1
|
Ghosh PK, Rao MJ, Putta CL, Ray S, Rengan AK. Telomerase: a nexus between cancer nanotherapy and circadian rhythm. Biomater Sci 2024; 12:2259-2281. [PMID: 38596876 DOI: 10.1039/d4bm00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer represents a complex disease category defined by the unregulated proliferation and dissemination of anomalous cells within the human body. According to the GLOBOCAN 2020 report, the year 2020 witnessed the diagnosis of approximately 19.3 million new cases of cancer and 10.0 million individuals succumbed to the disease. A typical cell eventually becomes cancerous because of a long-term buildup of genetic instability and replicative immortality. Telomerase is a crucial regulator of cancer progression as it induces replicative immortality. In cancer cells, telomerase inhibits apoptosis by elongating the length of the telomeric region, which usually protects the genome from shortening. Many nanoparticles are documented as being available for detecting the presence of telomerase, and many were used as delivery systems to transport drugs. Furthermore, telomere homeostasis is regulated by the circadian time-keeping machinery, leading to 24-hour rhythms in telomerase activity and TERT mRNA expression in mammals. This review provides a comprehensive discussion of various kinds of nanoparticles used in telomerase detection, inhibition, and multiple drug-related pathways, as well as enlightens an imperative association between circadian rhythm and telomerase activity from the perspective of nanoparticle-based anticancer therapeutics.
Collapse
Affiliation(s)
- Pramit Kumar Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Maddila Jagapathi Rao
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Chandra Lekha Putta
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| |
Collapse
|
2
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Afzaal H, Altaf R, Ilyas U, Zaman SU, Abbas Hamdani SD, Khan S, Zafar H, Babar MM, Duan Y. Virtual screening and drug repositioning of FDA-approved drugs from the ZINC database to identify the potential hTERT inhibitors. Front Pharmacol 2022; 13:1048691. [DOI: 10.3389/fphar.2022.1048691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
The length of the telomeres is maintained with the help of the enzyme telomerase constituting of two components, namely, a core reverse transcriptase protein (hTERT) and RNA (hTR). It serves as a significant and universal cancer target. In silico approaches play a crucial role in accelerating drug development processes, especially cancer drug repurposing is an attractive approach. The current study is aimed at the repurposing of FDA-approved drugs for their potential role as hTERT inhibitors. Accordingly, a library of 2,915 sets of FDA-approved drugs was generated from the ZINC database in order to screen for novel hTERT inhibitors; later on, these were subjected to molecular docking analysis. The top two hits, ZINC03784182 and ZINC01530694, were shortlisted for molecular dynamic simulation studies at 100 ns based on their binding scores. The RMSD, RMSF, Rg, SASA, and interaction energies were calculated for a 100-ns simulation period. The hit compounds were also analyzed for antitumor activity, and the results revealed promising cytotoxic activities of these compounds. The study has revealed the potential application of these drugs as antitumor agents that can be useful in treating cancer and can serve as lead compounds for further in vivo, in vitro, and clinical studies.
Collapse
|
4
|
Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy. Carbohydr Polym 2022; 276:118747. [PMID: 34823779 DOI: 10.1016/j.carbpol.2021.118747] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Combination therapy through simultaneous delivery of anti-cancer drugs and genes with nano-assembled structure has been proved to be a simple and effective approach for treating breast cancer. In this study, redox-sensitive folate-appended-polyethylenimine-β-cyclodextrin (roFPC) host-guest supramolecular nanoparticles (HGSNPs) were developed as a targeted co-delivery system of doxorubicin (Dox) and Human telomerase reverse transcriptase-small interfering RNA) hTERT siRNA) for potential cancer therapy. The nanotherapeutic system was prepared by loading adamantane-conjugated doxorubicin (Ad-Dox) into roFPC through the supramolecular assembly, followed by electrostatically-driven self-assembly between hTERT siRNA and roFPC/Ad-Dox. The roFPC' host-guest structures allow pH-dependent intracellular drug release in a sustained manner, as well as simultaneous and effective gene transfection. This co-delivery vector displayed combined anti-tumor properties of the Dox-enhanced gene transfection, good water-solubility, and biocompatibility, possesses considerably enhanced hemocompatibility, and especially targets folate receptor-positive cells only at low N/P levels to prompt effective cell apoptosis for cancer treatment.
Collapse
|
5
|
Integrating disulfides into a polyethylenimine gene carrier selectively boosts significant transfection activity in lung tissue enabling robust IL-12 gene therapy against metastatic lung cancers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112358. [PMID: 34474905 DOI: 10.1016/j.msec.2021.112358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022]
Abstract
Bioreducible polyethylenimines (SSPEIs) are promising non-viral carriers for cancer gene therapy. However, the availability of significant gene transfection activity by SSPEIs remains a challenge. Herein, an essential step was taken to ascertain whether or not the disulfide bonds of SSPEIs play a critical role in promoting significant gene transfection activity in different tissues. Initially, a disulfide-linked linear polyethylenimine (denoted as SSLPEI) consisting of one 5.0 kDa LPEI main chain and three disulfide-linked 5.7 kDa LPEI grafts was designed and prepared to possess similar molecular weight with commercialized 25 kDa LPEI as a positive control. The SSLPEI could induce superior in vitro transfection activity in different cells to the LPEI control as well as low cytotoxicity. Notably, such enhanced in vitro transfection effect by the SSLPEI was more marked in type-II alveolar epithelial cells compared to different cancer cells. In a Balb/c nude mouse model bearing SKOV-3 tumor, the SSLPEI caused parallel level of transgene expression with the LPEI control in the tumor but significantly higher level in the mouse lung. Furthermore, the SSLPEI and LPEI groups afforded an identical antitumor efficacy against the SKOV-3 tumor via intravenous delivery of a shRNA for silencing VEGF expression in the tumor. However, via intravenous delivery of an interleukin-12 (IL-12) gene into metastatic lung cancers in a C57BL/6 mouse model, the SSLPEI group exerted markedly higher IL-12 expression level in the mouse lung and peripheral blood as compared to the LPEI group, thereby boosting IL-12 immunotherapy against the lung metastasis with longer medium survival time. The results of this work elicit that the disulfide bonds of SSPEIs play a pivotal role in enhancing gene transfection activity selectively in the lung tissue rather than solid tumor, enabling high translational potential of SSPEIs for non-viral gene therapy against metastatic lung cancers.
Collapse
|
6
|
Saadati A, Hasanzadeh M, Seidi F. Biomedical application of hyperbranched polymers: Recent Advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood 2021; 137:1603-1614. [PMID: 32967010 DOI: 10.1182/blood.2019003764] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The initiation and progression of diffuse large B-cell lymphoma (DLBCL) is governed by genetic and epigenetic aberrations. As the most abundant eukaryotic messenger RNA (mRNA) modification, N6-methyladenosine (m6A) is known to influence various fundamental bioprocesses by regulating the target gene; however, the function of m6A modifications in DLBCL is unclear. PIWI-interacting RNAs (piRNAs) have been indicated to be epigenetic effectors in cancer. Here, we show that high expression of piRNA-30473 supports the aggressive phenotype of DLBCL, and piRNA-30473 depletion decreases proliferation and induces cell cycle arrest in DLBCL cells. In xenograft DLBCL models, piRNA-30473 inhibition reduces tumor growth. Moreover, piRNA-30473 is significantly associated with overall survival in a univariate analysis and is statistically significant after adjusting for the National Comprehensive Cancer Network-International Prognostic Index in the multivariate analysis. Additional studies demonstrate that piRNA-30473 exerts its oncogenic role through a mechanism involving the upregulation of WTAP, an m6A mRNA methylase, and thus enhances the global m6A level. Integrating transcriptome and m6A-sequencing analyses reveals that WTAP increases the expression of its critical target gene, hexokinase 2 (HK2), by enhancing the HK2 m6A level, thereby promoting the progression of DLBCL. Together, the piRNA-30473/WTAP/HK2 axis contributes to tumorigenesis by regulating m6A RNA methylation in DLBCL. Furthermore, by comprehensively analyzing our clinical data and data sets, we discover that the m6A regulatory genes piRNA-30473 and WTAP improve survival prediction in DLBCL patients. Our study highlights the functional importance of the m6A modification in DLBCL and might assist in the development of a prognostic stratification and therapeutic approach for DLBCL.
Collapse
|
8
|
Silica Based Nanomaterial for Drug Delivery. NANOMATERIALS: EVOLUTION AND ADVANCEMENT TOWARDS THERAPEUTIC DRUG DELIVERY (PART II) 2021:57-89. [DOI: 10.2174/9781681088235121010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
9
|
Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat Biomed Eng 2021; 5:1048-1058. [PMID: 34045730 PMCID: PMC8497438 DOI: 10.1038/s41551-021-00728-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/12/2021] [Indexed: 02/01/2023]
Abstract
In patients with glioblastoma, resistance to the chemotherapeutic temozolomide (TMZ) limits any survival benefits conferred by the drug. Here we show that the convection-enhanced delivery of nanoparticles containing disulfide bonds (which are cleaved in the reductive environment of the tumour) and encapsulating an oxaliplatin prodrug and a cationic DNA intercalator inhibit the growth of TMZ-resistant cells from patient-derived xenografts, and hinder the progression of TMZ-resistant human glioblastoma tumours in mice without causing any detectable toxicity. Genome-wide RNA profiling and metabolomic analyses of a glioma cell line treated with the cationic intercalator or with TMZ showed substantial differences in the signalling and metabolic pathways altered by each drug. Our findings suggest that the combination of anticancer drugs with distinct mechanisms of action with selective drug release and convection-enhanced delivery may represent a translational strategy for the treatment of TMZ-resistant gliomas.
Collapse
|
10
|
Wu Y, Zhong D, Li Y, Wu H, Zhang H, Mao H, Yang J, Luo K, Gong Q, Gu Z. A tumor-activatable peptide supramolecular nanoplatform for the delivery of dual-gene targeted siRNAs for drug-resistant cancer treatment. NANOSCALE 2021; 13:4887-4898. [PMID: 33625408 DOI: 10.1039/d0nr08487e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Combinatorial short interference RNA (siRNA) technology for the silencing of multiple genes is expected to provide an effective therapeutic approach for cancer with complex genetic mutation and dysregulation. Herein we present a tumor-activatable supramolecular nanoplatform for the delivery of siRNAs to target telomerase and telomeres for paclitaxel-resistant non-small-cell lung cancer (A549/PTX) treatment. Two different sequences of siRNA are incorporated in a single nanoparticle, which is obtained by self-assembly from a peptide dendrimer. The siRNA stability is improved by the nanoparticle in the presence of serum compared to free siRNA, and these siRNAs are protected from RNA enzyme degradation. In the tumor extracellular acid environment, the PEG corona of the nanoparticle is removed to promote the internalization of siRNAs into tumor cells. The disulfide linkages between the nanoparticle and siRNAs are cleared in the reductive environment of the tumor cells, and the siRNAs are released in the cytoplasm. In vitro experiments show that the gene expression of hTERT and TRF2 at the mRNA and protein levels of A549/PTX tumor cells is down-regulated, which results in cooperative restraining proliferation and invasion of A549/PTX tumor cells. For the tumor cell-targeting function of the MUC1 aptamer and the EPR effect, sufficient tumor accumulation of nanoparticles was observed. Meanwhile, a shift of negative surface charge of nanoparticles to positive charge in the tumor extracellular microenvironment enhances deep penetration of siRNA-incorporating nanoparticles into tumor tissues. In vivo animal studies support that successful down-regulation of hTERT and TRF2 gene expression achieves effective inhibition of the growth and neovascularization of drug-resistant tumor cells. This work has provided a new avenue for drug-resistant cancer treatment by designing and synthesizing a tumor-activatable nanoplatform to achieve the delivery of dual-gene targeted combinatorial siRNAs.
Collapse
Affiliation(s)
- Yahui Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Dan Zhong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Yunkun Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Huayu Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA 91711, USA
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China. and Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
11
|
Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry 2021; 60:966-990. [PMID: 33428850 PMCID: PMC8753971 DOI: 10.1021/acs.biochem.0c00860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Yang C, Cheng X, Shen P. Silencing of BCSG1 with specific siRNA via nanocarriers for breast cancer treatment. Bull Cancer 2021; 108:323-332. [PMID: 33423781 DOI: 10.1016/j.bulcan.2020.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023]
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. The current treatments for breast cancer, including surgery, radiotherapy and chemotherapy aim to destroy cancer cells, whereas they also cause damage to normal tissues and cells. Thus, an effective, safe and specific breast cancer treatment is urgently needed. The breast cancer-specific gene 1 (BCSG1) has been shown to be specific for the development of breast cancer and is a target for breast cancer diagnosis and treatment. It is expected to silence the expression of BCSG1 at the gene level for the purpose of treating breast cancer. The effect of RNAi technology on silencing target genes is comparable to gene knockout and has been widely used in animal experiments and plant genetic research. In the field of cancer therapy, numerous investigators have used siRNAs to specifically inhibit target genes, demonstrating that siRNAs can treat cancers at the molecular level. However, the delivery of siRNAs into humans needs to overcome multiple physiological barriers, limiting the clinical applications of siRNAs. This review focuses on the application of BCSG1 gene, siRNAs in cancer treatments, and the nanocarrier delivery system of siRNAs. The potential application and research value of BCSG1-specific siRNA in the treatment of breast cancer are discussed.
Collapse
Affiliation(s)
- Chenbo Yang
- Zhengzhou University, School of Basic Medical Sciences, Zhengzhou, Henan Province 450001, China
| | - Xiaoman Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Peihong Shen
- The Cancer Hospital Affiliated of Zhengzhou University, Zhengzhou, Henan Province 450008, China.
| |
Collapse
|
13
|
Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020; 8:3747-3771. [DOI: 10.1039/c9tb02871d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review highlights recent advancements in nanomedicines for liver cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Kun Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
14
|
Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs. Mol Diagn Ther 2019; 22:551-569. [PMID: 29926308 DOI: 10.1007/s40291-018-0338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) are an attractive new agent with potential as a therapeutic tool because of its ability to inhibit specific genes for many conditions, including viral infections and cancers. However, despite this potential, many challenges remain, including off-target effects, difficulties with delivery, immune responses, and toxicity. Traditional genetic vectors do not guarantee that siRNAs will silence genes in vivo. Rational design strategies, such as chemical modification, viral vectors, and non-viral vectors, including cationic liposomes, polymers, nanocarriers, and bioconjugated siRNAs, provide important opportunities to overcome these challenges. We summarize the results of research into vector delivery of siRNAs as a therapeutic agent from their design to clinical trials in ophthalmic diseases, cancers, respiratory diseases, and liver virus infections. Finally, we discuss the current state of siRNA delivery methods and the need for greater understanding of the requirements.
Collapse
|
15
|
Abstract
Recently greater emphasis has been given to combination therapy for generating synergistic effects of treating cancer. Recent studies on thiol-sensitive nanocarriers for the delivery of drug or gene have shown promising results. In this review, we will examine the rationale and advantage in using nanocarriers for the combined delivery of different anticancer drugs and biologics. Here, we also discuss the role of nanocarriers, particularly redox-sensitive polymers in evading or inhibiting the efflux pump in cancer and how they modulate the sensitivity of cancer cells. The review aims to provide a good understanding of the new pattern of cancer treatment and key concerns for designing nanomedicine of synergistic combinations for cancer therapy.
Collapse
|
16
|
Teo P, Wang X, Chen B, Zhang H, Yang X, Huang Y, Tang J. Complex of TNF-α and Modified Fe 3O 4 Nanoparticles Suppresses Tumor Growth by Magnetic Induction Hyperthermia. Cancer Biother Radiopharm 2018; 32:379-386. [PMID: 29265918 DOI: 10.1089/cbr.2017.2404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Magnetic nanoparticles are increasingly applied in clinical area for drug delivery, also in magnetic induction hyperthermia (MIH), and so on. The present research would prepare appropriately modified superparamagnetic iron oxide nanoparticles (SPIONs) to conduct MIH and transfect the anticancer cytokine TNF-α into cells. MATERIALS AND METHODS The SPIONs were surface-modified by 3-aminopropyltriethoxysilane (APTS) and/or protamine sulfate (PRO). The combined MIH using SPIONs and gene therapy were applied to treat Hep G2 cells and tumor model transplanted in nude mice. RESULTS The PRO-SPIONs (the surfaces were sequentially modified by APTS and PRO) showed high transfection efficiency for TNF-α gene with no obvious cytotoxicity. It also exhibited great temperature rising performance under alternating current magnetic field. The combined MIH and gene therapy using PRO-SPIONs/TNF-α complex could reduce cell variability of Hep G2 cells and tumor size transplanted in nude mice. CONCLUSIONS The PRO-SPIONs efficiently transfect the TNF-α gene into Hep G2 cells. Cells expressed more TNF-α when they were exposed to alternating current magnetic field only once. Combined MIH and gene therapy for treatment in vivo exhibited better effects than MIH or gene therapy alone. The combined MIH and gene therapy is promising in liver cancer treatment.
Collapse
Affiliation(s)
- Peishan Teo
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China
| | - Xiaowen Wang
- 2 Yuquan Hospital, Medical Center, Tsinghua University , Beijing, People's Republic of China
| | - Benke Chen
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China .,3 Department of Biological Pharmaceuticals, Beijing University of Chinese Medicine , Beijing, People's Republic of China
| | - Han Zhang
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China .,4 Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University , Jinan, People's Republic of China
| | - Xin Yang
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China .,3 Department of Biological Pharmaceuticals, Beijing University of Chinese Medicine , Beijing, People's Republic of China
| | - Yun Huang
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China
| | - Jintian Tang
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China
| |
Collapse
|
17
|
Qin L, Yan P, Xie C, Huang J, Ren Z, Li X, Best S, Cai X, Han G. Gold nanorod-assembled ZnGa 2O 4:Cr nanofibers for LED-amplified gene silencing in cancer cells. NANOSCALE 2018; 10:13432-13442. [PMID: 29972189 DOI: 10.1039/c8nr03802c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoparticles are now commonly used as non-viral gene vectors for RNA interference (RNAi) in cancer therapy but suffer from low targeting efficiency in situ. Meanwhile, localized drug delivery systems do not offer the effective capability for intracellular gene transportation. We describe here the design and synthesis of a localized therapeutic system, consisting of gold nanorods (Au NRs) loaded with hTERT siRNA assembled on the surface of ZnGa2O4:Cr (ZGOC) nanofibers. This composite system offers the potential for a LED-induced mild photothermal effect which enhances the phagocytosis of Au NRs carrying siRNA and the subsequent release of siRNA in the cytoplasm. Both phenomena amplify the gene silencing effect and consequently offer the potential for a superior therapeutic outcome.
Collapse
Affiliation(s)
- Lun Qin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shen Y, Xi F, Li H, Luo Y, Chen C, Wang L. Telomerase reverse transcriptase suppression inhibits cell proliferation and promotes cell apoptosis in hepatocellular cancer. IUBMB Life 2018; 70:642-648. [PMID: 29707886 DOI: 10.1002/iub.1758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
We aimed to investigate the role of telomerase reverse transcriptase (TERT) in hepatocellular cancer (HCC) cells. R software was used for differential expressed gene analysis. Western blot and quantitative real time polymerase chain reaction (qRT-PCR), respectively, were used to detect protein expression and mRNA level of TERT in tumor cell lines. Real-time quantitative telomeric repeat amplification protocol assay, MTT assay, colony formation assay, and flow cytometry (FCM) assay were used to analyze the telomerase activity, viability, proliferation, cell cycle progression and apoptosis of HCC cells. The proliferation ratio of HCC cells transfected with TERT-siRNA was significantly decreased compared with control group. Plate clone results suggested that the number of colonies also decreased in TERT-siRNA group. FCM results showed that more cells were arrested in G0/G1 phase and apoptosis rate increased in TERT-siRNA group compared with control group. TERT suppression inhibited cell proliferation but promoted cell cycle arrest and cell apoptosis. © 2018 IUBMB Life, 70(7):642-648, 2018.
Collapse
Affiliation(s)
- Yanfeng Shen
- Department of Oncology II, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Feng Xi
- Department of Pathology, Medical College of Hebei University of Engineering, Handan, Hebei, China
| | - Haibin Li
- Department of Oncology II, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Yin Luo
- Department of Oncology II, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Cheng Chen
- Department of Oncology II, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Lei Wang
- Department of Pathology, Medical College of Hebei University of Engineering, Handan, Hebei, China
| |
Collapse
|
19
|
Barczak W, Sobecka A, Golusinski P, Masternak MM, Rubis B, Suchorska WM, Golusinski W. hTERT gene knockdown enhances response to radio- and chemotherapy in head and neck cancer cell lines through a DNA damage pathway modification. Sci Rep 2018; 8:5949. [PMID: 29654294 PMCID: PMC5899166 DOI: 10.1038/s41598-018-24503-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to analyze the effect of hTERT gene knockdown in HNSCC cells by using novel in vitro models of head and neck cancer (HNSCC), as well as improving its personalized therapy. To obtain the most efficient knockdown siRNA, shRNA-bearing lentiviral vectors were used. The efficiency of hTERT silencing was verified with qPCR, Western blot, and immunofluorescence staining. Subsequently, the type of cell death and DNA repair mechanism induction after hTERT knockdown was assessed with the same methods, followed by flow cytometry. The effect of a combined treatment with hTERT gene knockdown on Double-Strand Breaks levels was also evaluated by flow cytometry. Results showed that the designed siRNAs and shRNAs were effective in hTERT knockdown in HNSCC cells. Depending on a cell line, hTERT knockdown led to a cell cycle arrest either in phase G1 or phase S/G2. Induction of apoptosis after hTERT downregulation with siRNA was observed. Additionally, hTERT targeting with lentiviruses, followed by cytostatics administration, led to induction of apoptosis. Interestingly, an increase in Double-Strand Breaks accompanied by activation of the main DNA repair mechanism, NER, was also observed. Altogether, we conclude that hTERT knockdown significantly contributes to the efficacy of HNSCC treatment.
Collapse
Affiliation(s)
- Wojciech Barczak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland. .,Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.
| | - Agnieszka Sobecka
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Head and Neck Cancer Biology Lab, Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal M Masternak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, FL, 32827, Orlando, USA
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 Str., 60-355, Poznan, Poland
| | - Wiktoria M Suchorska
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15 Str., 61-866, Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland
| |
Collapse
|
20
|
Lombardo GE, Maggisano V, Celano M, Cosco D, Mignogna C, Baldan F, Lepore SM, Allegri L, Moretti S, Durante C, Damante G, Fresta M, Russo D, Bulotta S, Puxeddu E. Anti- hTERT siRNA-Loaded Nanoparticles Block the Growth of Anaplastic Thyroid Cancer Xenograft. Mol Cancer Ther 2018; 17:1187-1195. [PMID: 29563163 DOI: 10.1158/1535-7163.mct-17-0559] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/23/2017] [Accepted: 03/06/2018] [Indexed: 11/16/2022]
Abstract
The high frequency of hTERT-promoting mutations and the increased expression of hTERT mRNA in anaplastic thyroid cancer (ATC) make TERT a suitable molecular target for the treatment of this lethal neoplasm. In this study, we encapsulated an anti-hTERT oligonucleotide in biocompatible nanoparticles and analyzed the effects of this novel pharmaceutical preparation in preclinical models of ATC. Biocompatible nanoparticles were obtained in an acidified aqueous solution containing chitosan, anti-hTERT oligoRNAs, and poloxamer 188 as a stabilizer. The effects of these anti-hTERT nanoparticles (Na-siTERT) were tested in vitro on ATC cell lines (CAL-62 and 8505C) and in vivo on xenograft tumors obtained by flank injection of CAL-62 cells into SCID mice. The Na-siTERT reduced the viability and migration of CAL-62 and 8505C cells after 48-hour incubation. Intravenous administration (every 48 hours for 13 days) of this encapsulated drug in mice hosting a xenograft thyroid cancer determined a great reduction in the growth of the neoplasm (about 50% vs. untreated animals or mice receiving empty nanoparticles), and decreased levels of Ki67 associated with lower hTERT expression. Moreover, the treatment resulted in minimal invasion of nearby tissues and reduced the vascularity of the xenograft tumor. No signs of toxicity appeared following this treatment. Telomere length was not modified by the Na-siTERT, indicating that the inhibitory effects of neoplasm growth were independent from the enzymatic telomerase function. These findings demonstrate the potential suitability of this anti-TERT nanoparticle formulation as a novel tool for ATC treatment. Mol Cancer Ther; 17(6); 1187-95. ©2018 AACR.
Collapse
Affiliation(s)
- Giovanni E Lombardo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Valentina Maggisano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Donato Cosco
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Interdepartmental Service Center, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Federica Baldan
- Department of Internal Medicine and Medical Specialties, University of Roma "Sapienza," Roma, Italy
| | - Saverio M Lepore
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lorenzo Allegri
- Department of Medical Area, University of Udine, Udine, Italy
| | - Sonia Moretti
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, University of Roma "Sapienza," Roma, Italy
| | | | - Massimo Fresta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Efisio Puxeddu
- Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
21
|
Xu F, Zhong H, Chang Y, Li D, Jin H, Zhang M, Wang H, Jiang C, Shen Y, Huang Y. Targeting death receptors for drug-resistant cancer therapy: Codelivery of pTRAIL and monensin using dual-targeting and stimuli-responsive self-assembling nanocomposites. Biomaterials 2017; 158:56-73. [PMID: 29304403 DOI: 10.1016/j.biomaterials.2017.12.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 02/01/2023]
Abstract
Chemoresistance remains a formidable hurdle against cancer therapy. Seeking for novel therapy strategies is an urgent need for those who no longer benefit from chemotherapy. Chemoresistance is usually associated with the dysfunction of intrinsic apoptosis. Targeting extrinsic apoptosis via TRAIL signaling and the death receptors could be a potential solution to treat chemoresistant cancer. A highly biocompatible nano system for codelivery of the TRAIL DNA and the death receptor sensitizer monensin was developed, in which low-molecular-weight PEI (LMW-PEI) was crosslinked by the sulfhydryl cyclodextrin via disulfide bonds, and then bound with DNA, thus forming the bioreducible polyplex cores. In addition, the cyclodextrin also functioned as a carrier for the hydrophobic monensin via host-guest inclusion. Poly-γ-glutamic acid (γ-PGA) was used to modify the polyplex core via charge interaction. The γ-PGA corona can specifically bind with the tumor-associated gamma-glutamyl transpeptidase (GGT) overexpressed on the tumor cells, and achieve tumor-targeting delivery. Moreover, the tumor-homing peptide RGD-modified γ-PGA was also prepared as the surface coating materials for further improving gene delivery efficiency. This gene delivery system was characterized by the dual ligand-targeting, dual stimuli-responsive features. The ligands of RGD and γ-PGA can target the tumor-associated receptors (i.e., integrin and GGT). The conformation of γ-PGA is pH-sensitive, and the tumor acidic micro environments could trigger the detachment of surface-coating γ-PGA. The disulfide crosslinking LMW-PEI is redox-sensitive, and its fast disassembling in the tumor cells could favor the efficient gene delivery. The anti-tumor efficacy was demonstrated both in vitro and in vivo. Moreover, MYC-mediated synthetic lethality could be an important mechanism for overcoming the drug resistance. An important finding of our studies is the demonstration of the in vivo treatment efficacy of TRAIL/monensin, thus providing a potential novel therapeutic strategy for overcoming drug-resistant cancer.
Collapse
Affiliation(s)
- Fan Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; Nano Sci-Tech Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Huihai Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; Shanghai University College of Sciences, Shanghai 200444, China
| | - Ya Chang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; Nano Sci-Tech Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Dongdong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; Nano Sci-Tech Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Hongyue Jin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Meng Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Chen Jiang
- Fudan University School of Pharmacy, Shanghai 201203, China
| | - Youqing Shen
- Zhejiang University College of Chemical and Biological Engineering, Hangzhou 310027, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China.
| |
Collapse
|
22
|
Maggisano V, Celano M, Lombardo GE, Lepore SM, Sponziello M, Rosignolo F, Verrienti A, Baldan F, Puxeddu E, Durante C, Filetti S, Damante G, Russo D, Bulotta S. Silencing of hTERT blocks growth and migration of anaplastic thyroid cancer cells. Mol Cell Endocrinol 2017; 448:34-40. [PMID: 28288903 DOI: 10.1016/j.mce.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/09/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Mutations in the hTERT promoter responsible for constitutive telomerase activity are the most frequent genetic alteration detected in anaplastic thyroid cancer (ATC), and proposed as diagnostic and prognostic biomarker in these tumours. In this study we analyzed hTERT expression in a series of human ATCs and investigated the effects of small-interfering RNA-mediated silencing of hTERT on viability and migration and invasive properties of three human ATC cell lines. Expression of hTERT mRNA resulted increased in 8/10 ATCs compared to normal thyroid tissues. Silencing of hTERT in CAL-62, 8505C and SW1736 cells did not modify telomere length but determined a significant decrease (about 50%) of cell proliferation in all cell lines and a great reduction (about 50%) of migration and invasion capacity. These finding demonstrate that hTERT may be considered as a molecular target for ATC treatment.
Collapse
Affiliation(s)
- Valentina Maggisano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Saverio Massimo Lepore
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Federica Baldan
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Efisio Puxeddu
- Department of Medicine, University of Perugia, 06100 Perugia, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Sebastiano Filetti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Cooper BM, Putnam D. Polymers for siRNA Delivery: A Critical Assessment of Current Technology Prospects for Clinical Application. ACS Biomater Sci Eng 2016; 2:1837-1850. [PMID: 33440520 DOI: 10.1021/acsbiomaterials.6b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of polymer-based vectors for siRNA delivery in clinical trials lags behind other delivery strategies; however, the molecular architectures and chemical compositions available to polymers make them attractive candidates for further exploration. Polymer vectors are extensively investigated in academic laboratories worldwide with fundamental progress having recently been made in the areas of high-throughput screening, synthetic methods, cellular internalization, endosomal escape and computational prediction and analysis. This review assesses recent advances within the field and highlights relevant developments from within the complementary fields of nanotechnology and protein chemistry with the intent to propose future work that addresses key gaps within the current body of knowledge, potentially advancing the development of the next generation of polymeric vectors.
Collapse
Affiliation(s)
- Bailey M Cooper
- Meinig School of Biomedical Engineering and ‡Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering and Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Lee SJ, Kim MJ, Kwon IC, Roberts TM. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 2016; 104:2-15. [PMID: 27259398 DOI: 10.1016/j.addr.2016.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 02/24/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types.
Collapse
|
25
|
Wu YF, Wu HC, Kuan CH, Lin CJ, Wang LW, Chang CW, Wang TW. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep 2016; 6:21170. [PMID: 26880047 PMCID: PMC4754752 DOI: 10.1038/srep21170] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022] Open
Abstract
Theranostics, an integrated therapeutic and diagnostic system, can simultaneously monitor the real-time response of therapy. Different imaging modalities can combine with a variety of therapeutic moieties in theranostic nanoagents. In this study, a multi-functionalized, integrated theranostic nanoagent based on folate-conjugated reducible polyethylenimine passivated carbon dots (fc-rPEI-Cdots) is developed and characterized. These nanoagents emit visible blue photoluminescence under 360 nm excitation and can encapsulate multiple siRNAs (EGFR and cyclin B1) followed by releasing them in intracellular reductive environment. In vitro cell culture study demonstrates that fc-rPEI-Cdots is a highly biocompatible material and a good siRNA gene delivery carrier for targeted lung cancer treatment. Moreover, fc-rPEI-Cdots/pooled siRNAs can be selectively accumulated in lung cancer cells through receptor mediated endocytosis, resulting in better gene silencing and anti-cancer effect. Combining bioimaging of carbon dots, stimulus responsive property, gene silencing strategy, and active targeting motif, this multi-functionalized, integrated theranostic nanoagent may provide a useful tool and platform to benefit clinicians adjusting therapeutic strategy and administered drug dosage in real time response by monitoring the effect and tracking the development of carcinomatous tissues in diagnostic and therapeutic aspects.
Collapse
Affiliation(s)
- Yu-Fen Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsi-Chin Wu
- Department of Material Engineering, Tatung University, Taipei, Taiwan
| | - Chen-Hsiang Kuan
- Department of Plastic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Jui Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
26
|
Multifunctional cationic polyurethanes designed for non-viral cancer gene therapy. Acta Biomater 2016; 30:155-167. [PMID: 26621697 DOI: 10.1016/j.actbio.2015.11.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
Abstract
Nano-polyplexes from bioreducible cationic polymers have a massive promise for cancer gene therapy. However, the feasibility of cationic polyurethanes for non-viral gene therapy is so far not well studied. In this work, a linear cationic polyurethane containing disulfide bonds, urethane linkages and protonable tertiary amino groups was successfully generated by stepwise polycondensation reaction between 2,2'-dithiodiethanol bis(p-nitrophenyl carbonate) and 1,4-bis(3-aminopropyl)piperazine (BAP). We confirmed that the cationic polyurethane (denoted as PUBAP) displayed superior gene delivery properties to its cationic polyamide analogue, thus causing higher in vitro transfection efficiency in MCF-7 and SKOV-3 cells. Besides, further folate-PEGylation and hydrophobic deoxycholic acid (DCA) conjugation to amino-containing PUBAP can be conducted to afford multifunctional polyurethane gene delivery system. After optimization, folate-decorated nano-polyplexes from the PUBAP conjugated with 8 folate-PEG chains and 12 DCA residues exhibited superb colloidal stability under physiological conditions, and performed rapid uptake via folate receptor-mediated endocytosis, efficient intracellular gene release and nucleus translocation into SKOV-3 cells in vitro and in vivo. Importantly, PUBAP based polyplexes possess low cytotoxicity as a result of PUBAP biodegradability. Therefore, marked growth inhibition of SKOV-3 tumor xenografted in Balb/c nude mice was achieved with negligible side effects on the mouse health after intravenous administration of PUBAP based polyplexes with a therapeutic plasmid encoding for TNF-related apoptosis-inducing ligand. This work provides a new insight into biomedical application of bio-responsive polyurethanes for cancer therapy. STATEMENT OF SIGNIFICANCE In this study, we have confirmed that disulfide-based cationic polyurethane presents a new non-viral vector for gene transfer and cancer gene therapy. The significance of this work includes: (1) design and synthesis of a group of novel disulfide-based cationic polyurethane by non-isocyanate chemistry; (2) comparative study of transfection activity between cationic polyurethanes and cationic polyamides; (3) feasibility of bioreducible cationic polyurethanes for in vivo cancer gene therapy.
Collapse
|
27
|
Liu S, Huang W, Jin MJ, Fan B, Xia GM, Gao ZG. Inhibition of murine breast cancer growth and metastasis by survivin-targeted siRNA using disulfide cross-linked linear PEI. Eur J Pharm Sci 2016; 82:171-82. [DOI: 10.1016/j.ejps.2015.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/11/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022]
|
28
|
Li H, Hao Y, Wang N, Wang L, Jia S, Wang Y, Yang L, Zhang Y, Zhang Z. DOTAP functionalizing single-walled carbon nanotubes as non-viral vectors for efficient intracellular siRNA delivery. Drug Deliv 2015; 23:840-8. [PMID: 24892622 DOI: 10.3109/10717544.2014.919542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Functionalized single-walled carbon nanotubes (SWNT) with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were used as novel and more convenient carriers of small interfering RNA (siRNA). OBJECTIVE To utilize the unique capability of SWNT to be easily modified by functional groups and readily internalized by mammalian cells to bind, condense, stabilize siRNA and enhance its transfection efficiency. METHODS After SWNT were non-covalently functionalized by cationic DOTAP (SWNT-DOTAP), siRNA interacted with SWNT-DOTAP via static electricity (SWNT-DOTAP/siRNA). Subsequently, the size, zeta potential and morphology of SWNT-DOTAP/siRNA were analyzed. The optimal compression ratio and stability of siRNA were assessed by agarose gel electrophoresis. Furthermore, in prostate carcinoma PC-3 cells, RT-PCR, flow cytometry and sulforhodamine B assays were used to evaluate the silencing activity, transfection efficiency and cell proliferation, respectively. RESULTS AND DISCUSSION The characteristics of SWNT-DOTAP, i.e. an average size of 194.49 nm, a zeta potential of 45.16 mV and lower cytotoxicity than Lipofectamine 2000, indicated that this vector was suitable for siRNA delivery. Moreover, after interaction with SWNT-DOTAP, siRNA of human telomerase reverse transcriptase was bound, condensed and stabilized. In PC-3 cells, SWNT-DOTAP/siRNA exhibited 82.6% silencing activity and 92% transfection efficiency. Furthermore, the complexes inhibited cell proliferation by 42.1%. CONCLUSION SWNT-DOTAP may be a promising siRNA delivery vector for gene-based therapeutic applications in cancer.
Collapse
Affiliation(s)
- Haixia Li
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Yongwei Hao
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Ning Wang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China .,b Department of pharmacy , the First Affiliated Hospital of Xinxiang Medical University , Xinxiang 453100 , China
| | - Lei Wang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Shasha Jia
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Yali Wang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Lijia Yang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Yun Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Zhenzhong Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| |
Collapse
|
29
|
A family of cationic polyamides for in vitro and in vivo gene transfection. Acta Biomater 2015; 22:120-30. [PMID: 25917844 DOI: 10.1016/j.actbio.2015.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 02/06/2023]
Abstract
The purpose of this study is to develop biodegradable cationic polyamides for non-viral gene delivery and elucidate their structural effects on gene transfection activity. To this end, a group of novel cationic polyamides were synthesized by polycondensation reaction between different di-p-nitrophenyl esters and tertiary amine-containing primary diamines. These linear polyamides have flexible alkylene group (ethylene or propylene), protonable amino group and bioreducible disulfide linkage in the polyamide main chain. The alkylene group and disulfide linkage in these polyamides have a distinct effect on their gene delivery properties including buffering capacity, gene binding ability and intracellular gene release profile. Those cationic polyamides containing disulfide linkage and 1,4-bis(3-aminopropyl)piperazine (BAP) residue exhibited high buffering capacity (endosomal escape ability), high gene binding ability, and intracellular gene release ability, thus inducing fast gene nucleus translocation and robust gene transfection in vitro against different cell lines and rat bone marrow mesenchymal stem cells. Moreover, the transfection efficiencies in vitro were comparable or higher than those of 25 kDa branched polyethylenimine and Lipofectamine 2000 transfection agent as positive controls. These cationic polyamides and their polyplexes were of low cytotoxicity when an optimal transfection efficacy was achieved. In vivo transfection tests showed that bioreducible BAP-based polyamides were applicable for intravenous gene delivery in a mouse model, leading to higher level of transgene expression in the liver as compared to 22 kDa linear polyethylenimine as a positive control. These cationic polyamides provide a useful platform to elucidate the relationship between chemical functionalities and gene transfection activity.
Collapse
|
30
|
Huang RY, Chiang PH, Hsiao WC, Chuang CC, Chang CW. Redox-Sensitive Polymer/SPIO Nanocomplexes for Efficient Magnetofection and MR Imaging of Human Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6523-6531. [PMID: 25989343 DOI: 10.1021/acs.langmuir.5b01208] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetofection has received increasing attention for its great potential on gene therapy. To promote its clinical therapeutic applications, development of safe and effective magnetic nanocarriers is in high demand. Herein, we present a redox-sensitive polymer/metal nanocomplex system (PSPIO) for efficient magnetofection and magnet resonance imaging (MRI) on cancer cells. PSPIO was prepared by modifying SPIO with redox-sensitive polyethylenimine (SSPEI) via a ligand exchange process. PSPIO could efficiently condense plasmid DNA (pDNA) into nanoparticles, which exhibited several favorable properties for gene delivery, including protection of nucleic acids from enzymatic degradation, stable colloids in serum, and redox-responsive pDNA release. As a potential MR imaging agent, PSPIO displayed good magnetization (28.3 emu/g) and dose-dependent T2-weighted imaging contrast (R2 = 291.1 s(-1) mM(-1)) in vitro. The use of redox-sensitive SSPEI polymer contributed to much lower cytotoxicity of PSPIO compared to nondegradable bPEI25k. In vitro transfection efficiency of PSPIO was significantly enhanced under an external magnetic field. In the presence of serum, PSPIO exhibited higher transgene expression than SSPEI or bPEI25k polymer on mouse glioma (ALTS1C1) or human prostate cancer (PC3) cell lines. Taken together, it is demonstrated that PSPIO possess great potential for cancer gene therapy and molecular imaging.
Collapse
Affiliation(s)
- Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pin-Hsin Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-Chen Hsiao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-Chiao Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
31
|
Zhao L, Li W, Zhou Y, Zhang Y, Huang S, Xu X, Li Z, Guo Q. The overexpression and nuclear translocation of Trx-1 during hypoxia confers on HepG2 cells resistance to DDP, and GL-V9 reverses the resistance by suppressing the Trx-1/Ref-1 axis. Free Radic Biol Med 2015; 82:29-41. [PMID: 25656992 DOI: 10.1016/j.freeradbiomed.2015.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/27/2014] [Accepted: 01/19/2015] [Indexed: 12/16/2022]
Abstract
Microenvironmental hypoxia gives many tumor cells the capacity for drug resistance. Thioredoxin family members play critical roles in the regulation of cellular redox homeostasis in a stressed environment. In this study, we established a hypoxia-drug resistance (hypoxia-DR) model using HepG2 cells and discovered that the overexpression and nuclear translocation of thioredoxin-1 (Trx-1) are closely associated with this resistance through the regulation of the metabolism by the oxidative stress response to glycolysis. Intranuclear Trx-1 enhances the DNA-binding activity of HIF-1α via its interaction with and reducing action on Ref-1, resulting in increased expression of glycolysis-related proteins (PDHK1, HKII, and LDHA), glucose uptake, and lactate generation under hypoxia. Meanwhile, we found that GL-V9, a newly synthesized flavonoid derivative, shows an ability to reverse the hypoxia-DR and has low toxicity both in vivo and in vitro. GL-V9 could inhibit the expression and nuclear translocation of Trx-1 and then suppress HIF-1α DNA-binding activity by inhibiting the Trx-1/Ref-1 axis. As a result, glycolysis is weakened and oxidative phosphorylation is enhanced. Thus, GL-V9 leads to an increment in intracellular ROS generation and consequently intensified apoptosis induced by DDP.
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Design and Optimization, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education
| | - Wei Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Design and Optimization, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Design and Optimization, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Design and Optimization, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education
| | - Shaoliang Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Design and Optimization, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education
| | - Xuefen Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Design and Optimization, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People׳s Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Design and Optimization, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education.
| |
Collapse
|
32
|
Polylysine-modified polyethylenimines as siRNA carriers for effective tumor treatment. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1632-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Chuang CC, Chang CW. Complexation of bioreducible cationic polymers with gold nanoparticles for improving stability in serum and application on nonviral gene delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7724-7731. [PMID: 25764067 DOI: 10.1021/acsami.5b00732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Widespread applications of conventional polymeric gene carriers are greatly hampered by their inefficient transfection performance under serum-containing environment. Aiming to overcome this limitation, we propose a bioreducible polyethylenimine-gold nanocomplex system (SSPEI-Au NC), which can be prepared by a simple layer-by-layer (LBL) assembly procedure. SSPEI-Au NC contains sequentially deposited layers of bioreducible polyethylenimine (SSPEI) and poly(γ-glutamic acid) (γ-PGA) for efficient binding and delivery of plasmid DNA (pDNA). SSPEI-Au NC was characterized for various physicochemical properties, including: UV-vis spectra, TEM imaging, hydrodynamic size, and pDNA binding ability. The SSPEI-Au NC were efficiently uptaken by mammalian cells as observed using dark-field microscopy. Comparing to nondegradable PEI25k, the bioreducible SSPEI-Au NC exhibited superior transfection capability under serum-containing condition while causing lower cytotoxicity on mammalian cell lines. The effect of serum on SSPEI-Au NC dispersity was studied using UV-vis spectrometry and the results suggest that serum-assisted colloidal stability of SSPEI-Au NC contributed to its serum-resistant transfection.
Collapse
Affiliation(s)
- Chun-Chiao Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
34
|
Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, Yang R, Diplas BH, Wang Z, Greer PK, Zhu H, Wang CY, Carpenter AB, Friedman H, Friedman AH, Keir ST, He J, He Y, McLendon RE, Herndon JE, Yan H, Bigner DD. Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 2015; 5:1515-25. [PMID: 24722048 PMCID: PMC4039228 DOI: 10.18632/oncotarget.1765] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Frequent mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) and the promoter of telomerase reverse transcriptase (TERT) represent two significant discoveries in glioma genomics. Understanding the degree to which these two mutations co-occur or occur exclusively of one another in glioma subtypes presents a unique opportunity to guide glioma classification and prognosis. We analyzed the relationship between overall survival (OS) and the presence of IDH1/2 and TERT promoter mutations in a panel of 473 adult gliomas. We hypothesized and show that genetic signatures capable of distinguishing among several types of gliomas could be established providing clinically relevant information that can serve as an adjunct to histopathological diagnosis. We found that mutations in the TERT promoter occurred in 74.2% of glioblastomas (GBM), but occurred in a minority of Grade II-III astrocytomas (18.2%). In contrast, IDH1/2 mutations were observed in 78.4% of Grade II-III astrocytomas, but were uncommon in primary GBM. In oligodendrogliomas, TERT promoter and IDH1/2 mutations co-occurred in 79% of cases. Patients whose Grade III-IV gliomas exhibit TERT promoter mutations alone predominately have primary GBMs associated with poor median OS (11.5 months). Patients whose Grade III-IV gliomas exhibit IDH1/2 mutations alone predominately have astrocytic morphologies and exhibit a median OS of 57 months while patients whose tumors exhibit both TERT promoter and IDH1/2 mutations predominately exhibit oligodendroglial morphologies and exhibit median OS of 125 months. Analyzing gliomas based on their genetic signatures allows for the stratification of these patients into distinct cohorts, with unique prognosis and survival.
Collapse
Affiliation(s)
- Patrick J Killela
- Department of Pathology, Duke University Medical Center, The Preston Robert Tisch Brain Tumor Center at Duke, and Pediatric Brain Tumor Foundation Institute at Duke, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rheiner S, Rychahou P, Bae Y. Effects of the Lipophilic Core of Polymer Nanoassemblies on Intracellular Delivery and Transfection of siRNA. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.3.284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
36
|
Liu Y, Lin C, Li J, Qu Y, Ren J. In vitro and in vivo gene transfection using biodegradable and low cytotoxic nanomicelles based on dendritic block copolymers. J Mater Chem B 2015; 3:688-699. [DOI: 10.1039/c4tb01406e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic PCL-b-PDMAEMA copolymers have been used as non-viral vectors for gene transfection and exhibited high transfection efficiencies and low cytotoxicity.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- China
| | - Chao Lin
- The Institute for Biomedical Engineering & Nano Science
- School of Medicine
- Tongji University
- Shanghai 200092
- China
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- China
| | - Yang Qu
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- China
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- China
| |
Collapse
|
37
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
38
|
Huang Y, Wang D, Zhu X, Yan D, Chen R. Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers. Polym Chem 2015. [DOI: 10.1039/c5py00144g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent progress in the synthesis, modifications and therapeutic applications of biocompatible or biodegradable hyperbranched polymers has been reviewed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
39
|
Targeted siRNA therapy using cytoplasm-responsive nanocarriers and cell-penetrating peptides. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0155-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Silencing of the hTERT gene by shRNA inhibits colon cancer SW480 cell growth in vitro and in vivo. PLoS One 2014; 9:e107019. [PMID: 25207650 PMCID: PMC4160217 DOI: 10.1371/journal.pone.0107019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/14/2014] [Indexed: 01/17/2023] Open
Abstract
Human telomerase reverse transcriptase (hTERT) is the key enzyme responsible for synthesizing and maintaining the telomeres on the ends of chromosomes, and it is essential for cell proliferation. This has made hTERT a focus of oncology research and an attractive target for anticancer drug development. In this study, we designed a small interfering RNA (siRNA) targeting the catalytic subunit of hTERT and tested its effects on the growth of telomerase-positive human colon carcinoma SW480 cells in vitro, as well as on the tumorigenicity of these cells in nude mice. Transient and stable transfection of hTERT siRNA into colon cancer SW480 cells suppressed hTERT expression, reduced telomerase activity and inhibited cell growth and proliferation. Knocking down hTERT expression in SW480 tumors xenografted into nude mice significantly slowed tumor growth and promoted tumor cell apoptosis. Our results suggest that hTERT is involved in carcinogenesis of human colon carcinoma, and they highlight the therapeutic potential of a hTERT knock-down approach.
Collapse
|
41
|
Merkel OM, Kissel T. Quo vadis polyplex? J Control Release 2014; 190:415-23. [DOI: 10.1016/j.jconrel.2014.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/24/2022]
|
42
|
PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials 2014; 35:7978-91. [DOI: 10.1016/j.biomaterials.2014.05.068] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022]
|
43
|
Drevytska TI, Nagibin VS, Gurianova VL, Kedlyan VR, Moibenko AA, Dosenko VE. Silencing of TERT decreases levels of miR-1, miR-21, miR-29a and miR-208a in cardiomyocytes. Cell Biochem Funct 2014; 32:565-70. [PMID: 25156787 DOI: 10.1002/cbf.3051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 11/11/2022]
Abstract
To test the hypothesis that telomerase reverse transcriptase (TERT) as an RNA-dependent RNA polymerase could be involved in the amplification of microRNA (miRNA), we have determined the levels of immature and mature miRNA in cultured neonatal rat cardiomyocytes, during the silencing of TERT by siRNA. The silencing of the TERT gene led to the reduction of both telomerase activity and the TERT mRNA expression when compared with scrambled RNA. TERT gene silencing resulted in the decrement of three studied mature miRNAs levels: miRNA-21, miRNA-29a and miRNA-208a when compared with scrambled RNA; but miRNA-1, it was not changed significantly. At the same time, levels of immature miRNA-1 and miRNA-208a were not changed, although the levels of immature miRNA-29a and pri-miRNA-1 were decreased. The data obtained allow us to permit that TERT is a genome-independent source of mature miRNA, and the changes in telomerase activity can significantly influence the level of miRNA in cardiomyocytes.
Collapse
Affiliation(s)
- T I Drevytska
- Bogomoletz Institute of Physiology, Key State Laboratory, National Academy of Science, Kiev, Ukraine
| | | | | | | | | | | |
Collapse
|
44
|
Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M. Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomedicine 2014; 9:3347-61. [PMID: 25045265 PMCID: PMC4099417 DOI: 10.2147/ijn.s61463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Theranostic nanoparticles based on superparamagnetic iron oxide (SPIO) have a great promise for tumor diagnosis and gene therapy. However, the availability of theranostic nanoparticles with efficient gene transfection and minimal toxicity remains a big challenge. In this study, we construct an intelligent SPIO-based nanoparticle comprising a SPIO inner core and a disulfide-containing polyethylenimine (SSPEI) outer layer, which is referred to as a SSPEI-SPIO nanoparticle, for redox-triggered gene release in response to an intracellular reducing environment. We reveal that SSPEI-SPIO nanoparticles are capable of binding genes to form nano-complexes and mediating a facilitated gene release in the presence of dithiothreitol (5–20 mM), thereby leading to high transfection efficiency against different cancer cells. The SSPEI-SPIO nanoparticles are also able to deliver small interfering RNA (siRNA) for the silencing of human telomerase reverse transcriptase genes in HepG2 cells, causing their apoptosis and growth inhibition. Further, the nanoparticles are applicable as T2-negative contrast agents for magnetic resonance (MR) imaging of a tumor xenografted in a nude mouse. Importantly, SSPEI-SPIO nanoparticles have relatively low cytotoxicity in vitro at a high concentration of 100 μg/mL. The results of this study demonstrate the utility of a disulfide-containing cationic polymer-decorated SPIO nanoparticle as highly potent and low-toxic theranostic nano-system for specific nucleic acid delivery inside cancer cells.
Collapse
Affiliation(s)
- Dan Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Xin Tang
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Benjamin Pulli
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Chao Lin
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Peng Zhao
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Jian Cheng
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Xueyu Yuan
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Qiong Luo
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| | - Meng Ye
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Tongji University, People's Republic of China
| |
Collapse
|
45
|
Oupický D, Li J. Bioreducible polycations in nucleic acid delivery: past, present, and future trends. Macromol Biosci 2014; 14:908-22. [PMID: 24678057 PMCID: PMC4410047 DOI: 10.1002/mabi.201400061] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Polycations that are degradable by reduction of disulfide bonds are developed for applications in delivery of nucleic acids. This Feature Article surveys methods of synthesis of bioreducible polycations and discusses current understanding of the mechanism of action of bioreducible polyplexes. Emphasis is placed on the relationship between the biological redox environment and toxicity, trafficking, transfection activity, and in vivo behavior of bioreducible polycations and polyplexes.
Collapse
Affiliation(s)
- David Oupický
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Durham Research Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA.
| | | |
Collapse
|
46
|
Song Y, Lou B, Zhao P, Lin C. Multifunctional Disulfide-Based Cationic Dextran Conjugates for Intravenous Gene Delivery Targeting Ovarian Cancer Cells. Mol Pharm 2014; 11:2250-61. [DOI: 10.1021/mp4006672] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yanyan Song
- The
Institute for Biomedical Engineering and Nanoscience, Tongji University
School of Medicine, Tongji University, Shanghai 200092, P. R. China
- School
of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Bo Lou
- The
Institute for Biomedical Engineering and Nanoscience, Tongji University
School of Medicine, Tongji University, Shanghai 200092, P. R. China
- School
of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Peng Zhao
- The
Institute for Biomedical Engineering and Nanoscience, Tongji University
School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Chao Lin
- The
Institute for Biomedical Engineering and Nanoscience, Tongji University
School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
47
|
Ryu K, Kim TI. Therapeutic gene delivery using bioreducible polymers. Arch Pharm Res 2013; 37:31-42. [DOI: 10.1007/s12272-013-0275-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022]
|
48
|
Wu Y, Ji J, Yang R, Zhang X, Li Y, Pu Y, Li X. Guanidinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymer as siRNA carriers for inhibiting human telomerase reverse transcriptase expression. Drug Deliv 2013; 20:296-305. [DOI: 10.3109/10717544.2013.836619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Xiao B, Laroui H, Ayyadurai S, Viennois E, Charania MA, Zhang Y, Merlin D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials 2013; 34:7471-82. [PMID: 23820013 DOI: 10.1016/j.biomaterials.2013.06.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 12/25/2022]
Abstract
The application of RNA interference (RNAi) for inflammatory bowel disease (IBD) therapy has been limited by the lack of non-cytotoxic, efficient and targetable small interfering RNA (siRNA) carriers. TNF-α is the major pro-inflammatory cytokine mainly secreted by macrophages during IBD. Here, a mannosylated bioreducible cationic polymer (PPM) was synthesized and further spontaneously assembled nanoparticles (NPs) assisted by sodium triphosphate (TPP). The TPP-PPM/siRNA NPs exhibited high uniformity (polydispersity index = 0.004), a small particle size (211-275 nm), excellent bioreducibility, and enhanced cellular uptake. Additionally, the generated NPs had negative cytotoxicity compared to control NPs fabricated by branched polyethylenimine (bPEI, 25 kDa) or Oligofectamine (OF) and siRNA. In vitro gene silencing experiments revealed that TPP-PPM/TNF-α siRNA NPs with a weight ratio of 40:1 showed the most efficient inhibition of the expression and secretion of TNF-α (approximately 69.9%, which was comparable to the 71.4% obtained using OF/siRNA NPs), and its RNAi efficiency was highly inhibited in the presence of mannose (20 mm). Finally, TPP-PPM/siRNA NPs showed potential therapeutic effects on colitis tissues, remarkably reducing TNF-α level. Collectively, these results suggest that non-toxic TPP-PPM/siRNA NPs can be exploited as efficient, macrophage-targeted carriers for IBD therapy.
Collapse
Affiliation(s)
- Bo Xiao
- Department of Biology and Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta 30302, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Telomerase and the search for the end of cancer. Trends Mol Med 2013; 19:125-33. [DOI: 10.1016/j.molmed.2012.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/11/2012] [Accepted: 11/16/2012] [Indexed: 12/30/2022]
|