1
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
2
|
Dissanayake R, Combita D, Ahmed M. Enhanced Cryopreservation Efficacies of Ice Recrystallization Inhibiting Nanogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45689-45700. [PMID: 37729594 DOI: 10.1021/acsami.3c10369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Development of new cryopreservation technologies holds significant potential to revolutionize the fields of cell culture, tissue engineering, assisted reproduction, and transfusion medicine. The current gold standard small-cell permeating cryopreservation agents (CPAs) demonstrate promising cryopreservation efficacies but are cytotoxic and immunogenic at the concentrations required for cryopreservation applications. In comparison, new cell impermeable CPAs of nanodimensions demonstrate outstanding potential to overcome the drawbacks of existing CPAs. In this study, we report the synthesis of vitamin B5 analogous methacrylamide (B5AMA)-incorporated nanogels as a potential solution to address the commonly observed limitations of existing CPAs. The stimuli-responsive poly(B5AMA) nanogels prepared by radical polymerization demonstrated significant ice recrystallization inhibition efficacies and showed either superior or comparable cryopreservation efficacies compared to the traditional cryoprotectant DMSO/glycerol in both eukaryotic and prokaryotic cells.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island 550 University Ave. Charlottetown, Prince Edward C1A 4P3, Canada
| | - Diego Combita
- Department of Chemistry, University of Prince Edward Island 550 University Ave. Charlottetown, Prince Edward C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island 550 University Ave. Charlottetown, Prince Edward C1A 4P3, Canada
- Faculty of Sustainable Design Engineering, University of Prince Edward Island 550 University Ave. Charlottetown, Prince Edward C1A 4P3, Canada
| |
Collapse
|
3
|
Bhave G, Chen JC, Singer A, Sharma A, Robinson JT. Distributed sensor and actuator networks for closed-loop bioelectronic medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 46:125-135. [PMID: 34366697 PMCID: PMC8336425 DOI: 10.1016/j.mattod.2020.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Designing implantable bioelectronic systems that continuously monitor physiological functions and simultaneously provide personalized therapeutic solutions for patients remains a persistent challenge across many applications ranging from neural systems to bioelectronic organs. Closed-loop systems typically consist of three functional blocks, namely, sensors, signal processors and actuators. An effective system, that can provide the necessary therapeutics, tailored to individual physiological factors requires a distributed network of sensors and actuators. While significant progress has been made, closed-loop systems still face many challenges before they can truly be considered as long-term solutions for many diseases. In this review, we consider three important criteria where materials play a critical role to enable implantable closed-loop systems: Specificity, Biocompatibility and Connectivity. We look at the progress made in each of these fields with respect to a specific application and outline the challenges in creating bioelectronic technologies for the future.
Collapse
|
4
|
Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021; 13:357. [PMID: 33800402 PMCID: PMC7999964 DOI: 10.3390/pharmaceutics13030357] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133203, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
5
|
Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 2020; 167:170-188. [PMID: 32622022 DOI: 10.1016/j.addr.2020.06.030] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
The widespread development of nanocarriers to deliver chemotherapeutics to specific tumor sites has been motivated by the lack of selective targeting during chemotherapy inducing serious side effects and low therapeutic efficacy. The utmost challenge in targeted cancer therapies is the ineffective drug delivery system, in which the drug-loaded nanocarriers are hindered by multiple complex biological barriers that compromise the therapeutic efficacy. Despite considerable progress engineering novel nanoplatforms for the delivery of chemotherapeutics, there has been limited success in a clinical setting. In this review, we identify and analyze design strategies for improved therapeutic efficacy and unique properties of nanoplatforms, including liposomes, polymeric micelles, nanogels, and dendrimers. We provide a comprehensive and integral description of key biological barriers that nanoplatforms are exposed to during their in vivo journey and discuss associated strategies to overcome these barriers based on the latest research and information available in the field. We expect this review to provide constructive information for the rational design of more effective nanoplatforms to advance precision therapies and accelerate their clinical translation.
Collapse
|
6
|
Ullah R, Wazir J, Khan FU, Diallo MT, Ihsan AU, Mikrani R, Aquib M, Zhou X. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines. AAPS PharmSciTech 2020; 21:132. [PMID: 32409932 DOI: 10.1208/s12249-020-01691-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023] Open
Abstract
The superiority of nanomedicine over conventional medicines in the treatment of cancer has gained immediate recognition worldwide. As traditional cancer therapies are nonspecific and detrimental to healthy cells, the ability of nanomedicine to release drugs to target tumor cells specifically instead of healthy cells has brought new hope to cancer patients. This review focuses on the effects of various factors of nanoparticles such as transport, concentration in cells, tumor microenvironment, interaction with protein, penetration, uptake by tumor cells, cancer cell mutations, and intracellular trafficking of the nanoparticle. Besides the history of nanomedicine, future perspectives of nanomedicines are also explored in this text.
Collapse
|
7
|
Elkhoury K, Russell C, Sanchez-Gonzalez L, Mostafavi A, Williams T, Kahn C, Peppas NA, Arab-Tehrany E, Tamayol A. Soft-Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications. Adv Healthc Mater 2019; 8:e1900506. [PMID: 31402589 PMCID: PMC6752977 DOI: 10.1002/adhm.201900506] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Indexed: 12/29/2022]
Abstract
Tissue engineering has emerged as an important research area that provides numerous research tools for the fabrication of biologically functional constructs that can be used in drug discovery, disease modeling, and the treatment of diseased or injured organs. From a materials point of view, scaffolds have become an important part of tissue engineering activities and are usually used to form an environment supporting cellular growth, differentiation, and maturation. Among various materials used as scaffolds, hydrogels based on natural polymers are considered one of the most suitable groups of materials for creating tissue engineering scaffolds. Natural hydrogels, however, do not always provide the physicochemical and biological characteristics and properties required for optimal cell growth. This review discusses the properties and tissue engineering applications of widely used natural hydrogels. In addition, methods of modulation of their physicochemical and biological properties using soft nanoparticles as fillers or reinforcing agents are presented.
Collapse
Affiliation(s)
| | - Carina Russell
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | | | | | - Tyrell Williams
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Cyril Kahn
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | - Nicholas A. Peppas
- Departments of Biomedical and Chemical Engineering, Departments of Pediatrics and Surgery, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
- Mary and Dick Holland Regenerative Medicine Program University of Nebraska-Medical Center, Omaha, NE, 68198
| |
Collapse
|
8
|
Caldorera-Moore M, Vela Ramirez JE, Peppas NA. Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. J Drug Target 2019; 27:582-589. [PMID: 30457357 PMCID: PMC6522304 DOI: 10.1080/1061186x.2018.1547732] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
Whereas significant advancements have been made in our fundamental understanding of cancer, they have not yet translated into effective clinical cancer treatments. One of the areas that has the potential to improve the efficacy of cancer therapies is the development of novel drug delivery technologies. In particular, the design of pH-sensitive polymeric complexation hydrogels may allow for targeted oral delivery of a wide variety of chemotherapeutic drugs and proteins. In this work, poly(methacrylic acid-grafted-ethylene glycol) hydrogel nanoparticles were synthesised, characterised, and studied as matrix-type, diffusion-controlled, pH-responsive carriers to enable the oral delivery of the chemotherapeutic agent interferon alpha (IFN-α). The biophysical mechanisms controlling the transport of IFN-α were investigated using a Caco-2/HT29-MTX co-culture as a gastrointestinal (GI) tract model. The synthesised nanoparticles exhibited pH-responsive swelling behaviour and allowed the permeation of IFN-α through the tight junctions of the developed cellular GI epithelium model. These studies demonstrate the capabilities of these particles to contribute to the improved oral delivery of protein chemotherapeutics.
Collapse
Affiliation(s)
- Mary Caldorera-Moore
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272
| | - Julia E. Vela Ramirez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
9
|
Liechty WB, Scheuerle RL, Vela Ramirez JE, Peppas NA. Cytoplasmic delivery of functional siRNA using pH-Responsive nanoscale hydrogels. Int J Pharm 2019; 562:249-257. [PMID: 30858114 DOI: 10.1016/j.ijpharm.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
The progress of short interfering RNA (siRNA) technologies has unlocked the development of novel alternatives for the treatment of a myriad of diseases, including viral infections, autoimmune disorders, or cancer. Nevertheless, the clinical use of these therapies faces significant challenges, mainly overcoming the charged and large nature of these molecules to effectively enter the cell. In this work, we developed a cationic polymer nanoparticle system that is able to load siRNA due to electrostatic interactions. The pH-responsiveness and membrane-disrupting ability of these carriers make them suitable intracellular delivery vehicles. In the work presented herein we synthesized, characterized, and evaluated the properties of nanoparticles based on 2-diethylaminoethyl methacrylate and tert-butyl methacrylate copolymers. A disulfide crosslinker was incorporated in the nanogels to enable the degradation of the nanoparticles in reductive environments, showing no significant changes on their physicochemical properties. The capability of the developed nanogels to be internalized, deliver siRNA, and induce gene knockdown were demonstrated using a human epithelial colorectal adenocarcinoma cell line. Overall, these findings suggest that this platform exhibits desirable characteristics as a potential siRNA-delivery platform.
Collapse
Affiliation(s)
- William B Liechty
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rebekah L Scheuerle
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Julia E Vela Ramirez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Liechty WB, Scheuerle RL, Vela Ramirez JE, Peppas NA. Uptake and function of membrane-destabilizing cationic nanogels for intracellular drug delivery. Bioeng Transl Med 2019; 4:17-29. [PMID: 30680315 PMCID: PMC6336667 DOI: 10.1002/btm2.10120] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
The design of intracellular drug delivery vehicles demands an in-depth understanding of their internalization and function upon entering the cell to tailor the physicochemical characteristics of these platforms and achieve efficacious treatments. Polymeric cationic systems have been broadly accepted to be membrane disruptive thus being beneficial for drug delivery inside the cell. However, if excessive destabilization takes place, it can lead to adverse effects. One of the strategies used to modulate the cationic charge is the incorporation of hydrophobic moieties, thus increasing the hydrophobic content. We have demonstrated the successful synthesis of nanogels based on diethylaminoethyl methacrylate and poly(ethylene glycol) methyl ether methacrylate. Addition of the hydrophobic monomers tert-butyl methacrylate or 2-(tert-butylamino)ethyl methacrylate shows improved polymer hydrophobicity and modulation of the critical swelling pH. Here, we evaluate the cytocompatibility, uptake, and function of these membrane-destabilizing cationic methacrylated nanogels using in vitro models. The obtained results suggest that the incorporation of hydrophobic monomers decreases the cytotoxicity of the nanogels to epithelial colorectal adenocarcinoma cells. Furthermore, analysis of the internalization pathways of these vehicles using inhibitors and imaging flow cytometry showed a significant decrease in uptake when macropinocytosis/phagocytosis inhibitors were present. The membrane-disruptive abilities of the cationic polymeric nanogels were confirmed using three different models. They demonstrated to cause hemolysis in sheep erythrocytes, lactate dehydrogenase leakage from a model cell line, and disrupt giant unilamellar vesicles. These findings provide new insights of the potential of polymeric nanoformulations for intracellular delivery.
Collapse
Affiliation(s)
- William B. Liechty
- McKetta Dept. of Chemical EngineeringThe University of Texas at AustinAustinTX 78712
| | - Rebekah L. Scheuerle
- McKetta Dept. of Chemical EngineeringThe University of Texas at AustinAustinTX 78712
| | - Julia E. Vela Ramirez
- McKetta Dept. of Chemical EngineeringThe University of Texas at AustinAustinTX 78712
- Dept. of Biomedical EngineeringThe University of Texas at AustinAustinTX 78712
- Institute for Biomaterials, Drug Delivery, and Regenerative MedicineThe University of Texas at AustinAustinTX 78712
| | - Nicholas A. Peppas
- McKetta Dept. of Chemical EngineeringThe University of Texas at AustinAustinTX 78712
- Dept. of Biomedical EngineeringThe University of Texas at AustinAustinTX 78712
- Institute for Biomaterials, Drug Delivery, and Regenerative MedicineThe University of Texas at AustinAustinTX 78712
- Depts. of Surgery and Perioperative CareDell Medical School, The University of Texas at AustinAustinTX 78712
- Division of Molecular Pharmaceutics and Drug DeliveryCollege of Pharmacy, The University of Texas at AustinAustinTX 78712
| |
Collapse
|
11
|
Structural and molecular response in cyclodextrin-based pH-sensitive hydrogels by the joint use of Brillouin, UV Raman and Small Angle Neutron Scattering techniques. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018; 8:147-164. [PMID: 29719776 PMCID: PMC5925450 DOI: 10.1016/j.apsb.2018.01.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins and peptides have revolutionized treatment for a number of diseases, and the expected increase in macromolecule-based therapies brings a new set of challenges for the pharmaceutics field. Due to their poor stability, large molecular weight, and poor transport properties, therapeutic proteins and peptides are predominantly limited to parenteral administration. The short serum half-lives typically require frequent injections to maintain an effective dose, and patient compliance is a growing issue as therapeutic protein treatments become more widely available. A number of studies have underscored the relationship of subcutaneous injections with patient non-adherence, estimating that over half of insulin-dependent adults intentionally skip injections. The development of oral formulations has the potential to address some issues associated with non-adherence including the interference with daily activities, embarrassment, and injection pain. Oral delivery can also help to eliminate the adverse effects and scar tissue buildup associated with repeated injections. However, there are several major challenges associated with oral delivery of proteins and peptides, such as the instability in the gastrointestinal (GI) tract, low permeability, and a narrow absorption window in the intestine. This review provides a detailed overview of the oral delivery route and associated challenges. Recent advances in formulation and drug delivery technologies to enhance bioavailability are discussed, including the co-administration of compounds to alter conditions in the GI tract, the modification of the macromolecule physicochemical properties, and the use of improved targeted and controlled release carriers.
Collapse
Affiliation(s)
- Angela M. Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Margaret P. Gran
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author at: McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA. Tel.: +1 512 471 6644; fax: +1 512 471 8227.
| |
Collapse
|
13
|
Abstract
The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Abstract
The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Bottari C, Comez L, Corezzi S, D'Amico F, Gessini A, Mele A, Punta C, Melone L, Pugliese A, Masciovecchio C, Rossi B. Correlation between collective and molecular dynamics in pH-responsive cyclodextrin-based hydrogels. Phys Chem Chem Phys 2017; 19:22555-22563. [DOI: 10.1039/c7cp04190j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The joint use of UV Raman and Brillouin scattering experiments is employed to explore phase evolutions in pH-responsive polysaccharide hydrogels.
Collapse
Affiliation(s)
- C. Bottari
- Elettra – Sincrotrone Trieste
- 34149 Trieste
- Italy
- Department of Physics
- University of Trieste
| | - L. Comez
- IOM-CNR c/o Department of Physics and Geology
- University of Perugia
- 06123 Perugia
- Italy
| | - S. Corezzi
- Department of Physics and Geology
- University of Perugia
- 06123 Perugia
- Italy
| | - F. D'Amico
- Elettra – Sincrotrone Trieste
- 34149 Trieste
- Italy
| | - A. Gessini
- Elettra – Sincrotrone Trieste
- 34149 Trieste
- Italy
| | - A. Mele
- Department of Chemistry
- Materials and Chemical Engineering “G. Natta”
- Politecnico di Milano and INSTM Local Unit
- Milano
- Italy
| | - C. Punta
- Department of Chemistry
- Materials and Chemical Engineering “G. Natta”
- Politecnico di Milano and INSTM Local Unit
- Milano
- Italy
| | - L. Melone
- Department of Chemistry
- Materials and Chemical Engineering “G. Natta”
- Politecnico di Milano and INSTM Local Unit
- Milano
- Italy
| | - A. Pugliese
- Department of Chemistry
- Materials and Chemical Engineering “G. Natta”
- Politecnico di Milano and INSTM Local Unit
- Milano
- Italy
| | | | - B. Rossi
- Elettra – Sincrotrone Trieste
- 34149 Trieste
- Italy
| |
Collapse
|
16
|
Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics. Eur J Pharm Biopharm 2016; 108:196-213. [PMID: 27634646 DOI: 10.1016/j.ejpb.2016.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
pH-responsive, polyanionic nanoscale hydrogels were developed for the oral delivery of hydrophobic therapeutics, such as common chemotherapeutic agents. Nanoscale hydrogels were designed to overcome physicochemical and biological barriers associated with oral delivery of hydrophobic therapeutics such as low solubility and poor permeability due to P-glycoprotein related drug efflux. Synthesis of these nanoscale materials was achieved by a robust photoemulsion polymerization method. By varying hydrophobic monomer components, four formulations were synthesized and screened for optimal physicochemical properties and in vitro biocompatibility. All of the responsive nanoscale hydrogels were capable of undergoing a pH-dependent transition in size. Depending on the selection of the hydrophobic monomer, the sizes of the nanoparticles vary widely from 120nm to about 500nm at pH 7.4. Polymer composition was verified using Fourier transform infrared spectroscopy and 1H-nuclear magnetic resonance spectroscopy. Polymer biocompatibility was assessed in vitro with an intestinal epithelial cell model. All formulations were found to have no appreciable cytotoxicity, defined as greater than 80% viability after polymer incubation. We demonstrate that these nanoscale hydrogels possess desirable physicochemical properties and exhibit agreeable in vitro biocompatibility for oral delivery applications.
Collapse
|
17
|
Khaled SZ, Cevenini A, Yazdi IK, Parodi A, Evangelopoulos M, Corbo C, Scaria S, Hu Y, Haddix SG, Corradetti B, Salvatore F, Tasciotti E. One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials 2016; 87:57-68. [PMID: 26901429 PMCID: PMC4785811 DOI: 10.1016/j.biomaterials.2016.01.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
This report describes a novel, one-pot synthesis of hybrid nanoparticles formed by a nanostructured inorganic silica core and an organic pH-responsive hydrogel shell. This easy-to-perform, oil-in-water emulsion process synthesizes fluorescently-doped silica nanoparticles wrapped within a tunable coating of cationic poly(2-diethylaminoethyl methacrylate) hydrogel in one step. Transmission electron microscopy and dynamic light scattering analysis demonstrated that the hydrogel-coated nanoparticles are uniformly dispersed in the aqueous phase. The formation of covalent chemical bonds between the silica and the polymer increases the stability of the organic phase around the inorganic core as demonstrated by thermogravimetric analysis. The cationic nature of the hydrogel is responsible for the pH buffering properties of the nanostructured system and was evaluated by titration experiments. Zeta-potential analysis demonstrated that the charge of the system was reversed when transitioned from acidic to basic pH and vice versa. Consequently, small interfering RNA (siRNA) can be loaded and released in an acidic pH environment thereby enabling the hybrid particles and their payload to avoid endosomal sequestration and enzymatic degradation. These nanoparticles, loaded with specific siRNA molecules directed towards the transcript of the membrane receptor CXCR4, significantly decreased the expression of this protein in a human breast cancer cell line (i.e., MDA-MB-231). Moreover, intravenous administration of siRNA-loaded nanoparticles demonstrated a preferential accumulation at the tumor site that resulted in a reduction of CXCR4 expression.
Collapse
Affiliation(s)
- Sm Z. Khaled
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Armando Cevenini
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, 80131 Italy
- CEINGE-Biotecnologie Avanzate, s.c.a r.l., Naples, 80145 Italy
| | - Iman K. Yazdi
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Department of Biomedical Engineering, University of Houston, Houston, Texas, 77204 United States
| | - Alessandro Parodi
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Fondazione SDN IRCCS, Naples, 80143 Italy
| | - Michael Evangelopoulos
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Claudia Corbo
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Fondazione SDN IRCCS, Naples, 80143 Italy
| | - Shilpa Scaria
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Ye Hu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Seth G. Haddix
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Bruna Corradetti
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, 60131 Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, s.c.a r.l., Naples, 80145 Italy
- Fondazione SDN IRCCS, Naples, 80143 Italy
| | - Ennio Tasciotti
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| |
Collapse
|
18
|
Caldorera-Moore M, Maass K, Hegab R, Fletcher G, Peppas N. Hybrid responsive hydrogel carriers for oral delivery of low molecular weight therapeutic agents. J Drug Deliv Sci Technol 2015; 30:352-359. [PMID: 26688695 DOI: 10.1016/j.jddst.2015.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogels have been influential in the development of controlled release systems for a wide variety of therapeutic agents. These materials are attractive as carriers for transmucosal and intracellular drug delivery because of their inherent biocompatibility, tunable physicochemical properties, basic synthesis, and ability to be physiologically responsive. Due to their hydrophilic nature, hydrogel-based carrier systems are not always the best systems for delivery of small molecular weight, hydrophobic therapeutic agents. In this work, versatile hydrogel-based carriers composed of copolymers of methyl methacrylate (MMA) and acrylic acid (AA) were designed and synthesized to create formulations for oral delivery of small molecular weight therapeutic agents. Through practical material selection and careful design of copolymer composition and molecular architecture, we engineered systems capable of responding to physiological changes, with tunable physicochemical properties that are optimized to load, protect, and deliver their payloads to their intended site of action. The synthesized carriers' ability to respond to changes in pH, to load and release small molecular weight drugs, and biocompatibility were investigated. Our results suggest these hydrophilic networks have great potential for controlled delivery of small-molecular weight, hydrophobic and hydrophilic agents.
Collapse
Affiliation(s)
- M Caldorera-Moore
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA ; Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA ; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - K Maass
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Hegab
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA
| | - G Fletcher
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - N Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA ; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA ; Division of Pharmaceutics, The University of Texas at Austin, Austin, TX 78712, USA ; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
19
|
Rossi B, Venuti V, D'Amico F, Gessini A, Mele A, Punta C, Melone L, Crupi V, Majolino D, Trotta F, Masciovecchio C. Toward an understanding of the thermosensitive behaviour of pH-responsive hydrogels based on cyclodextrins. SOFT MATTER 2015; 11:5862-5871. [PMID: 26107102 DOI: 10.1039/c5sm01093d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The molecular mechanism responsible for the thermosensitive behaviour exhibited by pH-responsive cyclodextrin-based hydrogels is explored here with the twofold aim of clarifying some basic aspects of H-bond interactions in hydrogel phases and contributing to a future engineering of cyclodextrin hydrogels for targeted delivery and release of bioactive agents. The degree of H-bond association of water molecules entrapped in the gel network and the extent of intermolecular interactions involving the hydrophobic/hydrophilic moieties of the polymer matrix are probed by UV Raman and IR experiments, in order to address the question of how these different and complementary aspects combine to determine the pH-dependent thermal activation exhibited by these hydrogels. Complementary vibrational spectroscopies are conveniently employed in this study with the aim of safely disentangling the spectral response arising from the two main components of the hydrogel systems, i.e. the polymer matrix and water solvent. The experimental evidence suggests that the dominant effects in the mechanism of solvation of cyclodextrin-based hydrogels are due to the changes occurring, upon increasing of temperature, in the hydrophobicity character of specific chemical moieties of the polymer, as triggered by pH variations. The achievements of this work corroborate the potentiality of the UV Raman scattering technique, in combination with more conventional IR experiments, to provide a "molecular view" of complex macroscopic phenomena exhibited in hydrogel phases.
Collapse
Affiliation(s)
- Barbara Rossi
- Elettra-Sincrotrone Trieste, Strada Statale 14 km 163.5, Area Science Park, 34149 Trieste, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Malathi S, Nandhakumar P, Pandiyan V, Webster TJ, Balasubramanian S. Novel PLGA-based nanoparticles for the oral delivery of insulin. Int J Nanomedicine 2015; 10:2207-18. [PMID: 25848248 PMCID: PMC4383223 DOI: 10.2147/ijn.s67947] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Insulin is the drug therapy for patients with insulin-dependent diabetes mellitus. A number of attempts have been made in the past to overcome the problems associated with the oral delivery of insulin, but with little success. Orally administered insulin has encountered with many difficulties such as rapid degradation and poor intestinal absorption. The potential use of D-α-tocopherol poly(ethylene glycol) 1000 succinate (TPGS)-emulsified poly(ethylene glycol) (PEG)-capped poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) was investigated for sustained delivery of insulin (IS). OBJECTIVE To investigate the efficacy of TPGS-emulsified PEG-capped PLGA NPs (TPPLG NPs) as a potential drug carrier for the oral delivery of insulin. METHODS A series of biodegradable low-molecular-weight PLGA (80/20 [PLG4] and 70/30 [PLG6]) copolymers were synthesized by melt polycondensation. The commercial insulin-loaded TPGS-emulsified PEG-capped PLGA NPs (ISTPPLG NPs) were synthesized by water-oil-water emulsion solvent evaporation method. The physical and chemical properties of PLGA copolymers, particle size, zeta potential, and morphology of the NPs were examined. The in vivo studies of ISTPPLG NPs were carried out in diabetic rats by oral administration. RESULTS The maximum encapsulation efficiency of ISTPPLG6 NPs was 78.6% ± 1.2%, and the mean diameter of the NPs was 180 ± 20 nm. The serum glucose level was significantly (twofold) decreased on treatment with ISTPPLG NPs, and there was a threefold decrease with insulin-loaded PLGA (70/30) NPs when compared to that of free insulin-treated diabetic rats. The results show that the oral administration of ISTPPLG6 NPs is an effective method of reducing serum glucose level for a period of 24 hours. Histopathological studies reveal that ISTPPLG NPs could restore the damage caused by streptozotocin in the liver, kidneys, and pancreas, indicating its biocompatibility and regenerative effects. CONCLUSION ISTPPLG6 NPs can act as potential drug carriers for the oral delivery of insulin.
Collapse
Affiliation(s)
- Sampath Malathi
- Department of Inorganic Chemistry, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - Perumal Nandhakumar
- Department of Veterinary Biochemistry, Madras Veterinary College, Chennai, Tamil Nadu, India
| | - Velayudham Pandiyan
- Department of Veterinary Biochemistry, Madras Veterinary College, Chennai, Tamil Nadu, India
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, USA
| | | |
Collapse
|
21
|
Camponeschi F, Atrei A, Rocchigiani G, Mencuccini L, Uva M, Barbucci R. New Formulations of Polysaccharide-Based Hydrogels for Drug Release and Tissue Engineering. Gels 2015; 1:3-23. [PMID: 30674162 PMCID: PMC6318688 DOI: 10.3390/gels1010003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/10/2014] [Accepted: 12/24/2014] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide-based hydrogels are very promising materials for a wide range of medical applications, ranging from tissue engineering to controlled drug delivery for local therapy. The most interesting property of this class of materials is the ability to be injected without any alteration of their chemical, mechanical and biological properties, by taking advantage of their thixotropic behavior. It is possible to modulate the rheological and chemical-physical properties of polysaccharide hydrogels by varying the cross-linking agents and exploiting their thixotropic behavior. We present here an overview of our synthetic strategies and applications of innovative polysaccharide-based hydrogels: hyaluronan-based hydrogel and new derivatives of carboxymethylcellulose have been used as matrices in the field of tissue engineering; while guar gum-based hydrogel and hybrid magnetic hydrogels, have been used as promising systems for targeted controlled drug release. Moreover, a new class of materials, interpenetrating hydrogels (IPH), have been obtained by mixing various native thixotropic hydrogels.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Andrea Atrei
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- Interuniversity Research Centre for Advanced Medical Systems (C.R.I.S.M.A.), Viale Giacomo Matteotti 15/16, 53034 Colle di Val d'Elsa, Italy.
| | - Giulia Rocchigiani
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Lorenzo Mencuccini
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Marianna Uva
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Rolando Barbucci
- Interuniversity Research Centre for Advanced Medical Systems (C.R.I.S.M.A.), Viale Giacomo Matteotti 15/16, 53034 Colle di Val d'Elsa, Italy.
| |
Collapse
|
22
|
Watkins KA, Chen R. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules. Int J Pharm 2015; 478:496-503. [DOI: 10.1016/j.ijpharm.2014.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/14/2023]
|
23
|
Singh A, Peppas NA. Hydrogels and scaffolds for immunomodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6530-41. [PMID: 25155610 PMCID: PMC4269549 DOI: 10.1002/adma.201402105] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/27/2014] [Indexed: 05/17/2023]
Abstract
For over two decades, immunologists and biomaterials scientists have co-existed in parallel world with the rationale of understanding the molecular profile of immune responses to vaccination, implantation, and treating incurable diseases. Much of the field of biomaterial-based immunotherapy has relied on evaluating model antigens such as chicken egg ovalbumin in mouse models but their relevance to humans has been point of much discussion. Nevertheless, such model antigens have provided important insights into the mechanisms of immune regulation and served as a proof-of-concept for plethora of biomaterial-based vaccines. After years of extensive development of numerous biomaterials for immunomodulation, it is only recently that an experimental scaffold vaccine implanted beneath the skin has begun to use the human model to study the immune responses to cancer vaccination by co-delivering patient-derived tumor lysates and immunomodulatory proteins. If successful, this scaffold vaccine will change the way we approached untreatable cancers, but more importantly, will allow a faster and more rational translation of therapeutic regimes to other cancers, chronic infections, and autoimmune diseases. Most materials reviews have focused on immunomodulatory adjuvants and micro-nano-particles. Here we provide an insight into emerging hydrogel and scaffold based immunomodulatory approaches that continue to demonstrate efficacy against immune associated diseases.
Collapse
Affiliation(s)
- Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering, Department of Biomedical Engineering and College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
24
|
Abstract
INTRODUCTION Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. AREAS COVERED This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. EXPERT OPINION Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest.
Collapse
Affiliation(s)
- Lindsey A Sharpe
- The University of Texas, Department of Biomedical Engineering , Austin, TX 78712 , USA +1 512 471 6644 ; +1 512 471 8227 ;
| | | | | | | |
Collapse
|
25
|
Xiong XY, Li QH, Li YP, Guo L, Li ZL, Gong YC. Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery. Colloids Surf B Biointerfaces 2013; 111:282-8. [DOI: 10.1016/j.colsurfb.2013.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
|
26
|
Forbes D, Creixell M, Frizzell H, Peppas N. Polycationic nanoparticles synthesized using ARGET ATRP for drug delivery. Eur J Pharm Biopharm 2013; 84:472-8. [DOI: 10.1016/j.ejpb.2013.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 01/07/2023]
|
27
|
Differences in molecular structure in cross-linked polycationic nanoparticles synthesized using ARGET ATRP or UV-initiated polymerization. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
|
29
|
Li H, Yu Y, Faraji Dana S, Li B, Lee CY, Kang L. Novel engineered systems for oral, mucosal and transdermal drug delivery. J Drug Target 2013; 21:611-29. [PMID: 23869879 DOI: 10.3109/1061186x.2013.805335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.
Collapse
Affiliation(s)
- Hairui Li
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
30
|
Longo GS, Olvera de la Cruz M, Szleifer I. pH-controlled nanoaggregation in amphiphilic polymer co-networks. ACS NANO 2013; 7:2693-2704. [PMID: 23438375 DOI: 10.1021/nn400130c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Domain formation and control in pH-responsive amphiphilic polymer co-networks are studied theoretically. Two different molecular architectures of the polymer network are considered, depending on whether the pH-sensitive motif is borne by the hydrophobic or the hydrophilic monomer. When the hydrophobic polymer contains acidic groups, such chains form nanometric aggregates at acidic conditions, but they are found in a swollen state at alkaline pH. At intermediate pH, the nanoaggregation behavior of the hydrophobic polymer depends critically on the environment salt concentration. Moreover, our results indicate the presence of microphase separation into domains of swollen and aggregated hydrophobic chains. If the hydrophilic polymer is the ionizable component of the network, the nanoaggregation of hydrophobic monomers is weakly dependent on the pH and salt concentration, and except at very low volume fraction, the aggregate is the most probable conformation of the network in the entire range of pH and salt concentration studied. The two different hydrogels display quantitatively similar swelling transition and apparent pKa, but at the nanoscale, their behavior is qualitatively different. The spatial distribution of electric charge on the network as well as the local density of the different chemical species within the hydrogel can be controlled, as a function of pH and salt concentration, by the molecular architecture of the polymer network. These findings have relevance for applications in biomaterials and nanotechnology, in particular, in the design of oral delivery devices for the administration of hydrophobic drugs.
Collapse
Affiliation(s)
- Gabriel S Longo
- Department of Materials Science and Engineering, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | | | | |
Collapse
|
31
|
|
32
|
A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 2012; 48:416-27. [PMID: 23262059 DOI: 10.1016/j.ejps.2012.12.006] [Citation(s) in RCA: 516] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/25/2012] [Accepted: 12/06/2012] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment provides unique challenges for the delivery of chemotherapeutic agents in doses that are effective while ensuring minimal systemic toxicity. The primary limitation of current therapeutics is a lack of specificity in delivery, as they target healthy and cancerous cells alike. The development of nanoscale carriers capable of delivering cancer therapies has the potential to overcome both systemic and tumor barriers and provide specific, targeted delivery. This review seeks to provide an overview of available nanoscale drug carriers by exploring the wide variety of developed nanostructures and the most commonly used moieties for targeted delivery. Additionally, the use of nanoscale carriers will be motivated by examining tumor physiology and the specific barriers present within both the tumor microenvironment and systemic delivery.
Collapse
|
33
|
Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 2012; 14:83-93. [PMID: 22301396 DOI: 10.1007/s12094-012-0766-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conventional anticancer drugs display significant shortcomings which limit their use in cancer therapy. For this reason, important progress has been achieved in the field of nanotechnology to solve these problems and offer a promising and effective alternative for cancer treatment. Nanoparticle drug delivery systems exploit the abnormal characteristics of tumour tissues to selectively target their payloads to cancer cells, either by passive, active or triggered targeting. Additionally, nanoparticles can be easily tuned to improve their properties, thereby increasing the therapeutic index of the drug. Liposomes, polymeric nanoparticles, polymeric micelles and polymer- or lipid-drug conjugate nanoparticles incorporating cytotoxic therapeutics have been developed; some of them are already on the market and others are under clinical and preclinical research. However, there is still much research to be done to be able to defeat the limitations of traditional anticancer therapy. This review focuses on the potential of nanoparticle delivery systems in cancer treatment and the current advances achieved.
Collapse
|
34
|
Zhou W, Lu P, Sun L, Ji C, Dong J. Diffusion and binding of 5-fluorouracil in non-ionic hydrogels with interpolymer complexation. Int J Pharm 2012; 431:53-60. [PMID: 22531850 DOI: 10.1016/j.ijpharm.2012.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/24/2012] [Accepted: 04/08/2012] [Indexed: 12/25/2022]
Abstract
Hydrogen-bonded interpolymer complexes can be used for development of novel dosage forms. In this study, two types of crosslinked hydrogels, copolymer networks of N-vinyl pyrrolidone and acrylamide (PVP-co-PAM) and interpenetrating polymer networks (IPN) composed of crosslinked PVP-co-PAM and poly(vinyl alcohol) (PVA), were synthesized at three different degrees of crosslinking. The side chain groups in such polymers can form non-ionic complexes through H-bonding, resulting in additional "crosslinks" in the hydrogels. Both kinds of hydrogels have significantly larger swelling sensitivities than the networks formed with ionizable side chains. In the IPNs, introduction of the PVA chains into the PVP-co-PAM networks raises the permeability, indicating more open pores. The permeability decreases with the increasing degree of crosslinking of the copolymer. For probing the drug binding in the hydrogels, Fourier transform infrared spectra (FTIR) difference spectroscopy indicated the presence of significant H-bonding interactions between 5-fluorouracil (5-FU) and the side chains of the polymers. Such interactions are larger in the PVP-co-PAM copolymers than in the IPN hydrogels, thereby causing an additional source of the slower release kinetics in the copolymer hydrogels as revealed by the Peppas model, albeit both types of the networks followed a non-Fickian transport mechanism.
Collapse
Affiliation(s)
- Wenbin Zhou
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | | | | | | | | |
Collapse
|
35
|
Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res 2011; 44:1061-70. [PMID: 21932809 DOI: 10.1021/ar2001777] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For decades, researchers and medical professionals have aspired to develop mechanisms for noninvasive treatment and monitoring of pathological conditions within the human body. The emergence of nanotechnology has spawned new opportunities for novel drug delivery vehicles capable of concomitant detection, monitoring, and localized treatment of specific disease sites. In turn, researchers have endeavored to develop an imaging moiety that could be functionalized to seek out specific diseased conditions and could be monitored with conventional clinical imaging modalities. Such nanoscale detection systems have the potential to increase early detection of pathophysiological conditions because they can detect abnormal cells before they even develop into diseased tissue or tumors. Ideally, once the diseased cells are detected, clinicians would like to treat those cells simultaneously. This idea led to the concept of multifunctional carriers that could target, detect, and treat diseased cells. The term "theranostics" has been created to describe this promising area of research that focuses on the combination of diagnostic detection agents with therapeutic drug delivery carriers. Targeted theranostic nanocarriers offer an attractive improvement to disease treatment because of their ability to execute simultaneous functions at targeted diseased sites. Research efforts in the field of theranostics encompass a broad variety of drug delivery vehicles, imaging contrast agents, and targeting modalities for the development of an all-in-one, localized detection and treatment system. Nanotheranostic systems that utilize metallic or magnetic imaging nanoparticles can also be used as thermal therapeutic systems. This Account explores recent advances in the field of nanotheranostics and the various fundamental components of an effective theranostic carrier.
Collapse
Affiliation(s)
- Mary E. Caldorera-Moore
- Department of Chemical Engineering, ‡Department of Biomedical Engineering, and §College of PharmacyThe University of Texas at Austin, Austin, Texas 78712, United States
| | - William B. Liechty
- Department of Chemical Engineering, ‡Department of Biomedical Engineering, and §College of PharmacyThe University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A. Peppas
- Department of Chemical Engineering, ‡Department of Biomedical Engineering, and §College of PharmacyThe University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
36
|
Schoener CA, Hutson HN, Fletcher GK, Peppas NA. Amphiphilic Interpenetrating Networks for the Delivery of Hydrophobic, Low Molecular Weight Therapeutic Agents. Ind Eng Chem Res 2011; 50:12556-12561. [PMID: 22247592 DOI: 10.1021/ie201593h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To investigate the delivery of hydrophobic therapeutic agents, a novel class of interpenetrating networks (IPNs) were synthesized and composed of two networks: methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG), and poly(n-butyl acrylate) (PBA). The hydrophilic P(MAA-g-EG) networks are pH-responsive hydrogels capable of triggered release of an encapsulated therapeutic agent, such as a low molecular weight drug or a protein, when it passes from the stomach (low pH) to upper small intestine (neutral pH). PBA is a hydrophobic homopolymer that can affect the IPN swelling behavior, the therapeutic agent loading efficiencies in IPNs, and solute release profiles from IPNs. In dynamic swelling conditions, IPNs had greater swelling ratios than P(MAA-g-EG), but in equilibrium swelling conditions the IPN swelling ratio decreased with increasing PBA content. Loading efficiencies of the model therapeutic agent fluorescein ranged from 21 - 44%. Release studies from neat P(MAA-g-EG) and the ensuing IPNs indicated that the transition from low pH (2.0) to neutral pH (7.0) triggered fluorescein release. Maximum fluorescein release depended on the structure and hydrophilicity of the carriers used in these studies.
Collapse
Affiliation(s)
- Cody A Schoener
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
37
|
Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm 2011; 80:241-6. [PMID: 21888972 DOI: 10.1016/j.ejpb.2011.08.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 12/11/2022]
Abstract
Polymeric nanoparticles are emerging as an attractive treatment options for cancer due to their favorable size distribution, drug carrying capacity, and tunable properties. In particular, intelligent nanoparticles that respond to biological cues are of interest because of their ability to provide controlled release at a specific site. Tumor sites display abnormal pH profiles and pathophysiology that can be exploited to provide localized release. In this expert opinion, we discuss passive and active targeting of nanoparticles and several classes of pH-responsive nanoparticles.
Collapse
|