such as relative humidity. Based on these results, we deduce that common hydrophobic materials possess surface-bound negative charge. Thus, when these surfaces are submerged in water, hydrated cations form an electrical double layer. Furthermore, we demonstrate that the primary role of hydrophobicity is to facilitate water-substrate separation without leaving a significant amount of liquid behind. These results advance the fundamental understanding of water-hydrophobe interfaces and should translate into superior materials and technologies for energy transduction, electrowetting, and separation processes, among others.
Collapse
Affiliation(s)
- Jamilya Nauruzbayeva
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - Zhonghao Sun
- King Abdullah University of Science and Technology, Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC), Division of Physical Science and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - Adair Gallo
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - Mahmoud Ibrahim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - J Carlos Santamarina
- King Abdullah University of Science and Technology, Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC), Division of Physical Science and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - Himanshu Mishra
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955 - 6900, Saudi Arabia.
| |
Collapse
|
21
|
Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 2020; 10:27835-27855. [PMID: 35516960 PMCID: PMC9055630 DOI: 10.1039/d0ra04971a] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ocular diseases have a significant effect on vision and quality of life. Drug delivery to ocular tissues is a challenge to formulation scientists. The major barriers to delivering drugs to the anterior and posterior segments include physiological barriers (nasolacrimal drainage, blinking), anatomical barriers (static and dynamic), efflux pumps and metabolic barriers. The static barriers comprise the different layers of the cornea, sclera, and blood-aqueous barriers whereas dynamic barriers involve conjunctival blood flow, lymphatic clearance and tear drainage. The tight junctions of the blood-retinal barrier (BRB) restrict systemically administered drugs from entering the retina. Nanocarriers have been found to be effective at overcoming the issues associated with conventional ophthalmic dosage forms. Various nanocarriers, including nanodispersion systems, nanomicelles, lipidic nanocarriers, polymeric nanoparticles, liposomes, niosomes, and dendrimers, have been investigated for improved permeation and effective targeted drug delivery to various ophthalmic sites. In this review, various nanomedicines and their application for ophthalmic delivery of therapeutics are discussed. Additionally, scale-up and clinical status are also addressed to understand the current scenario for ophthalmic drug delivery.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Prem Prakash Singh
- Formulation Development, Slayback Pharma India LLP Hyderabad Telangana 500072 India
| | - Sunil Kumar Dubey
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
- Birla Institute of Technology & Science (BITS) Pilani, Dubai Campus UAE
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| |
Collapse
|
22
|
Kim HU, Lim YJ, Lee HJ, Lee NJ, Bong KW. Degassed micromolding lithography for rapid fabrication of anisotropic hydrogel microparticles with high-resolution and high uniformity. LAB ON A CHIP 2020; 20:74-83. [PMID: 31746885 DOI: 10.1039/c9lc00828d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Replica molding techniques, which are used to synthesize microparticles inside anisotropic micromolds, have been developed to enable the mass production of hydrogel particles. However, these techniques are limited in their ability to synthesize only a narrow range of particle compositions and shapes because of the difficulty in loading precursors into the micromolds as well as the low particle homogeneity due to the uneven evaporation of the precursors. Herein, we describe a simple yet powerful technique, called degassed micromolding lithography, which can load precursors within 1 min regardless of the wettability. This technique is based on the gas-solubility of a degassed micromold that acts as a suction pump to completely fill the mold by drawing precursor liquids in. The semi-closed system within the micromold prevents the uneven evaporation of the precursor, which is essential for the production of homogeneous particles. Furthermore, controlled uniformity of the hydrogel microparticles (C.V. < 2%) can be achieved by engineering the design of the micromold array.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yong Jun Lim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hyun Jee Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Nak Jun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
23
|
Self-aligned molding technology (SAMT) for fabrication of 3D structures with a foldable imprint mold. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today 2019; 24:1524-1538. [PMID: 31102733 DOI: 10.1016/j.drudis.2019.05.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
Abstract
Delivering therapeutics to the eye is challenging on multiple levels: rapid clearance of eyedrops from the ocular surface requires frequent instillation, which is difficult for patients; transport of drugs across the blood-retinal barrier when drugs are administered systemically, and the cornea when drugs are administered topically, is difficult to achieve; limited drug penetration to the back of the eye owing to the cornea, conjunctiva, sclera and vitreous barriers. Nanomedicine offers many advantages over conventional ophthalmic medications for effective ocular drug delivery because nanomedicine can increase the therapeutic index by overcoming ocular barriers, improving drug-release profiles and reducing potential drug toxicity. In this review, we highlight the therapeutic implications of nanomedicine for ocular drug delivery.
Collapse
Affiliation(s)
- Tuo Meng
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Vineet Kulkarni
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Russell Simmers
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Physics, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vikram Brar
- Department of Ophthalmology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qingguo Xu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
25
|
Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00446-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Xue Q, Zhang Q. Agar Hydrogel Template Synthesis of Mn₃O₄ Nanoparticles through an Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E503. [PMID: 30939770 PMCID: PMC6524068 DOI: 10.3390/nano9040503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
A novel strategy, ion diffusion method controlled by ion exchange membrane combining with agar hydrogel template, was reported for the synthesis of Mn₃O₄ nanoparticles without any oxidizing agents. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauere-Emmette-Teller (BET) isotherm were carried out to characterize the structure, morphology, pore size and distribution and specific surface area of the as-prepared nanomaterials. It is shown that the morphology and size of Mn₃O₄ nanoparticles can be controlled by the concentration of agar hydrogel. All the specific capacitances of the Mn₃O₄ samples prepared with agar hydrogel template are much higher than that of Mn₃O₄ prepared without any template agent. The Mn₃O₄ sample prepared at 1.5 g L-1 of agar hydrogel solution exhibits a highest specific capacitance of 183.0 F g-1 at the current density of 0.5 A g-1, which is increased by 293% compared with that of Mn₃O₄ synthesized without any template agent. The results indicate that the ion diffusion method controlled by ion exchange membrane combining with agar hydrogel template is a convenient and effective approach for preparing inorganic nanomaterials.
Collapse
Affiliation(s)
- Qian Xue
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhongguancun Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
27
|
Bioerodable Ketamine-Loaded Microparticles Fabricated Using Dissolvable Hydrogel Template Technology. J Pharm Sci 2019; 108:1220-1226. [DOI: 10.1016/j.xphs.2018.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022]
|
28
|
Rodriguez de Anda DA, Ohannesian N, Martirosyan KS, Chew SA. Effects of solvent used for fabrication on drug loading and release kinetics of electrosprayed temozolomide-loaded PLGA microparticles for the treatment of glioblastoma. J Biomed Mater Res B Appl Biomater 2019; 107:2317-2324. [PMID: 30767394 DOI: 10.1002/jbm.b.34324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive form of malignant brain tumors and despite advances in surgery, radiotherapy, and chemotherapy, the survival of patients with GBM still remains poor. Temozolomide (TMZ) is the chemotherapy drug that is most commonly given orally after surgical resection of these tumors. In this study, the effects of solvents (i.e., dichloromethane and acetonitrile) used for the fabrication of electrosprayed TMZ-loaded poly(lactic-co-glycolic acid) (PLGA) on drug loading, loading efficiency, drug release kinetics, surface morphology, and particle size were investigated. The results from this study demonstrated that by using a larger volume of a solvent with higher polarity (i.e., acetonitrile) which allows for a higher amount of hydrophilic TMZ to dissolve into the polymer solution, higher drug loading could be achieved. However, the particles fabricated with high amount of acetonitrile, which has a lower vapor pressure, had large pores and a smaller diameter which led to an initial burst release and high cumulative release at the end of the study. An optimal combination of the two solvents is needed to result in particles with a good amount of loading and minimal initial burst release. The electrosprayed microparticles were able to illicit a cytotoxic response in U-87 MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work indicated that electrospraying is a promising method for the fabrication of TMZ-loaded PLGA microparticles for the treatment of GBM and solvent composition can be altered to control drug loading and release kinetics. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2317-2324, 2019.
Collapse
Affiliation(s)
- Daniel A Rodriguez de Anda
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| | - Nareg Ohannesian
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| | - Karen S Martirosyan
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| |
Collapse
|
29
|
Subramanian N, Qamar A, Alsaadi A, Gallo A, Ridwan MG, Lee JG, Pillai S, Arunachalam S, Anjum D, Sharipov F, Ghaffour N, Mishra H. Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. J Colloid Interface Sci 2019; 533:723-732. [DOI: 10.1016/j.jcis.2018.08.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022]
|
30
|
Huang PJ, Qu J, Saha P, Muliana A, Kameoka J. Microencapsulation of beta cells in collagen micro-disks via circular pneumatically actuated soft micro-mold (cPASMO) device. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae55e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Nielsen LH, Keller SS, Boisen A. Microfabricated devices for oral drug delivery. LAB ON A CHIP 2018; 18:2348-2358. [PMID: 29975383 DOI: 10.1039/c8lc00408k] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oral administration of drugs is most convenient for patients and therefore the ultimate goal when developing new medication. The physical barriers in the body, low pH of the stomach and degradation by enzymes in the gastrointestinal tract are a few of the obstacles to succeeding with oral drug delivery. Microfabricated devices show promise to overcome some of these hindrances and thereby improve the bioavailability of drugs after oral administration. There is an increasing focus on microfabricated oral drug delivery systems, and so far there have been three main groups of designs: patch-like structures, microcontainers and microwells. Here, we review the newest development in top-down microfabricated devices for oral drug delivery with coverage of the aspects of design, choice of material and fabrication techniques. Furthermore, the drug loading techniques and methods for testing are discussed. In addition, we discuss the future perspectives for microfabricated devices.
Collapse
Affiliation(s)
- Line Hagner Nielsen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
32
|
Transcutaneously refillable, 3D-printed biopolymeric encapsulation system for the transplantation of endocrine cells. Biomaterials 2018; 177:125-138. [PMID: 29886385 DOI: 10.1016/j.biomaterials.2018.05.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
Abstract
Autologous cell transplantation holds enormous promise to restore organ and tissue functions in the treatment of various pathologies including endocrine, cardiovascular, and neurological diseases among others. Even though immune rejection is circumvented with autologous transplantation, clinical adoption remains limited due to poor cell retention and survival. Cell transplant success requires homing to vascularized environment, cell engraftment and importantly, maintenance of inherent cell function. To address this need, we developed a three dimensional (3D) printed cell encapsulation device created with polylactic acid (PLA), termed neovascularized implantable cell homing and encapsulation (NICHE). In this paper, we present the development and systematic evaluation of the NICHE in vitro, and the in vivo validation with encapsulated testosterone-secreting Leydig cells in Rag1-/- castrated mice. Enhanced subcutaneous vascularization of NICHE via platelet-rich plasma (PRP) hydrogel coating and filling was demonstrated in vivo via a chorioallantoic membrane (CAM) assay as well as in mice. After establishment of a pre-vascularized bed within the NICHE, transcutaneously transplanted Leydig cells, maintained viability and robust testosterone secretion for the duration of the study. Immunohistochemical analysis revealed extensive Leydig cell colonization in the NICHE. Furthermore, transplanted cells achieved physiologic testosterone levels in castrated mice. The promising results provide a proof of concept for the NICHE as a viable platform technology for autologous cell transplantation for the treatment of a variety of diseases.
Collapse
|
33
|
Zhang P, Xia J, Luo S. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery. MATERIALS 2018; 11:ma11040623. [PMID: 29670013 PMCID: PMC5951507 DOI: 10.3390/ma11040623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Micro/nanoparticles have great potentials in biomedical applications, especially for drug delivery. Existing studies identified that major micro/nanoparticle features including size, shape, surface property and component materials play vital roles in their in vitro and in vivo applications. However, a demanding challenge is that most conventional particle synthesis techniques such as emulsion can only generate micro/nanoparticles with a very limited number of shapes (i.e., spherical or rod shapes) and have very loose control in terms of particle sizes. We reviewed the advanced manufacturing techniques for producing micro/nanoparticles with precisely defined characteristics, emphasizing the use of these well-controlled micro/nanoparticles for drug delivery applications. Additionally, to illustrate the vital roles of particle features in therapeutic delivery, we also discussed how the above-mentioned micro/nanoparticle features impact in vitro and in vivo applications. Through this review, we highlighted the unique opportunities in generating controllable particles via advanced manufacturing techniques and the great potential of using these micro/nanoparticles for therapeutic delivery.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| | - Junfei Xia
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Sida Luo
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| |
Collapse
|
34
|
Di Francesco M, Primavera R, Romanelli D, Palomba R, Pereira RC, Catelani T, Celia C, Di Marzio L, Fresta M, Di Mascolo D, Decuzzi P. Hierarchical Microplates as Drug Depots with Controlled Geometry, Rigidity, and Therapeutic Efficacy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9280-9289. [PMID: 29481038 DOI: 10.1021/acsami.7b19136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A variety of microparticles have been proposed for the sustained and localized delivery of drugs with the objective of increasing therapeutic indexes by circumventing filtering organs and biological barriers. Yet, the geometrical, mechanical, and therapeutic properties of such microparticles cannot be simultaneously and independently tailored during the fabrication process to optimize their performance. In this work, a top-down approach is employed to realize micron-sized polymeric particles, called microplates (μPLs), for the sustained release of therapeutic agents. μPLs are square hydrogel particles, with an edge length of 20 μm and a height of 5 μm, made out of poly(lactic- co-glycolic acid) (PLGA). During the synthesis process, the μPL Young's modulus can be varied from 0.6 to 5 MPa by changing the PLGA amounts from 1 to 7.5 mg, without affecting the μPL geometry while matching the properties of the surrounding tissue. Within the porous μPL matrix, different classes of therapeutic payloads can be incorporated including molecular agents, such as anti-inflammatory dexamethasone (DEX), and nanoparticles containing imaging and therapeutic molecules themselves, thus originating a truly hierarchical platform. As a proof of principle, μPLs are loaded with free DEX and 200 nm spherical polymeric nanoparticles, carrying DEX molecules (DEX-SPNs). Electron and fluorescent confocal microscopy analyses document the uniform distribution and stability of molecular and nanoagents within the μPL matrix. This multiscale, hierarchical microparticle releases DEX for at least 10 days. The inclusion of DEX-SPNs serves to minimize the initial burst release and modulate the diffusion of DEX molecules out of the μPL matrix. The biopharmacological and therapeutic properties together with the fine tuning of geometry and mechanical stiffness make μPLs a unique polymeric depot for the potential treatment of cancer, cardiovascular, and chronic, inflammatory diseases.
Collapse
Affiliation(s)
- Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Rosita Primavera
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Davide Romanelli
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Rui C Pereira
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Tiziano Catelani
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Christian Celia
- Department of Pharmacy , University of Chieti-Pescara "G. D'Annunzio" , Via dei Vestini , Campus Universitario , 66100 Chieti , Italy
| | - Luisa Di Marzio
- Department of Pharmacy , University of Chieti-Pescara "G. D'Annunzio" , Via dei Vestini , Campus Universitario , 66100 Chieti , Italy
| | - Massimo Fresta
- Department of Health Sciences , University of Catanzaro "Magna Graecia" , Viale Europa , 88100 Catanzaro , Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| |
Collapse
|
35
|
Singh M, Kanoujia J, Parashar P, Arya M, Tripathi CB, Sinha VR, Saraf SK, Saraf SA. Assessment of improved buccal permeation and bioavailability of felodipine microemulsion-based cross-linked polycarbophil gel. Drug Deliv Transl Res 2018; 8:591-601. [DOI: 10.1007/s13346-018-0489-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Huang PJ, Chou CK, Chen CT, Yamaguchi H, Qu J, Muliana A, Hung MC, Kameoka J. Pneumatically Actuated Soft Micromold Device for Fabricating Collagen and Matrigel Microparticles. Soft Robot 2017; 4:390-399. [DOI: 10.1089/soro.2016.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Po-Jung Huang
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jian Qu
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas
| | - Anastasia Muliana
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jun Kameoka
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
- School of Medicine, The Jikei University, Tokyo, Japan
| |
Collapse
|
37
|
Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater 2017; 33:637-649. [PMID: 28416222 PMCID: PMC5481168 DOI: 10.1016/j.dental.2017.03.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Knowledge of the structural organization and mechanical properties of dentin has expanded considerably during the past two decades, especially on a nanometer scale. In this paper, we review the recent literature on the nanostructural and nanomechanical properties of dentin, with special emphasis in its hierarchical organization. METHODS We give particular attention to the recent literature concerning the structural and mechanical influence of collagen intrafibrillar and extrafibrillar mineral in healthy and remineralized tissues. The multilevel hierarchical structure of collagen, and the participation of non-collagenous proteins and proteoglycans in healthy and diseased dentin are also discussed. Furthermore, we provide a forward-looking perspective of emerging topics in biomaterials sciences, such as bioinspired materials design and fabrication, 3D bioprinting and microfabrication, and briefly discuss recent developments on the emerging field of organs-on-a-chip. RESULTS The existing literature suggests that both the inorganic and organic nanostructural components of the dentin matrix play a critical role in various mechanisms that influence tissue properties. SIGNIFICANCE An in-depth understanding of such nanostructural and nanomechanical mechanisms can have a direct impact in our ability to evaluate and predict the efficacy of dental materials. This knowledge will pave the way for the development of improved dental materials and treatment strategies. CONCLUSIONS Development of future dental materials should take into consideration the intricate hierarchical organization of dentin, and pay particular attention to their complex interaction with the dentin matrix on a nanometer scale.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, School of Medicine, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, Portland, OR, USA.
| |
Collapse
|
38
|
Wang H, Zhang G, Ma X, Liu Y, Feng J, Park K, Wang W. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques. Eur J Pharm Biopharm 2017; 115:177-185. [DOI: 10.1016/j.ejpb.2017.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2017] [Accepted: 02/28/2017] [Indexed: 02/01/2023]
|
39
|
Bussi Y, Holtzman L, Shagan A, Segal E, Mizrahi B. Light-triggered antifouling coatings for porous silicon optical transducers. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.3989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yonit Bussi
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
- Russell Berrie Nanotechnology Institute; Technion - Israel Institute of Technology; Haifa 32000 Israel
| | - Liran Holtzman
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
| | - Alona Shagan
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
- Russell Berrie Nanotechnology Institute; Technion - Israel Institute of Technology; Haifa 32000 Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
| |
Collapse
|
40
|
Shin CS, Marcano DC, Park K, Acharya G. Application of Hydrogel Template Strategy in Ocular Drug Delivery. Methods Mol Biol 2017; 1570:279-285. [PMID: 28238144 DOI: 10.1007/978-1-4939-6840-4_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The hydrogel template strategy was previously developed to fabricate homogeneous polymeric microparticles. Here, we demonstrate the versatility of the hydrogel template strategy for the development of nanowafer-based ocular drug delivery systems. We describe the fabrication of dexamethasone-loaded nanowafers using polyvinyl alcohol and the instillation of a nanowafer on a mouse eye. The nanowafer, a small circular disk, is placed on the ocular surface, and it releases a drug as it slowly dissolves over time, thus increasing ocular bioavailability and enhancing efficiency to treat eye injuries.
Collapse
Affiliation(s)
- Crystal S Shin
- Ocular Nanomedicine Research Laboratory, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniela C Marcano
- Ocular Nanomedicine Research Laboratory, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kinam Park
- Industrial and Physical Pharmacy and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Ghanashyam Acharya
- Ocular Nanomedicine Research Laboratory, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Lee BK, Yun Y, Park K. PLA micro- and nano-particles. Adv Drug Deliv Rev 2016; 107:176-191. [PMID: 27262925 DOI: 10.1016/j.addr.2016.05.020] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/24/2016] [Indexed: 01/05/2023]
Abstract
Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are widely used as controlled drug delivery systems of therapeutic molecules, including proteins, genes, vaccines, and anticancer drugs. Even though PLA-based particles have challenges to overcome, such as low drug loading capacity, low encapsulation efficiency, and terminal sterilization, continuous innovations in particulate formulations will lead to development of clinically useful formulations.
Collapse
|
42
|
Samarasinghe SAPL, Shao Y, Huang PJ, Pishko M, Chu KH, Kameoka J. Fabrication of Bacteria Environment Cubes with Dry Lift-Off Fabrication Process for Enhanced Nitrification. PLoS One 2016; 11:e0165839. [PMID: 27812154 PMCID: PMC5094588 DOI: 10.1371/journal.pone.0165839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
We have developed a 3D dry lift-off process to localize multiple types of nitrifying bacteria in polyethylene glycol diacrylate (PEGDA) cubes for enhanced nitrification, a two-step biological process that converts ammonium to nitrite and then to nitrate. Ammonia-oxidizing bacteria (AOB) is responsible for converting ammonia into nitrite, and nitrite-oxidizing bacteria (NOB) is responsible for converting nitrite to nitrate. Successful nitrification is often challenging to accomplish, in part because AOB and NOB are slow growers and highly susceptible to many organic and inorganic chemicals in wastewater. Most importantly, the transportation of chemicals among scattered bacteria is extremely inefficient and can be problematic. For example, nitrite, produced from ammonia oxidation, is toxic to AOB and can lead to the failure of nitrification. To address these challenges, we closely localize AOB and NOB in PEGDA cubes as microenvironment modules to promote synergetic interactions. The AOB is first localized in the vicinity of the surface of the PEGDA cubes that enable AOB to efficiently uptake ammonia from a liquid medium and convert it into nitrite. The produced nitrite is then efficiently transported to the NOB localized at the center of the PEGDA particle and converted into non-toxic nitrate. Additionally, the nanoscale PEGDA fibrous structures offer a protective environment for these strains, defending them from sudden toxic chemical shocks and immobilize in cubes. This engineered microenvironment cube significantly enhances nitrification and improves the overall ammonia removal rate per single AOB cell. This approach—encapsulation of multiple strains at close range in cube in order to control their interactions—not only offers a new strategy for enhancing nitrification, but also can be adapted to improve the production of fermentation products and biofuel, because microbial processes require synergetic reactions among multiple species.
Collapse
Affiliation(s)
- S. A. P. L. Samarasinghe
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Yiru Shao
- Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Po-Jung Huang
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Michael Pishko
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Jun Kameoka
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, United States of America
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Patra S, Ravulapalli S, Hahm MG, Tadi KK, Narayanan TN. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white. NANOTECHNOLOGY 2016; 27:415603. [PMID: 27608886 DOI: 10.1088/0957-4484/27/41/415603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.
Collapse
Affiliation(s)
- Sudeshna Patra
- TIFR-Centre for Interdisciplinary Sciences (TCIS), Tata Institute of Fundamental Research, Hyderabad-500075, India
| | | | | | | | | |
Collapse
|
44
|
Marcano DC, Shin CS, Lee B, Isenhart LC, Liu X, Li F, Jester JV, Pflugfelder SC, Simpson J, Acharya G. Synergistic Cysteamine Delivery Nanowafer as an Efficacious Treatment Modality for Corneal Cystinosis. Mol Pharm 2016; 13:3468-3477. [PMID: 27571217 DOI: 10.1021/acs.molpharmaceut.6b00488] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A synergy between the polymer biomaterial and drug plays an important role in enhancing the therapeutic efficacy, improving the drug stability, and minimizing the local immune responses in the development of drug delivery systems. Particularly, in the case of ocular drug delivery, the need for the development of synergistic drug delivery system becomes more pronounced because of the wet ocular mucosal surface and highly innervated cornea, which elicit a strong inflammatory response to the instilled drug formulations. This article presents the development of a synergistic cysteamine delivery nanowafer to treat corneal cystinosis. Corneal cystinosis is a rare metabolic disease that causes the accumulation of cystine crystals in the cornea resulting in corneal opacity and loss of vision. It is treated with topical cysteamine (Cys) eye drops that need to be instilled 6-12 times a day throughout the patient's life, which causes side effects such as eye pain, redness, and ocular inflammation. As a result, compliance and treatment outcomes are severely compromised. To surmount these issues, we have developed a clinically translatable Cys nanowafer (Cys-NW) that can be simply applied on the eye with a fingertip. During the course of the drug release, Cys-NW slowly dissolves and fades away. The in vivo studies in cystinosin knockout mice demonstrated twice the therapeutic efficacy of Cys-NW containing 10 μg of Cys administered once a day, compared to 44 μg of Cys as topical eye drops administered twice a day. Furthermore, Cys-NW stabilizes Cys for up to four months at room temperature compared to topical Cys eye drops that need to be frozen or refrigerated and still remain active for only 1 week. The Cys-NW, because of its enhanced therapeutic efficacy, safety profile, and extended drug stability at room temperature, can be rapidly translated to the clinic for human trials.
Collapse
Affiliation(s)
- Daniela C Marcano
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas 77054, United States
| | - Crystal S Shin
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas 77054, United States
| | - Briana Lee
- Department of Ophthalmology, University of California , Irvine, California 92697, United States
| | - Lucas C Isenhart
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas 77054, United States
| | - Xing Liu
- Metabolomics Core Facility, Baylor College of Medicine , Houston, Texas 77054, United States
| | - Feng Li
- Metabolomics Core Facility, Baylor College of Medicine , Houston, Texas 77054, United States
| | - James V Jester
- Department of Ophthalmology, University of California , Irvine, California 92697, United States
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas 77054, United States
| | - Jennifer Simpson
- Department of Ophthalmology, University of California , Irvine, California 92697, United States
| | - Ghanashyam Acharya
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas 77054, United States
| |
Collapse
|
45
|
|
46
|
Controlled Release of Nor-β-lapachone by PLGA Microparticles: A Strategy for Improving Cytotoxicity against Prostate Cancer Cells. Molecules 2016; 21:molecules21070873. [PMID: 27384551 PMCID: PMC6273703 DOI: 10.3390/molecules21070873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-β-lapachone (NβL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NβL on PLGA. Finally, the cytotoxic activity of NβL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.
Collapse
|
47
|
Han FY, Thurecht KJ, Whittaker AK, Smith MT. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading. Front Pharmacol 2016; 7:185. [PMID: 27445821 PMCID: PMC4923250 DOI: 10.3389/fphar.2016.00185] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/11/2016] [Indexed: 01/07/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide.
Collapse
Affiliation(s)
- Felicity Y. Han
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbane, QLD, Australia
- Centre for Advanced Imaging, The University of QueenslandBrisbane, QLD, Australia
- ARC Centre of Excellence in Convergent BioNano Science and TechnologyBrisbane, QLD, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbane, QLD, Australia
- ARC Centre of Excellence in Convergent BioNano Science and TechnologyBrisbane, QLD, Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
- School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
48
|
Abstract
Physical forms of microparticles and nanoparticles, such as the size, charge, and shape, are known to affect endocytosis. Improving the physical designs of the drug carriers can increase the drug uptake efficiency and the subsequent drug efficacy. Simple shapes, such as sphere and cylinder, have been studied for their ability for endocytosis. To have a better understanding of the shape effect on cellular uptake, different particle shapes were prepared, using the keyboard character shapes, and their impacts on cellular uptake were examined. The results showed that shapes with higher aspect ratios and sharper angular features have a higher chance of adhering to the cells and become internalized by the cancer cells. The local interaction between the cell membrane and the part of the microparticle in contact with the cell membrane also plays a crucial role in determining the outcome.
Collapse
Affiliation(s)
- Yuanzu He
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University , West Lafayette, Indiana 47907, United States
| | - Kinam Park
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
49
|
Ramazani F, Chen W, van Nostrum CF, Storm G, Kiessling F, Lammers T, Hennink WE, Kok RJ. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int J Pharm 2016; 499:358-367. [DOI: 10.1016/j.ijpharm.2016.01.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/27/2022]
|
50
|
Key J, Palange AL, Gentile F, Aryal S, Stigliano C, Di Mascolo D, De Rosa E, Cho M, Lee Y, Singh J, Decuzzi P. Soft Discoidal Polymeric Nanoconstructs Resist Macrophage Uptake and Enhance Vascular Targeting in Tumors. ACS NANO 2015; 9:11628-41. [PMID: 26488177 DOI: 10.1021/acsnano.5b04866] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Most nanoparticles for biomedical applications originate from the self-assembling of individual constituents through molecular interactions and possess limited geometry control and stability. Here, 1000 × 400 nm discoidal polymeric nanoconstructs (DPNs) are demonstrated by mixing hydrophobic and hydrophilic polymers with lipid chains and curing the resulting paste directly within silicon templates. By changing the paste composition, soft- and rigid-DPNs (s- and r-DPNs) are synthesized exhibiting the same geometry, a moderately negative surface electrostatic charge (-14 mV), and different mechanical stiffness (∼1.3 and 15 kPa, respectively). Upon injection in mice bearing nonorthotopic brain or skin cancers, s-DPNs exhibit ∼24 h circulation half-life and accumulate up to ∼20% of the injected dose per gram tumor, detecting malignant masses as small as ∼0.1% the animal weight via PET imaging. This unprecedented behavior is ascribed to the unique combination of geometry, surface properties, and mechanical stiffness which minimizes s-DPN sequestration by the mononuclear phagocyte system. Our results could boost the interest in using less conventional delivery systems for cancer theranosis.
Collapse
Affiliation(s)
- Jaehong Key
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
- Department of Biomedical Engineering, Yonsei University , 1 Yonseidae-gil, Wonju, Gangwon-do 220-710, South Korea
| | - Anna Lisa Palange
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) , via Morego 30, Genova I16163, Italy
| | - Francesco Gentile
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) , via Morego 30, Genova I16163, Italy
| | - Santosh Aryal
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
- Department of Chemistry, Nanotechnology Innovation Center of Kansas State, Kansas State University , Manhattan, Kansas 66506, United States
| | - Cinzia Stigliano
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) , via Morego 30, Genova I16163, Italy
| | - Enrica De Rosa
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Minjung Cho
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Yeonju Lee
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Jaykrishna Singh
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Paolo Decuzzi
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
- Department of Experimental and Clinical Medicine, University of Magna Graecia , Catanzaro 88100, Italy
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) , via Morego 30, Genova I16163, Italy
| |
Collapse
|