1
|
Taseva AR, Persoons T, Healy AM, D'Arcy DM. Application of shadowgraph imaging (SGI) particle characterisation data to interpret the impact of varying test conditions on powder dissolution and to develop an automated agglomeration identification method (AIM) in the USP flow-through apparatus. Int J Pharm 2024; 666:124778. [PMID: 39349225 DOI: 10.1016/j.ijpharm.2024.124778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The aims of this work were 1) to explore the application of shadowgraph imaging (SGI) as a real time monitoring tool to characterize ibuprofen particle behaviour during dissolution testing under various conditions in the USP 4 flow-through apparatus and 2) to investigate the potential to develop an SGI-based automated agglomeration identification method (AIM) for real time agglomerate detection during dissolution testing. The effect of surfactant addition, changes in the drug mass and flow rate, the use of sieved and un-sieved powder fractions, and the use of different drug crystal habits were investigated. Videos at every sampling time point during dissolution were taken and analysed by SGI. The AIM was developed to characterize agglomerates based on two criteria - size and solidity. All detections were confirmed by manual video observation and a reference agglomerate data set. The method was validated under new dissolution conditions with un-sieved particles. Characterisation of particle dispersion behaviour by SGI enabled interpretation of the impact of dissolution test conditions. Higher numbers of early detections reflected greater dissolution rates with increased surfactant concentration, using sieved fraction or plate-shaped crystals, but was impacted by drug mass tested. An AIM was successfully developed and applied to detect agglomerates during dissolution, suggesting potential, with appropriate method development, for application in quality control.
Collapse
Affiliation(s)
- Alexandra R Taseva
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| |
Collapse
|
2
|
Taseva AR, Persoons T, D'Arcy DM. Application of an AI image analysis and classification approach to characterise dissolution and precipitation events in the flow through apparatus. Eur J Pharm Biopharm 2023; 189:36-47. [PMID: 37120067 DOI: 10.1016/j.ejpb.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Imaging and artificial intelligence (AI) approaches have been used with increasing frequency in pharmaceutical industry in recent years. Characterisation of processes such as drug dissolution and precipitation is vital in quality control testing and drug manufacture. To support existing techniques like in vitro dissolution testing, novel process analytical technologies (PATs) can give an insight into these processes. The aim of this study was to create and explore the potential of an automated image classification model based on image analysis to identify events (dissolution and precipitation) occurring in the flow-through apparatus (FTA) test cell, and the ability to characterise a dissolution process over time. Several precipitation conditions were tested in a USP 4 FTA test cell with images recorded during early (plume formation) and late (particulate re-formation) stages of precipitation. An available MATLAB code was used as a base to develop and validate an anomaly classification model able to detect different events occurring during the precipitation process in the dissolution cell. Two variants of the model were tested on images from a dissolution test in the FTA, with a view to application of the image analysis system to quantitative characterization of the dissolution process over time. It was found that the classification model is highly accurate (>90%) in detecting events occurring in the FTA test cell. The model showed potential to be used to characterise the stages of dissolution and precipitation processes, and as a proof of concept demonstrates potential for deep machine learning image analysis to be applied to kinetics of other pharmaceutical processes.
Collapse
Affiliation(s)
- Alexandra R Taseva
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| |
Collapse
|
3
|
van Haaren C, De Bock M, Kazarian SG. Advances in ATR-FTIR Spectroscopic Imaging for the Analysis of Tablet Dissolution and Drug Release. Molecules 2023; 28:4705. [PMID: 37375260 DOI: 10.3390/molecules28124705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
One of the major challenges in the development of effective pharmaceutical formulations for oral administration is the poor solubility of active pharmaceutical ingredients. For this reason, the dissolution process and drug release from solid oral dosage forms, such as tablets, is usually thoroughly studied in order to understand the dissolution behaviour under various conditions and optimize the formulation accordingly. Standard dissolution tests used in the pharmaceutical industry provide information on the amount of drug released over time; however, these do not allow for a detailed analysis of the underlying chemical and physical mechanisms of tablet dissolution. FTIR spectroscopic imaging, by contrast, does offer the ability to study these processes with high spatial and chemical specificity. As such, the method allows us to see the chemical and physical processes which occur inside the tablet as it dissolves. In this review, the power of ATR-FTIR spectroscopic imaging is demonstrated by presenting a number of successful applications of this chemical imaging technique to dissolution and drug release studies for a range of different pharmaceutical formulations and study conditions. Understanding these processes is essential for the development of effective oral dosage forms and optimization of pharmaceutical formulations.
Collapse
Affiliation(s)
- Céline van Haaren
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Marieke De Bock
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Moazami Goudarzi N, Samaro A, Vervaet C, Boone MN. Development of Flow-Through Cell Dissolution Method for In Situ Visualization of Dissolution Processes in Solid Dosage Forms Using X-ray μCT. Pharmaceutics 2022; 14:pharmaceutics14112475. [PMID: 36432667 PMCID: PMC9696340 DOI: 10.3390/pharmaceutics14112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Visualization of the dynamic behavior of pharmaceutical dosage forms during the dissolution process offers a better understanding of the drug release mechanism, enabling the design of customized dosage forms. In this study, an X-ray tomography-based approach is proposed to monitor and analyze the dynamics of the structure at the pore scale level during the dissolution process. A flow-through cell dissolution apparatus was developed, capable of mimicking the standard in vitro dissolution process, which can be easily positioned in an X-ray tomography setup. The method was utilized to study the dissolution of a Capa® (polycaprolactone)-based sustained-release 3D printed tablet. The impact of the flow rate on the active pharmaceutical ingredient (API) release rate was studied and 16 mL/min was selected as a suitable flow rate. Furthermore, cesium chloride (CsCl) was used as a contrast agent to increase the contrast between the sample and the dissolution medium. Data obtained with this novel technique were in a good agreement with the released drug rate acquired by the standard in vitro dissolution test (the similarity factor (f2) = 77%). Finally, the proposed approach allowed visualizing the internal structure of the sample, as well as real-time tracking of solution ingress into the product.
Collapse
Affiliation(s)
- Niloofar Moazami Goudarzi
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
- Correspondence: (N.M.G.); (M.N.B.)
| | - Aseel Samaro
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Matthieu N. Boone
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
- Correspondence: (N.M.G.); (M.N.B.)
| |
Collapse
|
5
|
Zeng Q, Wang L, Wu S, Fang G, Zhao M, Li Z, Li W. Research progress on the application of spectral imaging technology in pharmaceutical tablet analysis. Int J Pharm 2022; 625:122100. [PMID: 35961418 DOI: 10.1016/j.ijpharm.2022.122100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Tablet as a traditional dosage form in pharmacy has the advantages of accurate dosage, ideal dissolution and bioavailability, convenient to carry and transport. The most concerned tablet quality attributes include active pharmaceutical ingredient (API) contents and polymorphic forms, components distribution, hardness, density, coating state, dissolution behavior, etc., which greatly affect the bioavailability and consistency of tablet final products. In the pharmaceutical industry, there are usually industry standard methods to analyze the tablet quality attributes. However, these methods are generally time-consuming and laborious, and lack a comprehensive understanding of the properties of tablets, such as spatial information. In recent years, spectral imaging technology makes up for the shortcomings of traditional tablet analysis methods because it provides non-contact and rich information in time and space. As a promising technology to replace the traditional tablet analysis methods, it has attracted more and more attention. The present paper briefly describes a series of spectral imaging techniques and their applications in tablet analysis. Finally, the possible application prospect of this technology and the deficiencies that need to be improved were also prospected.
Collapse
Affiliation(s)
- Qi Zeng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Long Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Sijun Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guangpu Fang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingwei Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Visualising liquid transport through coated pharmaceutical tablets using Terahertz pulsed imaging. Int J Pharm 2022; 619:121703. [PMID: 35351529 DOI: 10.1016/j.ijpharm.2022.121703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
Abstract
Dissolution of pharmaceutical tablets is a complex process, especially for coated tablets where layered structures form an additional barrier for liquid transport into the porous tablet matrix. A better understanding of the role of the coating structure in the mass transport processes that govern drug release, starting with the wetting of the coating layer by the dissolution medium, can benefit the formulation design and optimisation of the production. For this study, terahertz pulsed imaging was used to investigate how dissolution medium can penetrate coated tablets. In order to focus on the fundamental process, the model system for this proof-of-principle study consisted of tablet cores made from pure microcrystalline cellulose compacted to a defined porosity coated with Opadry II, a PVA-based immediate release coating blend. The coating was applied to a single side of flat-faced tablets using vacuum compression moulding. It was possible to resolve the hydration of the coating layer and the subsequent liquid ingress into the dry tablet core. The analysis revealed a discontinuity in density at the interface between coating and core, where coating polymer could enter the pore space at the immediate surface of the tablet cores during the coating process. This structure affected the liquid transport of the dissolution medium into the core. We found evidence for the formation of a gel layer upon hydration of the coating polymer. The porosity of the tablet core impacted the quality of coating and thus affected its dissolution performance (r = 0.6932 for the effective liquid penetration rate RPeff and the core porosity). This study established a methodology and can facilitate a more in-depth understanding of the role of coating on tablet dissolution.
Collapse
|
7
|
Horkovics-Kovats S, László Galata D, Zlatoš P, Nagy B, Alexandra Mészáros L, Kristóf Nagy Z. Raman-based real-time dissolution prediction using a deterministic permeation model. Int J Pharm 2022; 617:121624. [DOI: 10.1016/j.ijpharm.2022.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
8
|
Sohail Arshad M, Zafar S, Yousef B, Alyassin Y, Ali R, AlAsiri A, Chang MW, Ahmad Z, Ali Elkordy A, Faheem A, Pitt K. A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing. Adv Drug Deliv Rev 2021; 178:113840. [PMID: 34147533 DOI: 10.1016/j.addr.2021.113840] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Tablets are the most widely utilized solid oral dosage forms because of the advantages of self-administration, stability, ease of handling, transportation, and good patient compliance. Over time, extensive advances have been made in tableting technology. This review aims to provide an insight about the advances in tablet excipients, manufacturing, analytical techniques and deployment of Quality by Design (QbD). Various excipients offering novel functionalities such as solubility enhancement, super-disintegration, taste masking and drug release modifications have been developed. Furthermore, co-processed multifunctional ready-to-use excipients, particularly for tablet dosage forms, have benefitted manufacturing with shorter processing times. Advances in granulation methods, including moist, thermal adhesion, steam, melt, freeze, foam, reverse wet and pneumatic dry granulation, have been proposed to improve product and process performance. Furthermore, methods for particle engineering including hot melt extrusion, extrusion-spheronization, injection molding, spray drying / congealing, co-precipitation and nanotechnology-based approaches have been employed to produce robust tablet formulations. A wide range of tableting technologies including rapidly disintegrating, matrix, tablet-in-tablet, tablet-in-capsule, multilayer tablets and multiparticulate systems have been developed to achieve customized formulation performance. In addition to conventional invasive characterization methods, novel techniques based on laser, tomography, fluorescence, spectroscopy and acoustic approaches have been developed to assess the physical-mechanical attributes of tablet formulations in a non- or minimally invasive manner. Conventional UV-Visible spectroscopy method has been improved (e.g. fiber-optic probes and UV imaging-based approaches) to efficiently record the dissolution profile of tablet formulations. Numerous modifications in tableting presses have also been made to aid machine product changeover, cleaning, and enhance efficiency and productivity. Various process analytical technologies have been employed to track the formulation properties and critical process parameters. These advances will contribute to a strategy for robust tablet dosage forms with excellent performance attributes.
Collapse
Affiliation(s)
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Bushra Yousef
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Yasmine Alyassin
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Radeyah Ali
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Ali AlAsiri
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Pharmacy College, Pharmaceutics Department, Najran University, Najran, Saudi Arabia
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, United Kingdom
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom
| | - Ahmed Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom; Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Kendal Pitt
- Manufacturing, Science & Technology, Pharma Supply Chain, GlaxoSmithKline, Ware, United Kingdom.
| |
Collapse
|
9
|
Dong R, DiNunzio JC, Regler BP, Wasylaschuk W, Socia A, Zeitler JA. Insights into the Control of Drug Release from Complex Immediate Release Formulations. Pharmaceutics 2021; 13:933. [PMID: 34201663 PMCID: PMC8308816 DOI: 10.3390/pharmaceutics13070933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
The kinetics of water transport into tablets, and how it can be controlled by the formulation as well as the tablet microstructure, are of central importance in order to design and control the dissolution and drug release process, especially for immediate release tablets. This research employed terahertz pulsed imaging to measure the process of water penetrating through tablets using a flow cell. Tablets were prepared over a range of porosity between 10% to 20%. The formulations consist of two drugs (MK-8408: ruzasvir as a spray dried intermediate, and MK-3682: uprifosbuvir as a crystalline drug substance) and NaCl (0% to 20%) at varying levels of concentrations as well as other excipients. A power-law model is found to fit the liquid penetration exceptionally well (average R2>0.995). For each formulation, the rate of water penetration, extent of swelling and the USP dissolution rate were compared. A factorial analysis then revealed that the tablet porosity was the dominating factor for both liquid penetration and dissolution. NaCl more significantly influenced liquid penetration due to osmotic driving force as well as gelling suppression, but there appears to be little difference when NaCl loading in the formulation increases from 5% to 10%. The level of spray dried intermediate was observed to further limit the release of API in dissolution.
Collapse
Affiliation(s)
- Runqiao Dong
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| | - James C. DiNunzio
- Pharmaceutical Sciences, Merck, Rahway, NJ 07065, USA; (J.C.D.); (B.P.R.); (W.W.); (A.S.)
| | - Brian P. Regler
- Pharmaceutical Sciences, Merck, Rahway, NJ 07065, USA; (J.C.D.); (B.P.R.); (W.W.); (A.S.)
| | - Walter Wasylaschuk
- Pharmaceutical Sciences, Merck, Rahway, NJ 07065, USA; (J.C.D.); (B.P.R.); (W.W.); (A.S.)
| | - Adam Socia
- Pharmaceutical Sciences, Merck, Rahway, NJ 07065, USA; (J.C.D.); (B.P.R.); (W.W.); (A.S.)
| | - J. Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| |
Collapse
|
10
|
Polyethylene oxide matrix tablet swelling evolution: The impact of molecular mass and tablet composition. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:215-243. [PMID: 33151172 DOI: 10.2478/acph-2021-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 01/19/2023]
Abstract
This article describes the designing of matrix tablets composed of polyethylene oxides (PEOs) with relative molecular masses of 1 × 106, 2 × 106, and 4 × 106. Percolation thresholds were determined for all of the selected PEO formulations (18, 16, and 12 %, m/m), taking into consideration excipients and tablet surface area which significantly increased the percolation threshold. Moreover, the robustness of the gel layer in PEO matrix tablets was evaluated by magnetic resonance imaging under various mechanical stresses (no flow, 12 mL min-1, and 64 mL-1 of medium flow). Correlations between the percolation threshold and gel thickness (R2 = 0.86), gel thickness and the erosion coefficient (R2 = 0.96) was detected. Furthermore, small-angle X-ray scattering of the selected PEOs detected differences in polymer molecular complexity at the nanoscale. Finally, the ratio of the heat of coalescence to the heat of fusion has confirmed the PEO molecular mass-dependent percolation threshold.
Collapse
|
11
|
Serša I. Magnetic resonance microscopy of samples with translational symmetry with FOVs smaller than sample size. Sci Rep 2021; 11:541. [PMID: 33436897 PMCID: PMC7804297 DOI: 10.1038/s41598-020-80652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/22/2020] [Indexed: 11/09/2022] Open
Abstract
In MRI, usually the Field of View (FOV) has to cover the entire object. If this condition is not fulfilled, an infolding image artifact is observed, which suppresses visualization. In this study it is shown that for samples with translational symmetry, i.e., those consisting of identical objects in periodic unit cells, the FOV can be reduced to match the unit cell which enables imaging of an average object, of which the signal is originated from all unit cells of the sample, with no punishment by a loss in signal-to-noise ratio (SNR). This theoretical prediction was confirmed by experiments on a test sample with a 7 × 7 mm2 unit cell arranged in a 3 × 3 matrix which was scanned by the spin-echo and by single point imaging methods. Effects of experimental imperfections in size and orientation mismatch between FOV and unit cell were studied as well. Finally, this method was demonstrated on a 3D periodic sample of tablets, which yielded well-resolved images of moisture distribution in an average tablet, while single tablet imaging provided no results. The method can be applied for SNR increase in imaging of any objects with inherently low signals provided they can be arranged in a periodic structure.
Collapse
Affiliation(s)
- Igor Serša
- Department of Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Wang C, Lin Y, Wang Y, Jiang TF, Lv Z. Determination of fipronil and its metabolites in chicken egg by dispersive liquid–liquid microextraction with 19F quantitative nuclear magnetic resonance spectroscopy. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Mikac U, Kristl J. Magnetic Resonance Methods as a Prognostic Tool for the Biorelevant Behavior of Xanthan Tablets. Molecules 2020; 25:E5871. [PMID: 33322592 PMCID: PMC7763985 DOI: 10.3390/molecules25245871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 11/21/2022] Open
Abstract
Hydrophilic matrix tablets with controlled drug release have been used extensively as one of the most successful oral drug delivery systems for optimizing therapeutic efficacy. In this work, magnetic resonance imaging (MRI) is used to study the influence of various pHs and mechanical stresses caused by medium flow (at rest, 80, or 150 mL/min) on swelling and on pentoxifylline release from xanthan (Xan) tablets. Moreover, a bimodal MRI system with simultaneous release testing enables measurements of hydrogel thickness and drug release, both under the same experimental conditions and at the same time. The results show that in water, the hydrogel structure is weaker and less resistant to erosion than the Xan structure in the acid medium. Different hydrogel structures affect drug release with erosion controlled release in water and diffusion controlled release in the acid medium. Mechanical stress simulating gastrointestinal contraction has no effect on the hard hydrogel in the acid medium where the release is independent of the tested stress, while it affects the release from the weak hydrogel in water with faster release under high stress. Our findings suggest that simultaneous MR imaging and drug release from matrix tablets together provide a valuable prognostic tool for prolonged drug delivery design.
Collapse
Affiliation(s)
- Urša Mikac
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
14
|
Direct Drug Analysis in Polymeric Implants Using Desorption Electrospray Ionization - Mass Spectrometry Imaging (DESI-MSI). Pharm Res 2020; 37:107. [PMID: 32462273 DOI: 10.1007/s11095-020-02823-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) coupled with gas-phase ion mobility spectrometry was used to characterize the drug distribution in polymeric implants before and after exposure to accelerated in vitro release (IVR) media. DESI-MSI provides definitive chemical identification and localization of formulation components, including 2D chemical mapping of individual components with essentially no sample preparation. METHODS Polymeric implants containing 40% (w/w) entecavir and poly(D,L-lactide) (PLA) were prepared and then exposed to either acidified PBS (pH 2.5) or MeOH:H2O (50:50, v/v) medias during a 7-day IVR test using continuous flow-through (CFT) cell dissolution. The amount of drug released from the polymer matrix during the 7-day IVR test was monitored by online-ultraviolet spectroscopy (UV) and HPLC-UV. After that period, intact implants and radial sections of implants were analyzed by DESI-MSI with ion mobility spectrometry. The active ingredient along with impurities and contaminants were used to generate chemical maps before and after exposure to the release medias. RESULTS Bi-phasic release profiles were observed for implants during IVR release using both medias. During the second phase of release, implants exposed to PBS, pH 2.5, released the entecavir faster than the implants exposed to MeOH:H2O (50:50, v/v). Radial images of the polymer interior show that entecavir is localized along the central core of the implant after exposure to MeOH:H2O (50:50, v/v) and that the drug is more uniformly distributed throughout the implant after exposure to acidified PBS (pH 2.5). CONCLUSIONS DESI-MSI coupled with ion mobility analysis produced chemical images of the drug distribution on the exterior and interior of cylindrical polymeric implants before and after exposure to various release medias. These results demonstrated the utility of this technique for rapid characterization of drug and impurity/degradant distribution within polymeric implants with direct implications for formulation development as well as analytical method development activities for various solid parenteral and oral dosage forms. These results are especially meaningful since samples were analyzed with essentially no preparative procedures.
Collapse
|
15
|
Rudd ND, Helmy R, Dormer PG, Williamson RT, Wuelfing WP, Walsh PL, Reibarkh M, Forrest WP. Probing in Vitro Release Kinetics of Long-Acting Injectable Nanosuspensions via Flow-NMR Spectroscopy. Mol Pharm 2020; 17:530-540. [DOI: 10.1021/acs.molpharmaceut.9b00958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nathan D. Rudd
- Analytical Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Roy Helmy
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Peter G. Dormer
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - R. Thomas Williamson
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - W. Peter Wuelfing
- Analytical Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Paul L. Walsh
- Analytical Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - William P. Forrest
- Sterile Formulation Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
16
|
Bernin D, Marucci M, Boissier C, Hjärtstam J, Olsson U, Abrahmsén-Alami S. Real time MRI to elucidate the functionality of coating films intended for modified release. J Control Release 2019; 311-312:117-124. [PMID: 31454531 DOI: 10.1016/j.jconrel.2019.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023]
Abstract
Polymer films based on mixtures of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) have been widely used to coat pellets and tablets to modify the release profile of drugs. For three different EC/HPC films we used 1H and 19F MRI in combination with a designed release cell to monitor the drug, polymer and water in 5 dimensional (5D) datasets; three spatial, one diffusion or relaxation and a temporal dimension, in real time. We observed that the water inflow through the films correlated with the initiation of the dissolution of the drug in the tablet beneath the film. Leaching of the pore forming HPC further accelerated water penetration and resulted in a drug release onset after a hydrostatic pressure was generated below the film indicated by positional changes of the film. For the more permeable film, both water ingress and drug egress showed a large variability of release over the film surface indicating the heterogeneity of the system. Furthermore, the 1H diffusion dataset revealed the formation of a gel layer of HPC at the film surface. We conclude that the setup presented provides a significant level of details, which are not achieved with traditional methods.
Collapse
Affiliation(s)
- Diana Bernin
- Swedish NMR Centre, University of Gothenburg, SE-41390 Gothenburg, Sweden; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Mariagrazia Marucci
- Pharmaceutical Technology and Development, AstraZeneca Gothenburg, SE-43183 Mölndal, Sweden
| | - Catherine Boissier
- Pharmaceutical Technology and Development, AstraZeneca Gothenburg, SE-43183 Mölndal, Sweden; Biopharmaceuticals R & D, AstraZeneca, Gothenburg, SE-43183 Mölndal, Sweden
| | - Johan Hjärtstam
- Pharmaceutical Technology and Development, AstraZeneca Gothenburg, SE-43183 Mölndal, Sweden
| | - Ulf Olsson
- Physical Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
17
|
Mikac U, Sepe A, Gradišek A, Kristl J, Apih T. Dynamics of water and xanthan chains in hydrogels studied by NMR relaxometry and their influence on drug release. Int J Pharm 2019; 563:373-383. [DOI: 10.1016/j.ijpharm.2019.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/21/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
|
18
|
Markl D, Strobel A, Schlossnikl R, Bøtker J, Bawuah P, Ridgway C, Rantanen J, Rades T, Gane P, Peiponen KE, Zeitler JA. Characterisation of pore structures of pharmaceutical tablets: A review. Int J Pharm 2018; 538:188-214. [PMID: 29341913 DOI: 10.1016/j.ijpharm.2018.01.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Traditionally, the development of a new solid dosage form is formulation-driven and less focus is put on the design of a specific microstructure for the drug delivery system. However, the compaction process particularly impacts the microstructure, or more precisely, the pore architecture in a pharmaceutical tablet. Besides the formulation, the pore structure is a major contributor to the overall performance of oral solid dosage forms as it directly affects the liquid uptake rate, which is the very first step of the dissolution process. In future, additive manufacturing is a potential game changer to design the inner structures and realise a tailor-made pore structure. In pharmaceutical development the pore structure is most commonly only described by the total porosity of the tablet matrix. Yet it is of great importance to consider other parameters to fully resolve the interplay between microstructure and dosage form performance. Specifically, tortuosity, connectivity, as well as pore shape, size and orientation all impact the flow paths and play an important role in describing the fluid flow in a pharmaceutical tablet. This review presents the key properties of the pore structures in solid dosage forms and it discusses how to measure these properties. In particular, the principles, advantages and limitations of helium pycnometry, mercury porosimetry, terahertz time-domain spectroscopy, nuclear magnetic resonance and X-ray computed microtomography are discussed.
Collapse
Affiliation(s)
- Daniel Markl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK.
| | - Alexa Strobel
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - Rüdiger Schlossnikl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - Johan Bøtker
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Prince Bawuah
- School of Pharmacy, Promis Centre, University of Eastern Finland, P.O. Box 1617, FI-70211 Kuopio, Finland
| | - Cathy Ridgway
- Omya International AG, CH-4665 Oftringen, Switzerland
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Patrick Gane
- Omya International AG, CH-4665 Oftringen, Switzerland; School of Chemical Technology, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Helsinki, Finland
| | - Kai-Erik Peiponen
- Institute of Photonics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| |
Collapse
|
19
|
Mathematical modelling of liquid transport in swelling pharmaceutical immediate release tablets. Int J Pharm 2017; 526:1-10. [PMID: 28400289 DOI: 10.1016/j.ijpharm.2017.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/08/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
Oral dosage forms are an integral part of modern health care and account for the majority of drug delivery systems. Traditionally the analysis of the dissolution behaviour of a dosage form is used as the key parameter to assess the performance of a drug product. However, understanding the mechanisms of disintegration is of critical importance to improve the quality of drug delivery systems. The disintegration performance is primarily impacted by the hydration and subsequent swelling of the powder compact. Here we compare liquid ingress and swelling data obtained using terahertz pulsed imaging (TPI) to a set of mathematical models. The interlink between hydration kinetics and swelling is described by a model based on Darcy's law and a modified swelling model based on that of Schott. Our new model includes the evolution of porosity, pore size and permeability as a function of hydration time. Results obtained from two sets of samples prepared from pure micro-crystalline cellulose (MCC) indicate a clear difference in hydration and swelling for samples of different porosities and particle sizes, which are captured by the model. Coupling a novel imaging technique, such as TPI, and mathematical models allows better understanding of hydration and swelling and eventually tablet disintegration.
Collapse
|
20
|
Hoosain FG, Choonara YE, Kumar P, Tomar LK, Tyagi C, du Toit LC, Pillay V. In Vivo Evaluation of a PEO-Gellan Gum Semi-Interpenetrating Polymer Network for the Oral Delivery of Sulpiride. AAPS PharmSciTech 2017; 18:654-670. [PMID: 27184677 DOI: 10.1208/s12249-016-0538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/21/2016] [Indexed: 02/08/2023] Open
Abstract
In this study, an optimized epichlorohydrin-crosslinked semi-interpenetrating polymer network xerogel matrix system (XePoMas) for the controlled delivery of sulpiride was prepared. The ability of XePoMas to sustain drug release was determined by in vitro and in vivo drug release experiments. Swelling of the xerogel over the 24-h experimental period ranged from 346 to 648%; swelling was observed to increase exponentially over the initial 8 h. In vitro drug release depicted a linear zero order drug release profile with an R 2 value of 0.9956. The ability of the fabricated XePoMas to sustain drug release and enhance bioavailability of sulpiride in vivo was investigated by evaluating the plasma drug concentration over 24 h in the large pig model. The optimized XePoMas formulation was shown to increase intestinal absorption of sulpiride to a greater extent than the marketed product in vivo, with a C max of 830.58 ng/mL after 15 h.
Collapse
|
21
|
Hu A, Chen C, Mantle MD, Wolf B, Gladden LF, Rajabi-Siahboomi A, Missaghi S, Mason L, Melia CD. The Properties of HPMC:PEO Extended Release Hydrophilic Matrices and their Response to Ionic Environments. Pharm Res 2016; 34:941-956. [DOI: 10.1007/s11095-016-2031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/25/2016] [Indexed: 01/22/2023]
|
22
|
Mantle MD. Magnetic Resonance Imaging and Its Applications to Solid Pharmaceutical Dosage Forms. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-4029-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
23
|
Kulinowski P, Hudy W, Mendyk A, Juszczyk E, Węglarz WP, Jachowicz R, Dorożyński P. The Relationship Between the Evolution of an Internal Structure and Drug Dissolution from Controlled-Release Matrix Tablets. AAPS PharmSciTech 2016; 17:735-42. [PMID: 26335419 DOI: 10.1208/s12249-015-0402-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
In the last decade, imaging has been introduced as a supplementary method to the dissolution tests, but a direct relationship of dissolution and imaging data has been almost completely overlooked. The purpose of this study was to assess the feasibility of relating magnetic resonance imaging (MRI) and dissolution data to elucidate dissolution profile features (i.e., kinetics, kinetics changes, and variability). Commercial, hydroxypropylmethyl cellulose-based quetiapine fumarate controlled-release matrix tablets were studied using the following two methods: (i) MRI inside the USP4 apparatus with subsequent machine learning-based image segmentation and (ii) dissolution testing with piecewise dissolution modeling. Obtained data were analyzed together using statistical data processing methods, including multiple linear regression. As a result, in this case, zeroth order release was found to be a consequence of internal structure evolution (interplay between region's areas-e.g., linear relationship between interface and core), which eventually resulted in core disappearance. Dry core disappearance had an impact on (i) changes in dissolution kinetics (from zeroth order to nonlinear) and (ii) an increase in variability of drug dissolution results. It can be concluded that it is feasible to parameterize changes in micro/meso morphology of hydrated, controlled release, swellable matrices using MRI to establish a causal relationship between the changes in morphology and drug dissolution. Presented results open new perspectives in practical application of combined MRI/dissolution to controlled-release drug products.
Collapse
|
24
|
Mikac U, Sepe A, Baumgartner S, Kristl J. The Influence of High Drug Loading in Xanthan Tablets and Media with Different Physiological pH and Ionic Strength on Swelling and Release. Mol Pharm 2016; 13:1147-57. [DOI: 10.1021/acs.molpharmaceut.5b00955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Urša Mikac
- Jožef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Ana Sepe
- Jožef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Saša Baumgartner
- Faculty
of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Julijana Kristl
- Faculty
of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Gajdošová M, Pěček D, Sarvašová N, Grof Z, Štěpánek F. Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging. Int J Pharm 2016; 500:136-43. [PMID: 26780121 DOI: 10.1016/j.ijpharm.2016.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 11/25/2022]
Abstract
The rate of drug release from polymer matrix-based sustained release formulations is often controlled by the thickness of a gel layer that forms upon contact with dissolution medium. The effect of formulation parameters on the kinetics of elementary rate processes that contribute to gel layer formation, such as water ingress, polymer swelling and erosion, is therefore of interest. In the present work, gel layer formation has been investigated by magnetic resonance imaging (MRI), which is a non-destructive method allowing direct visualization of effective water concentration inside the tablet and its surrounding. Using formulations with Levetiracetam as the active ingredient, HPMC as a hydrophilic matrix former and carnauba wax (CW) as a hydrophobic component in the matrix system, the effect of different ratios of these two ingredients on the kinetics of gel formation (MRI) and drug release (USP 4 like dissolution test) has been investigated and interpreted using a mathematical model.
Collapse
Affiliation(s)
- Michaela Gajdošová
- Department of Chemical Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Daniel Pěček
- Zentiva, k.s., U Kabelovny 130, Prague 10, Czech Republic
| | - Nina Sarvašová
- Department of Chemical Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Grof
- Department of Chemical Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
26
|
Yassin S, Goodwin DJ, Anderson A, Sibik J, Wilson DI, Gladden LF, Zeitler JA. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants. J Pharm Sci 2015; 104:3440-50. [PMID: 26073446 PMCID: PMC4647644 DOI: 10.1002/jps.24544] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
Abstract
Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440-3450, 2015.
Collapse
Affiliation(s)
- Samy Yassin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Daniel J Goodwin
- GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, CM19 5AW, UK
| | - Andrew Anderson
- GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, CM19 5AW, UK
| | - Juraj Sibik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | - D Ian Wilson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Lynn F Gladden
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| |
Collapse
|
27
|
Kulinowski P, Woyna-Orlewicz K, Rappen GM, Haznar-Garbacz D, Węglarz WP, Dorożyński PP. An understanding of modified release matrix tablets behavior during drug dissolution as the key for prediction of pharmaceutical product performance – case study of multimodal characterization of quetiapine fumarate tablets. Int J Pharm 2015; 484:235-45. [DOI: 10.1016/j.ijpharm.2015.02.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
|
28
|
Yassin S, Su K, Lin H, Gladden LF, Zeitler JA. Diffusion and swelling measurements in pharmaceutical powder compacts using terahertz pulsed imaging. J Pharm Sci 2015; 104:1658-67. [PMID: 25645509 PMCID: PMC4415463 DOI: 10.1002/jps.24376] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/16/2014] [Accepted: 01/07/2015] [Indexed: 11/16/2022]
Abstract
Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015
Collapse
Affiliation(s)
- Samy Yassin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | | | | | | | | |
Collapse
|
29
|
Park K. Dissolution mechanisms of felodipine solid dispersions. J Control Release 2014; 188:101. [DOI: 10.1016/j.jconrel.2014.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Kulinowski P, Młynarczyk A, Jasiński K, Talik P, Gruwel MLH, Tomanek B, Węglarz WP, Dorożyński P. Magnetic resonance microscopy for assessment of morphological changes in hydrating hydroxypropylmethylcellulose matrix tablets in situ-is it possible to detect phenomena related to drug dissolution within the hydrated matrices? Pharm Res 2014; 31:2383-92. [PMID: 24633415 PMCID: PMC4180912 DOI: 10.1007/s11095-014-1334-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/08/2014] [Indexed: 11/06/2022]
Abstract
Purpose So far, the hydrated part of the HPMC matrix has commonly been denoted as a “gel” or “pseudogel” layer. No MRI-based results have been published regarding observation of internal phenomena related to drug dissolution inside swelling polymeric matrices during hydration. The purpose of the study was to detect such phenomena. Methods Multiparametric, spatially and temporally resolved T2 MR relaxometry, in situ, was applied to study formation of the hydration progress in HPMC matrix tablets loaded with L-dopa and ketoprofen using a 11.7 T MRI system. Two spin-echo based pulse sequences were used, one of them specifically designed to study short T2 signals. Results Two components in the T2 decay envelope were estimated and spatial distributions of their parameters, i.e. amplitudes and T2 values, were obtained. Based on the data, different region formation patterns (i.e. multilayer structure) were registered depending on drug presence and solubility. Inside the matrix with incorporated sparingly soluble drug a specific layer formation due to drug dissolution was detected, whereas a matrix with very slightly soluble drug does not form distinct external “gel-like” layer. Conclusions We have introduced a new paradigm in the characterization of hydrating matrices using 1H MRI methods. It reflects molecular mobility and concentration of water inside the hydrated matrix. For the first time, drug dissolution related phenomena, i.e. particular front and region formation, were observed by MRI methods.
Collapse
Affiliation(s)
- Piotr Kulinowski
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342, Kraków, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ramskill N, Gladden L, York A, Sederman A, Mitchell J, Hardstone K. Understanding the operation and preparation of diesel particulate filters using a multi-faceted nuclear magnetic resonance approach. Catal Today 2013. [DOI: 10.1016/j.cattod.2013.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Zhang Q, Gladden LF, Avalle P, Zeitler JA, Mantle MD. Terahertz pulsed imaging and magnetic resonance imaging as tools to probe formulation stability. Pharmaceutics 2013; 5:591-608. [PMID: 24300564 PMCID: PMC3873681 DOI: 10.3390/pharmaceutics5040591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/21/2013] [Indexed: 11/29/2022] Open
Abstract
Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance.
Collapse
Affiliation(s)
- Qilei Zhang
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; E-Mail:
| | - Lynn F. Gladden
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK; E-Mails: (L.F.G.); (M.D.M.)
| | - Paolo Avalle
- Merck Sharp & Dohme Ltd., Hoddesdon EN11 9BU, UK; E-Mail:
| | - J. Axel Zeitler
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK; E-Mails: (L.F.G.); (M.D.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-0-1223-334783
| | - Michael D. Mantle
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK; E-Mails: (L.F.G.); (M.D.M.)
| |
Collapse
|
33
|
Culen M, Dohnal J. Advances in dissolution instrumentation and their practical applications. Drug Dev Ind Pharm 2013; 40:1277-82. [DOI: 10.3109/03639045.2013.841184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Yin X, Li H, Guo Z, Wu L, Chen F, de Matas M, Shao Q, Xiao T, York P, He Y, Zhang J. Quantification of swelling and erosion in the controlled release of a poorly water-soluble drug using synchrotron X-ray computed microtomography. AAPS J 2013; 15:1025-34. [PMID: 23861022 PMCID: PMC3787229 DOI: 10.1208/s12248-013-9498-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/13/2013] [Indexed: 11/30/2022] Open
Abstract
The hydration layer plays a key role in the controlled drug release of gel-forming matrix tablets. For poorly water-soluble drugs, matrix erosion is considered as the rate limiting step for drug release. However, few investigations have reported on the quantification of the relative importance of swelling and erosion in the release of poorly soluble drugs, and three-dimensional (3D) structures of the hydration layer are poorly understood. Here, we employed synchrotron radiation X-ray computed microtomography with 9-μm resolution to investigate the hydration dynamics and to quantify the relative importance of swelling and erosion on felodipine release by a statistical model. The 3D structures of the hydration layer were revealed by the reconstructed 3D rendering of tablets. Twenty-three structural parameters related to the volume, the surface area (SA), and the specific surface area (SSA) for the hydration layer and the tablet core were calculated. Three dominating parameters, including SA and SSA of the hydration layer (SA hydration layer and SSA hydration layer ) and SA of the glassy core (SA glassy core ), were identified to establish the statistical model. The significance order of independent variables was SA hydration layer > SSA hydration layer > SA glassy core , which quantitatively indicated that the release of felodipine was dominated by a combination of erosion and swelling. The 3D reconstruction and structural parameter calculation methods in our study, which are not available from conventional methods, are efficient tools to quantify the relative importance of swelling and erosion in the controlled release of poorly soluble drugs from a structural point of view.
Collapse
Affiliation(s)
- Xianzhen Yin
- />Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- />Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP UK
| | - Haiyan Li
- />Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zhen Guo
- />Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Li Wu
- />Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- />Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038 China
| | - Fangwei Chen
- />Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- />Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
| | - Marcel de Matas
- />Formulation Science, Pharmaceutical Development, AstraZeneca, Macclesfield, UK
| | - Qun Shao
- />Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP UK
| | - Tiqiao Xiao
- />Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
| | - Peter York
- />Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP UK
| | - You He
- />Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
| | - Jiwen Zhang
- />Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- />Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038 China
| |
Collapse
|
35
|
|
36
|
Use of in vitro release models in the design of sustained and localized drug delivery systems for subcutaneous and intra-articular administration. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50048-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Avalle P, Pygall SR, Pritchard J, Jastrzemska A. Interrogating erosion-based drug liberation phenomena from hydrophilic matrices using near infrared (NIR) spectroscopy. Eur J Pharm Sci 2013; 48:72-9. [DOI: 10.1016/j.ejps.2012.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/05/2012] [Accepted: 09/19/2012] [Indexed: 11/15/2022]
|
38
|
Qiao N, Wang K, Schlindwein W, Davies A, Li M. In situ monitoring of carbamazepine-nicotinamide cocrystal intrinsic dissolution behaviour. Eur J Pharm Biopharm 2012; 83:415-26. [PMID: 23159709 DOI: 10.1016/j.ejpb.2012.10.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/17/2012] [Accepted: 10/21/2012] [Indexed: 10/27/2022]
Abstract
Cocrystals have shown huge potential to improve the dissolution rate and absorption of a poorly water soluble drug. However, solution mediated phase transformation of cocrystals could greatly reduce the enhancement of its apparent solubility and dissolution rate. The aim of this study is to gain a deep understanding of the phase transition behaviour of cocrystals during dissolution and to investigate the improvement of dissolution rate. Dissolution and transformation behaviour of carbamazepine-nicotinamide (CBZ-NIC) cocrystal, physical mixture and different forms of carbamazepine: form I (CBZ I), form III (CBZ III) and dihydrate (CBZ DH) were studied by different in situ techniques of UV imaging and Raman spectroscopy. It has been found that compared with CBZ III and I, the rate of intrinsic dissolution rate (IDR) of CBZ-NIC cocrystal decreases slowly during dissolution, indicating the rate of crystallisation of CBZ DH from the solution is slow. In situ solid-state characterisation has shown the evolution of conversion of CBZ-NIC cocrystal and polymorphs to its dihydrate form. The study has shown that in situ UV imaging and Raman spectroscopy with a complementary technique of SEM can provide an in depth understanding during dissolution of cocrystals.
Collapse
Affiliation(s)
- Ning Qiao
- School of Pharmacy, De Montfort University, Leicester, UK
| | | | | | | | | |
Collapse
|
39
|
Gordon S, Naelapää K, Rantanen J, Selen A, Müllertz A, Østergaard J. Real-time dissolution behavior of furosemide in biorelevant media as determined by UV imaging. Pharm Dev Technol 2012; 18:1407-16. [PMID: 23136844 DOI: 10.3109/10837450.2012.737808] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The potential of UV imaging as a new small scale flow-through dissolution testing platform and its ability to incorporate biorelevant media was tested. Furosemide was utilized as a model poorly soluble drug, and dissolution media simulating conditions in the small intestine (5/1.25 mM and 40/10 mM bile salt/phospholipid, pH 6.5) together with corresponding blank buffer were employed. Dissolution rates as a function of flow rate (0.2-1.0 mL/min) were determined directly from UV images, and by analysis of collected effluent using UV spectrophotometry. A good agreement in dissolution rates was observed, however repeatability of data based on measurement of collected effluent was superior to that obtained by UV imaging in the utilized prototypic flow cell. Both methods indicated that biorelevant media did not markedly increase the dissolution rate of furosemide as compared to buffer. Qualitatively, UV images indicated that uncontrolled swelling/precipitation of furosemide on the compact surface was occurring in some samples. In situ Raman spectroscopy together with X-ray diffraction analysis confirmed that the observations were not due to a solid form transformation of furosemide. The presented results highlight the complementary features of the utilized techniques and, in particular, the detailed information related to dissolution behavior which can be achieved by UV imaging.
Collapse
Affiliation(s)
- Sarah Gordon
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Dorożyński PP, Kulinowski P, Młynarczyk A, Stanisz GJ. MRI as a tool for evaluation of oral controlled release dosage forms. Drug Discov Today 2011; 17:110-23. [PMID: 22094243 DOI: 10.1016/j.drudis.2011.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 09/24/2011] [Accepted: 10/31/2011] [Indexed: 11/25/2022]
Abstract
The magnetic resonance imaging (MRI) studies of controlled-release (CR) dosage forms can be roughly divided into two groups. The first comprises studies performed in static conditions (small solvent volumes and ambient temperature). Such studies have provided insight into molecular phenomena in hydrating polymeric matrices. The second group covers research performed in dynamic conditions (medium flow or stirring) related to drug dissolution. An important issue is supplementation of the MRI results with data obtained by complementary techniques, such as X-ray microtomography (μCT). As we discuss here, an understanding of the mechanism underlying the release of the drug from the dosage form will lead to the development of detailed, molecularly defined, CR dosage forms.
Collapse
Affiliation(s)
- Przemysław P Dorożyński
- Department of Pharmaceutical Technology and Biopharmaceutics, Pharmaceutical Faculty, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland.
| | | | | | | |
Collapse
|