1
|
Lei Z, Cai X, Wan J, Li Z, Sun T. Preparation and characterization of tildipirosin-loaded solid lipid nanoparticles for the treatment of intracellular Staphylococcus aureus infections. Biomater Sci 2025; 13:1272-1285. [PMID: 39878017 DOI: 10.1039/d4bm01428f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
To enhance the antibacterial efficacy of tildipirosin against Staphylococcus aureus (S.A.) infections, optimized solid lipid nanoparticles loaded with tildipirosin (SLN-TD) were developed, using docosanoic acid (DA), octadecanoic acid (OA), hexadecanoic acid (HA), and tetradecanoic acid (TA) as lipid components. The efficacy of these nanoparticles against S.A. was evaluated using orthogonal design analysis. FTIR, DLS, HPLC, and TEM analyses confirmed that tildipirosin was successfully incorporated into the solid lipid nanoparticles, resulting in an optimal nanoparticle drug delivery system with a particle size of 322.63 ± 1.51 nm, a zeta potential of 37.83 ± 0.95 mV, an encapsulation efficiency of 82.23 ± 0.45%, and a drug loading capacity of 7.36 ± 0.18%. The SLN-TD system exhibited high stability, effective sustained release in vitro, and enhanced intracellular activity against S.A. Pharmacokinetic studies in rats administered 4 mg kg-1via intramuscular and oral routes showed that, compared to unencapsulated tildipirosin (TD), SLN-TD provided sustained release in vivo and improved gastrointestinal absorption with higher bioavailability. Additionally, in a mouse model of S.A. infection, SLN-TD demonstrated superior antibacterial activity and sustained drug delivery for effective treatment. This study offers a promising multifunctional nanoparticle drug delivery system for the effective treatment of S.A. infections and enhances the oral bioavailability of tildipirosin, with potential applications in veterinary medicine.
Collapse
Affiliation(s)
- Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Juan Wan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Ferroni M, De Gaetano F, Gastaldi D, Cereda MG, Boschetti F. Investigating Flow-Induced Corrosion of Magnesium in Ophthalmological Milieu. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4404. [PMID: 39274791 PMCID: PMC11396283 DOI: 10.3390/ma17174404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Although the impact of local fluid dynamics in the biodegradation of magnesium is well known, currently no studies in the literature address the degradation effects of ocular vitreous on bioresorbable devices made of magnesium, which could be developed as drug delivery carriers. The aim of this study was to investigate the flow-induced corrosion mechanism of magnesium in an ophthalmological environment for future applications in ophthalmic drug delivery. To achieve this, experimental and computational methods were combined. Specifically, a CFD model was employed to design experimental conditions that replicate the ocular flow-induced shear stress (FISS) on manufactured magnesium samples. Pure Mg samples were tested in a bioreactor system capable of imposing the ocular CFD calculated values of FISS on the Mg samples' surface by varying the pump flow rate. Optimal flow rates for a range of different FISS values specific to the ophthalmological fluid dynamics affecting the device were indeed determined before running the experiments. After conducting customized corrosion tests, morphological observations and profilometric maps of the eroded surfaces of Mg samples were obtained using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These maps were then post-processed for the parametric evaluation of corrosion rates. Pre-existing localized superficial defects did affect the final corrosion pattern. SEM images and CLSM data confirmed a uniform corrosion mechanism, with corrosion rates of 1.9, 2.7, and 3.4 μm/day under different shear stress conditions (0, 0.01, and 0.032 Pa, respectively). More generally, uniform corrosion on pure Mg samples increased with higher FISS values, and at higher shear stress values (FISS = 0.032 Pa), a notable washing-out effect of the corrosion products was observed. The removal of corrosion products at higher shear stresses suggests that the dynamic ocular environment, influenced by saccadic movements, plays a significant role in the corrosion mechanism of pure magnesium. The corrosion rates determined in this study, in conjunction with clinical drug release requirements, are crucial for designing potential drug-release devices for ocular applications.
Collapse
Affiliation(s)
- Marco Ferroni
- Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
- MgShell S.r.l., 20133 Milan, Italy
| | - Francesco De Gaetano
- Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
- MgShell S.r.l., 20133 Milan, Italy
| | - Dario Gastaldi
- Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
| | | | - Federica Boschetti
- Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
3
|
Cirilli M, Maroni A, Moutaharrik S, Foppoli A, Ochoa E, Palugan L, Gazzaniga A, Cerea M. Organ-Retentive Osmotically Driven System (ORODS): A Novel Expandable Platform for in Situ Drug Delivery. Int J Pharm 2023; 644:123295. [PMID: 37544386 DOI: 10.1016/j.ijpharm.2023.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Drug delivery systems capable of being retained within hollow organs allow the entire drug dose to be delivered locally to the disease site or to absorption windows for improved systemic bioavailability. A novel Organ-Retentive Osmotically Driven System (ORODS) was here proposed, obtained by assembling drug-containing units having prolonged release kinetics with osmotic units used as increasing volume compartments. Particularly, prototypes having H-shape design were conceived, manufactured and evaluated. Such devices were assembled by manually inserting a tube made of regenerated cellulose (osmotic unit) into the holes of two perforated hydrophilic tableted matrices containing paracetamol as a tracer drug. The osmotic unit was obtained by folding and gluing a plain regenerated cellulose membrane and loading sodium chloride inside. When immersed in aqueous fluids, this compartment expanded to approximately 80% of its maximum volume within 30 min of testing, and a plateau was maintained for about 6 h. Subsequently, it slowly shrank to approximately 20% of the maximum volume in 24 h, which would allow for physiological emptying of the device from hollow organs. While expanding, the osmotic unit acquired stiffness. Drug release from H-shaped ORODSs conveyed in hard-gelatin capsules was shown to be prolonged for more than 24 h.
Collapse
Affiliation(s)
- Micol Cirilli
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Alessandra Maroni
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Saliha Moutaharrik
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy.
| | - Anastasia Foppoli
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Evelyn Ochoa
- Università degli Studi di Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Palugan
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Matteo Cerea
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| |
Collapse
|
4
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
5
|
Dorel R, Wong AR, Crawford JJ. Trust Your Gut: Strategies and Tactics for Intestinally Restricted Drugs. ACS Med Chem Lett 2023; 14:233-243. [PMID: 36923921 PMCID: PMC10009798 DOI: 10.1021/acsmedchemlett.3c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Non-absorbable small-molecule drugs targeted to the gut represent an alternative approach to safe, non-systemic therapeutics. Such drugs remain confined to the gastrointestinal tract upon oral dosing by virtue of their limited passive permeability, increasing the local concentration at the site of action while minimizing exposure elsewhere in the body. Herein we review the latest advances in the field of gut-restricted therapeutics, highlighting the different strategies and tactics that medicinal chemists have employed in pursuit of drugs with minimal intestinal absorption.
Collapse
Affiliation(s)
- Ruth Dorel
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Alice R. Wong
- Genentech, Inc., South San Francisco, California 94080, United States
| | - James J. Crawford
- Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
6
|
Uboldi M, Perrotta C, Moscheni C, Zecchini S, Napoli A, Castiglioni C, Gazzaniga A, Melocchi A, Zema L. Insights into the Safety and Versatility of 4D Printed Intravesical Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15030757. [PMID: 36986618 PMCID: PMC10057729 DOI: 10.3390/pharmaceutics15030757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
This paper focuses on recent advancements in the development of 4D printed drug delivery systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local treatments with major compliance and long-lasting performance, they would represent a promising innovation for the current treatment of bladder pathologies. Being based on a shape-memory pharmaceutical-grade polyvinyl alcohol (PVA), these DDSs are manufactured in a bulky shape, can be programmed to take on a collapsed one suitable for insertion into a catheter and re-expand inside the target organ, following exposure to biological fluids at body temperature, while releasing their content. The biocompatibility of prototypes made of PVAs of different molecular weight, either uncoated or coated with Eudragit®-based formulations, was assessed by excluding relevant in vitro toxicity and inflammatory response using bladder cancer and human monocytic cell lines. Moreover, the feasibility of a novel configuration was preliminarily investigated, targeting the development of prototypes provided with inner reservoirs to be filled with different drug-containing formulations. Samples entailing two cavities, filled during the printing process, were successfully fabricated and showed, in simulated urine at body temperature, potential for controlled release, while maintaining the ability to recover about 70% of their original shape within 3 min.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Cristiana Perrotta
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Silvia Zecchini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Alessandra Napoli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Chiara Castiglioni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-02-50324654
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| |
Collapse
|
7
|
Melgarejo Segura MT, Morales Martínez A, Yáñez Castillo Y, Arrabal Polo MÁ, Gómez Lechuga P, Pareja Vílchez M, Arrabal Martín M. Conductive hyperthermic chemotherapy versus electromotive drug administration of mitomycin C as intravesical adjuvant treatment of patients with intermediate or high-risk non-muscle invasive bladder cancer. Urol Oncol 2023; 41:109.e1-109.e8. [PMID: 36379812 DOI: 10.1016/j.urolonc.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/25/2022] [Accepted: 10/16/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Devices that increase the penetration of intravesical chemotherapeutic agents have been developed as alternatives to the use of bacillus Calmette-Guérin, in short supply at a time of increasing global incidence of non-muscle invasive bladder cancer (NMIBC). We performed a prospective observational study to compare 2 of these devices in the treatment of patients with high- and intermediate-risk NMIBC. The primary endpoint was the recurrence-free rate. Secondary endpoints were the rate of progression and adverse events. METHODS After undergoing transurethral bladder resection, 98 patients were selected to receive 1 of 2 treatments: hyperthermic intravesical chemotherapy (HIVEC) treatment with 40 mg of mitomycin C (MMC) using Combat BRS System V2.0 at 43 ± 0.5°C and 200 ml/min for 60 minutes (56 patients) or electromotive drug administration (EMDA) with 40 mg of MMC at 20 mA for 30 minutes (42 patients). The treatment schemes were similar: 6 weekly instillations as induction and 6-monthly instillations as maintenance. The recurrence rates were evaluated at 6 and 12 months and the progression rates at 12 months. RESULTS The recurrence-free rate at 12 months was 91,1% in the HIVEC group and 88.1% in the EMDA group (P ≥ 0.05). After the 12-month follow-up, only 1 progression occurred in each treatment group. In terms of adverse events, no significant differences were found between the treatments. CONCLUSIONS HIVEC and EMDA techniques are comparable in terms of recurrence, progression and adverse events at 12 months in the treatment of patients with high- and intermediate-risk NMIBC.
Collapse
|
8
|
Pizzi M, De Gaetano F, Ferroni M, Boschetti F, Annoni M. A Deep-Hole Microdrilling Study of Pure Magnesium for Biomedical Applications. MICROMACHINES 2023; 14:132. [PMID: 36677193 PMCID: PMC9863778 DOI: 10.3390/mi14010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The mechanisms of deep-hole microdrilling of pure Mg material were experimentally studied in order to find a suitable setup for a novel intraocular drug delivery device prototyping. Microdrilling tests were performed with 0.20 mm and 0.35 mm microdrills, using a full factorial design in which cutting speed vc and feed fz were varied over two levels. In a preliminary phase, the chip shape was evaluated for low feeds per tooth down to 1 μm, to verify that the chosen parameters were appropriate for machining. Subsequently, microdrilling experiments were carried out, in which diameter, burr height and surface roughness of the drilled holes were examined. The results showed that the burr height is not uniform along the circumference of the holes. In particular, the maximum burr height increases with higher cutting speed, due to the thermal effect that plasticizes Mg. Hole entrance diameters are larger than the nominal tool diameters due to tool runout, and their values are higher for high vc and fz. In addition, the roughness of the inner surface of the holes increases as fz increases.
Collapse
Affiliation(s)
- Margherita Pizzi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy
| | - Francesco De Gaetano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
- MgShell S.r.l., 20133 Milan, Italy
| | - Marco Ferroni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
- MgShell S.r.l., 20133 Milan, Italy
| | - Federica Boschetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Massimiliano Annoni
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy
| |
Collapse
|
9
|
Rahman-Yildir J, Wiedey R, Breitkreutz J. Dissolution studies of 3D-printed inserts in a novel biopharmaceutical bladder model. Int J Pharm 2022; 624:121984. [DOI: 10.1016/j.ijpharm.2022.121984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 11/24/2022]
|
10
|
Choi SY, Ha MS, Kim JH, Chi BH, Kim JW, Chang IH, Kim TH, Myung SC. Low-dose versus standard-dose bacille Calmette–Guérin for non-muscle-invasive bladder cancer: Systematic review and meta-analysis of randomized controlled trials. Investig Clin Urol 2022; 63:140-150. [PMID: 35244987 PMCID: PMC8902423 DOI: 10.4111/icu.20210340] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose Intravesical BCG (bacille Calmette–Guérin) instillation in patients with non-muscle-invasive bladder cancer decreases the risk for tumor recurrence and progression. After one BCG product was discontinued, a chronic global BCG shortage occurred. We focused on identifying a reduced dose of BCG that could maintain efficacy and reduce adverse effects. Materials and Methods We conducted a comprehensive literature search of PubMed, Embase, the Cochrane Library, CINAHL, Web of Science, and Scopus to identify randomized controlled trials through April 2021. The odds ratios (ORs) and 95% confidence intervals (CIs) for the low and standard doses in nine studies were compared. A low dose was defined as a low volume of BCG compared with the standard BCG dose (Armand Frappier, 120 mg; Connaught, 81 mg; Danish 1331, 120 mg; modified Danish 1331, 120 mg; Tokyo 172, 80 mg). Results The low-dose group experienced aggravated recurrence (OR, 1.45; 95% CI, 1.09–1.94; p=0.01) but similar progression (OR, 1.11; 95% CI, 0.76–1.62; p=0.59), similar cancer-specific survival (OR, 1.02; 95% CI, 0.60–1.75; p=0.93), similar overall survival (OR, 1.09; 95% CI, 0.76–1.56; p=0.65), favorable adverse effects (OR, 0.41; 95% CI, 0.28–0.62; p<0.0001), and favorable withdrawal (OR, 0.42; 95% CI, 0.25–0.71; p=0.001). Conclusions Low-dose BCG had more unfavorable outcomes than did standard-dose BCG in terms of recurrence. Tumor progression, cancer-specific survival, and overall survival were similar between the doses. Low-dose BCG improved adverse effects and withdrawal. In the setting of BCG shortage, low-dose BCG may have strong potential as an alternative.
Collapse
Affiliation(s)
- Se Young Choi
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Moon Soo Ha
- Department of Urology, Hyundae General Hospital, Chung-Ang University College of Medicine, Namyangju, Korea
| | - Jung Hoon Kim
- Department of Urology, Hanil General Hospital, Seoul, Korea
| | - Byung Hoon Chi
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jin Wook Kim
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - In Ho Chang
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Tae-Hyoung Kim
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Palugan L, Cerea M, Cirilli M, Moutaharrik S, Maroni A, Zema L, Melocchi A, Uboldi M, Filippin I, Foppoli A, Gazzaniga A. Intravesical drug delivery approaches for improved therapy of urinary bladder diseases. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100100. [PMID: 34765967 PMCID: PMC8569723 DOI: 10.1016/j.ijpx.2021.100100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
Diseases of the urinary bladder have high incidence rates and burden healthcare costs. Their pharmacological treatment involves systemic and local drug administration. The latter is generally accomplished through instillation of liquid formulations and requires repeated or long-term catheterization that is associated with discomfort, inflammation and bacterial infections. Consequently, compliance issues and dropouts are frequently reported. Moreover, instilled drugs are progressively diluted as the urine volume increases and rapidly excreted. When penetration of drugs into the bladder wall is needed, the poor permeability of the urothelium has also to be accounted for. Therefore, much research effort is spent to overcome these hurdles, thereby improving the efficacy of available therapies. Particularly, indwelling delivery systems suited for i) insertion into the bladder through the urethra, ii) intra-organ retention and prolonged release for the desired time lapse, iii) final elimination, either spontaneous or by manual removal, have been proposed to reduce the number of catheterization procedures and reach higher drug levels at the target site. Vesical retention of such devices is allowed by the relevant expansion that can either be triggered from the outside or achieved exploiting elastic and purposely 4D printed shape memory materials. In this article, the main rationales and strategies for improved intravesical delivery are reviewed.
Collapse
Affiliation(s)
- Luca Palugan
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Matteo Cerea
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Micol Cirilli
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Saliha Moutaharrik
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Alessandra Maroni
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Lucia Zema
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Alice Melocchi
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Marco Uboldi
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Ilaria Filippin
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Anastasia Foppoli
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| | - Andrea Gazzaniga
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy
| |
Collapse
|
12
|
Head T, Tokranova N, Cady NC. Lithographically patterned micro-nozzles for controlling fluid flow profiles for drug delivery and in vitro imaging applications. MRS COMMUNICATIONS 2021; 11:584-589. [PMID: 37063609 PMCID: PMC10104572 DOI: 10.1557/s43579-021-00078-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 06/19/2023]
Abstract
Precisely controlling delivery of drugs and other reagents is important for intravital microscopy studies. In this work, photolithographic integration of micro-nozzles onto a microfluidic platform was performed to tune the fluid flow profile and depth of penetration into biological tissue mimics. Performance characteristics were measured by correlating the flow rate through the device to the applied pressure and/or delivery of dyes into solution and agarose gel-based phantom tissue. From these results, the implementation of micro-nozzles was demonstrated to significantly improve the lateral dispersion of delivered fluid and increase the depth of penetration into phantom tissue.
Collapse
Affiliation(s)
- Tristen Head
- College of Nanoscale Science & Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Natalya Tokranova
- College of Nanoscale Science & Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Nathaniel C Cady
- College of Nanoscale Science & Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
13
|
Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf B Biointerfaces 2021; 203:111748. [PMID: 33853001 DOI: 10.1016/j.colsurfb.2021.111748] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
The advent of nanocarriers in the field of pharmaceutical drug delivery, while exhibiting considerable advantages, has created challenges for researchers. Among the applications of nanocarriers, drug delivery to the skin has attracted increasing attention in recent decades due to its advantages over oral and parenteral administration. Accordingly, this work attempts to discuss the major obstacles surrounding topically applied formulations and different nanocarriers' potential to overcome these barriers to investigate whether their passive penetration through the skin is likely. Therefore, skin anatomical views and transcutaneous pathways are briefly reviewed. Factors commonly thought to influence skin penetration are discussed from the perspective of particularly penetrating nanocarriers. The formulation of these nanocarriers is outlined, and promising constituents are highlighted to help investigators optimize nanocarrier formulations.
Collapse
|
15
|
Ferroni M, De Gaetano F, Cereda MG, Boschetti F. Evaluation of the ocular fluid dynamic effects on intraocular magnesium-based device: A comparison between CFD and FSI approaches. Med Eng Phys 2020; 86:20-28. [PMID: 33261729 DOI: 10.1016/j.medengphy.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022]
Abstract
Magnesium is an essential element for the ocular functions and used for the realization of medical devices due to its low corrosion resistance, bioresorbable nature and biocompatibility. Wet age-related macular degeneration is one of the main causes of blindness with patients treated by intravitreal injections of inhibitor drugs. According to the need to reduce the number of injections, the development of new drug delivery devices able to extend the therapeutical outcomes is mandatory and magnesium can be considered as a promising candidate. The aim of the work concerns the evaluation of the ocular fluid dynamic role on a magnesium-based device placed in the vitreous chamber. Particularly, the fluid-induced shear stress field on the surfaces in contact with the liquefied vitreous was studied. Both computational fluid dynamic and fluid-structure interaction approaches were proposed and then compared. Saccadic motion was implemented to recreate the vitreous fluid dynamics. High changes in terms of fluid-induced shear stress field varying the CFD and FSI numerical approaches and kinematic parameters of the saccadic function can be noticed. The comparison between CFD and FSI approaches showed minor significant differences and both implementations suggested the possibility to obtain a uniform and controlled corrosion of the device.
Collapse
Affiliation(s)
- Marco Ferroni
- LaBS, Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; MgShell S.r.l., Milan, Italy.
| | - Francesco De Gaetano
- LaBS, Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; MgShell S.r.l., Milan, Italy
| | - Matteo Giuseppe Cereda
- Eye Clinic, Department of Biomedical and clinical science "Luigi Sacco", Sacco Hospital, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Federica Boschetti
- LaBS, Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
16
|
Maroni A, Melocchi A, Zema L, Foppoli A, Gazzaniga A. Retentive drug delivery systems based on shape memory materials. J Appl Polym Sci 2020. [DOI: 10.1002/app.48798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alessandra Maroni
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli" Via G. Colombo 71, 20133 Milan Italy
| | - Alice Melocchi
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli" Via G. Colombo 71, 20133 Milan Italy
| | - Lucia Zema
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli" Via G. Colombo 71, 20133 Milan Italy
| | - Anastasia Foppoli
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli" Via G. Colombo 71, 20133 Milan Italy
| | - Andrea Gazzaniga
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli" Via G. Colombo 71, 20133 Milan Italy
| |
Collapse
|
17
|
Voets T, Vriens J, Vennekens R. Targeting TRP Channels - Valuable Alternatives to Combat Pain, Lower Urinary Tract Disorders, and Type 2 Diabetes? Trends Pharmacol Sci 2019; 40:669-683. [PMID: 31395287 DOI: 10.1016/j.tips.2019.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/12/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
Abstract
Transient receptor potential (TRP) channels are a family of functionally diverse and widely expressed cation channels involved in a variety of cell signaling and sensory pathways. Research in the last two decades has not only shed light on the physiological roles of the 28 mammalian TRP channels, but also revealed the involvement of specific TRP channels in a plethora of inherited and acquired human diseases. Considering the historical successes of other types of ion channels as therapeutic drug targets, small molecules that target specific TRP channels hold promise as treatments for a variety of human conditions. In recent research, important new findings have highlighted the central role of TRP channels in chronic pain, lower urinary tract disorders, and type 2 diabetes, conditions with an unmet medical need. Here, we discuss how these advances support the development of TRP-channel-based pharmacotherapies as valuable alternatives to the current mainstays of treatment.
Collapse
Affiliation(s)
- Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Pons-Faudoa FP, Ballerini A, Sakamoto J, Grattoni A. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevices 2019; 21:47. [PMID: 31104136 PMCID: PMC7161312 DOI: 10.1007/s10544-019-0389-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic diseases account for the majority of all deaths worldwide, and their prevalence is expected to escalate in the next 10 years. Because chronic disorders require long-term therapy, the healthcare system must address the needs of an increasing number of patients. The use of new drug administration routes, specifically implantable drug delivery devices, has the potential to reduce treatment-monitoring clinical visits and follow-ups with healthcare providers. Also, implantable drug delivery devices can be designed to maintain drug concentrations in the therapeutic window to achieve controlled, continuous release of therapeutics over extended periods, eliminating the risk of patient non-compliance to oral treatment. A higher local drug concentration can be achieved if the device is implanted in the affected tissue, reducing systemic adverse side effects and decreasing the challenges and discomfort of parenteral treatment. Although implantable drug delivery devices have existed for some time, interest in their therapeutic potential is growing, with a global market expected to reach over $12 billion USD by 2018. This review discusses implantable drug delivery technologies in an advanced stage of development or in clinical use and focuses on the state-of-the-art of reservoir-based implants including pumps, electromechanical systems, and polymers, sites of implantation and side effects, and deployment in developing countries.
Collapse
Affiliation(s)
- Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Andrea Ballerini
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Oncology and Onco-Hematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Jason Sakamoto
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
- Department of Surgery, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Paolini MS, Fenton OS, Bhattacharya C, Andresen JL, Langer R. Polymers for extended-release administration. Biomed Microdevices 2019; 21:45. [DOI: 10.1007/s10544-019-0386-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Melocchi A, Inverardi N, Uboldi M, Baldi F, Maroni A, Pandini S, Briatico-Vangosa F, Zema L, Gazzaniga A. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinyl alcohol): design concept and 4D printing feasibility. Int J Pharm 2019; 559:299-311. [DOI: 10.1016/j.ijpharm.2019.01.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
|
21
|
Ferrari R, Sponchioni M, Morbidelli M, Moscatelli D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. NANOSCALE 2018; 10:22701-22719. [PMID: 30512025 DOI: 10.1039/c8nr05933k] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review article we discuss some of the key aspects concerning the development of a polymer-based nanoparticle formulation for intravenous drug delivery. Since numerous preparations fail before and during clinical trials, our aim is to emphasize the main issues that a nanocarrier has to face once injected into the body. These include biocompatibility and toxicity, drug loading and release, nanoparticle storage and stability, biodistribution, selectivity towards the target organs or tissues, internalization in cells and biodegradability. They represent the main checkpoints to define a polymer-based formulation as safe and effective. Indeed, this review is intended to provide guidelines to be followed in the early development of a new nanotherapeutic to hopefully increase the success rate of polymer-based formulations entering clinical trials. The corresponding requirements and characteristics are discussed in the context of some relevant case studies taken from the literature and mainly related to the delivery of lipophilic anticancer therapeutics.
Collapse
Affiliation(s)
- R Ferrari
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| | - M Sponchioni
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland. and Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - M Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| | - D Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
22
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
A Combined Approach for the Analysis of Ocular Fluid Dynamics in the Presence of Saccadic Movements. Ann Biomed Eng 2018; 46:2091-2101. [DOI: 10.1007/s10439-018-02110-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/27/2018] [Indexed: 01/04/2023]
|
24
|
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in Biomaterials for Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705328. [PMID: 29736981 PMCID: PMC6261797 DOI: 10.1002/adma.201705328] [Citation(s) in RCA: 501] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Indexed: 04/14/2023]
Abstract
Advances in biomaterials for drug delivery are enabling significant progress in biology and medicine. Multidisciplinary collaborations between physical scientists, engineers, biologists, and clinicians generate innovative strategies and materials to treat a range of diseases. Specifically, recent advances include major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing. Here, strategies for the design and implementation of biomaterials for drug delivery are reviewed. A brief history of the biomaterials field is first established, and then commentary on RNA delivery, responsive materials development, and immunomodulation are provided. Current challenges associated with these areas as well as opportunities to address long-standing problems in biology and medicine are discussed throughout.
Collapse
Affiliation(s)
- Owen S Fenton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katy N Olafson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Padmini S Pillai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, School of Engineering and Applied Science, Philadelphia, PA, 19104, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
25
|
Padmakumar S, Parayath N, Leslie F, Nair SV, Menon D, Amiji MM. Intraperitoneal chemotherapy for ovarian cancer using sustained-release implantable devices. Expert Opin Drug Deliv 2018; 15:481-494. [PMID: 29488406 DOI: 10.1080/17425247.2018.1446938] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) remains to be the most lethal of all gynecological malignancies mainly due to its asymptomatic nature. The late stages are manifested with predominant metastases confined to the peritoneal cavity. Although there has been a substantial progress in the treatment avenue with different therapeutic interventions, the overall survival rate of patients remain poor due to relapse and drug resistance. AREAS COVERED The pharmacokinetic advantages offered by intraperitoneal (IP) chemotherapy due to peritoneal-plasma barrier can be potentially exploited for EOC relapse treatment. The ability to retain high concentrations of chemo-drugs with high AUC peritoneum/plasma for prolonged durations in the peritoneal cavity can be utilized effectively through the clinical adoption of drug delivery systems (DDSs) which obviates the need for indwelling catheters. The metronomic dosing strategy could enhance anti-tumor efficacy with a continuous, low dose of chemo-drugs providing minimal systemic toxicity. EXPERT OPINION The development of a feasible, non-catheter based, IP DDS, retaining the peritoneal-drug levels, with less systemic levels could offer significant survival advantages as a patient-compliant therapeutic strategy. Suturable-implantable devices based on metronomic dosing, eluting drug in a sustained manner at low doses, could be implanted surgically post-debulking for treatment of refractory EOC patients.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA.,b Centre for Nanosciences and Molecular Medicine , Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham , Kochi , India
| | - Neha Parayath
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA
| | - Fraser Leslie
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA
| | - Shantikumar V Nair
- b Centre for Nanosciences and Molecular Medicine , Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham , Kochi , India
| | - Deepthy Menon
- b Centre for Nanosciences and Molecular Medicine , Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham , Kochi , India
| | - Mansoor M Amiji
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA
| |
Collapse
|
26
|
Lau CML, Yu Y, Jahanmir G, Chau Y. Controlled release technology for anti-angiogenesis treatment of posterior eye diseases: Current status and challenges. Adv Drug Deliv Rev 2018; 126:145-161. [PMID: 29625138 DOI: 10.1016/j.addr.2018.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
Antiangiogenic therapeutics, such as corticosteroids, VEGF targeting antibodies and aptamers have been demonstrated effective in controlling retinal and choroidal neovascularization related vision loss. However, to manage the chronic conditions, it requires long term and frequent intravitreal injections of these drugs, resulting in poor patient compliance and suboptimal treatment. In addition, emerging drugs such as tyrosine kinase inhibitors and siRNAs received much expectations, but the late stage clinical trials encountered various obstacles. Controlled release technology could improve the existing treatment regimen by extending therapeutic duration, reducing risks and burdens caused by frequent injections, and enabling new drugs to overcome the hurdles of translation. Here, we give qualitative and quantitative discussions about the principle mechanisms of polymeric reservoir, polymeric matrix and hydrogel systems. We also reveal the design rationales of the existing drug delivery and release systems in preclinical and clinical stages. Lastly, the animal models of ocular angiogenesis diseases are critically reviewed, which could help to facilitate the translation of controlled release technologies from bench to bedside.
Collapse
Affiliation(s)
- Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Yu Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong; Pleryon Therapeutics Limited, Hong Kong
| | - Ghodsiehsadat Jahanmir
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong; The Hong Kong University of Science and Technology Shenzhen Institute, Shenzhen 518057, China.
| |
Collapse
|
27
|
Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A. Principles of pharmacology in the eye. Br J Pharmacol 2017; 174:4205-4223. [PMID: 28865239 PMCID: PMC5715579 DOI: 10.1111/bph.14024] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
The eye is a highly specialized organ that is subject to a huge range of pathology. Both local and systemic disease may affect different anatomical regions of the eye. The least invasive routes for ocular drug administration are topical (e.g. eye drops) and systemic (e.g. tablets) formulations. Barriers that subserve as protection against pathogen entry also restrict drug permeation. Topically administered drugs often display limited bioavailability due to many physical and biochemical barriers including the pre-corneal tear film, the structure and biophysiological properties of the cornea, the limited volume that can be accommodated by the cul-de-sac, the lacrimal drainage system and reflex tearing. The tissue layers of the cornea and conjunctiva are further key factors that act to restrict drug delivery. Using carriers that enhance viscosity or bind to the ocular surface increases bioavailability. Matching the pH and polarity of drug molecules to the tissue layers allows greater penetration. Drug delivery to the posterior segment is a greater challenge and, currently, the standard route is via intravitreal injection, notwithstanding the risks of endophthalmitis and retinal detachment with frequent injections. Intraocular implants that allow sustained drug release are at different stages of development. Novel exciting therapeutic approaches include methods for promoting transscleral delivery, sustained release devices, nanotechnology and gene therapy.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Abeer H A Mohamed Ahmed
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Garima Sharma
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Jacob S Heng
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Steve Brocchini
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | | |
Collapse
|
28
|
Dube T, Chibh S, Mishra J, Panda JJ. Receptor Targeted Polymeric Nanostructures Capable of Navigating across the Blood-Brain Barrier for Effective Delivery of Neural Therapeutics. ACS Chem Neurosci 2017; 8:2105-2117. [PMID: 28768412 DOI: 10.1021/acschemneuro.7b00207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The window of neurological maladies encompasses 600 known neurological disorders. In the past few years, an inordinate upsurge in the incidences of neuronal ailments with increased mortality rate has been witnessed globally. Despite noteworthy research in the discovery and development of neural therapeutics, brain drug delivery still encounters limited success due to meager perviousness of most of the drug molecules through the blood-brain barrier (BBB), a tight layer of endothelial cells that selectively impedes routing of the molecules across itself. In this Review, we have tried to present a comprehensive idea on the recent developments in nanoparticle based BBB delivery systems, with a focus on the advancements in receptor targeted polymeric nanoparticles pertaining to BBB delivery. We have also attempted to bridge the gap between conventional brain delivery strategies and nanoparticle based BBB delivery for in-depth understanding. Various strategies are being explored for simplifying delivery of molecules across the BBB; however, they have their own limitations such as invasiveness and need for hospitalization and surgery. Introduction of nanotechnology can impressively benefit brain drug delivery. Though many nanoparticles are being explored, there are still several issues that need to be analyzed scrupulously before a real and efficient BBB traversing nanoformulation is realized.
Collapse
Affiliation(s)
- Taru Dube
- Institute of Nano Science and Technology, Mohali, Punjab − 160062, India
| | - Sonika Chibh
- Institute of Nano Science and Technology, Mohali, Punjab − 160062, India
| | - Jibanananda Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab − 144411, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab − 160062, India
| |
Collapse
|
29
|
Campos EJ, Campos A, Martins J, Ambrósio AF. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2101-2113. [PMID: 28428052 DOI: 10.1016/j.nano.2017.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 01/20/2023]
Abstract
People affected with ocular diseases will significantly increase over the next decades, and, consequently, a substantial increase in health costs is expected. Diabetic retinopathy is the most common chronic complication of diabetes. The treatment of eye diseases affecting the posterior segment, such as diabetic retinopathy, is quite challenging due to the anatomy, physiology and biochemistry of the eye. Therefore, the development of new therapeutics for posterior eye diseases has been a major focus of pharmaceutical research in the area of vision sciences. Several nanosystems already offer efficient solutions for ophthalmological conditions, targeting internal eye tissues, as the retina, and many novel products are expected to appear hereafter. This review provides an insight on nanoparticle-based solutions for therapies directed to posterior segment of the eye diseases, particularly diabetic retinopathy, the present scenario, and the demands and expectations for the future.
Collapse
Affiliation(s)
- Elisa J Campos
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| | - António Campos
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal; Department of Ophthalmology, Leiria Hospital, Leiria, Portugal
| | - João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| |
Collapse
|
30
|
Awwad S, Day RM, Khaw PT, Brocchini S, Fadda HM. Sustained release ophthalmic dexamethasone: In vitro in vivo correlations derived from the PK-Eye. Int J Pharm 2017; 522:119-127. [PMID: 28232270 DOI: 10.1016/j.ijpharm.2017.02.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/02/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
Abstract
Corticosteroids have long been used to treat intraocular inflammation by intravitreal injection. We describe dexamethasone loaded poly-DL-lactide-co-glycolide (PLGA) microparticles that were fabricated by thermally induced phase separation (TIPS). The dexamethasone loaded microparticles were evaluated using a two-compartment, in vitro aqueous outflow model of the eye (PK-Eye) that estimates drug clearance time from the back of the eye via aqueous outflow by the anterior route. A dexamethasone dose of 0.20±0.02mg in a 50μL volume of TIPS microparticles resulted in a clearance t1/2 of 9.6±0.3days using simulated vitreous in the PK-Eye. Since corticosteroids can also clear through the retina, it is necessary to account for clearance through the back of the eye. Retinal permeability data, published human ocular pharmacokinetics (PK) and the PK-Eye clearance times were then used to establish in vitro in vivo correlations (IVIVCs) for intraocular clearance times of corticosteroid formulations. A t1/2 of 48h was estimated for the dexamethasone-TIPS microparticles, which is almost 9 times longer than that reported for dexamethasone suspension in humans. The prediction of human clearance times of permeable molecules from the vitreous compartment can be determined by accounting for drug retinal permeation and determining the experimental clearance via the anterior aqueous outflow pathway using the PK-Eye.
Collapse
Affiliation(s)
- Sahar Awwad
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1 V9EL, UK; UCL School of Pharmacy, London, WC1N 1AX, UK
| | | | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1 V9EL, UK
| | - Steve Brocchini
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1 V9EL, UK; UCL School of Pharmacy, London, WC1N 1AX, UK.
| | - Hala M Fadda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA.
| |
Collapse
|
31
|
Mueller B, Treccani L, Rezwan K. Antibacterial active open-porous hydroxyapatite/lysozyme scaffolds suitable as bone graft and depot for localised drug delivery. J Biomater Appl 2017; 31:1123-1134. [DOI: 10.1177/0885328216688074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An engineered synthetic scaffold for bone regeneration should provide temporary structural support and a medium for controlled and localised release of bioavailable medical drugs. In this work, a method is proposed to incorporate biologically active agents without impairing agent activity into open-porous resorbable hydroxyapatite scaffolds. Scaffolds are obtained by a one-pot freeze gelation process and loaded with different amounts of lysozyme, a model macromolecular drug with antibacterial activity. The antibacterial activity is tested by submerging hydroxyapatite scaffolds with 0.5 to 2.5 wt.% lysozyme into two different bacteria stock solutions. A complete dieback of M. luteus bacteria when in contact with the scaffolds is observed. Higher lysozyme amount in the scaffold leads to faster dieback. In contact with scaffolds containing 2.5 wt.% lysozyme after 30 min, no viable bacteria can be observed. An amount of 0.5 wt.% lysozyme in the scaffolds is sufficient to kill all bacteria after a contact time of 24 h. For L. innocua, a bacteriostatic effect is observed. The scaffolds have spongiosa-like stability and are suitable bone implant substitutes. As agents are released from the scaffolds by degrees over a time period of at least 9 days, they are particularly attractive as depot for localised drug delivery of bioactive macromolecular drugs.
Collapse
|
32
|
Sepahvandi A, Eskandari M, Moztarzadeh F. Drug Delivery Systems to the Posterior Segment of the Eye: Implants and Nanoparticles. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0219-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Douglass L, Schoenberg M. The Future of Intravesical Drug Delivery for Non-Muscle Invasive Bladder Cancer. Bladder Cancer 2016; 2:285-292. [PMID: 27500196 PMCID: PMC4969694 DOI: 10.3233/blc-160056] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite being the fifth most common cancer in the United States, minimal progress has been made in the treatment of bladder cancer in over a decade. Intravesical instillation of Bacillus Calmette-Guerin (BCG) for the treatment of non-muscle invasive bladder cancer (NMIBC) has been in use for over 30 years and remains the standard treatment in cases of intermediate and high risk disease. Despite the relative success of intravesical BCG, unmet needs in the treatment of NMIBC persist. These challenges include disease recurrence and progression even with treatment with BCG, as well as issues regarding its availability and patient tolerability. The inherent properties of the bladder pose the biggest obstacle to developing effective intravesical treatments for NMIBC. Current research is now focusing on methods to improve the delivery of intravesical therapies. The objective of this review is to discuss novel intravesical drug delivery systems and how they are addressing these challenges in the treatment of NMIBC.
Collapse
Affiliation(s)
- Laura Douglass
- Department of Urology, Albert Einstein College of Medicine , Bronx, NY, USA
| | - Mark Schoenberg
- Department of Urology, Albert Einstein College of Medicine , Bronx, NY, USA
| |
Collapse
|
34
|
Optimal Magnetic Field for Crossing Super-Para-Magnetic Nanoparticles through the Brain Blood Barrier: A Computational Approach. BIOSENSORS-BASEL 2016; 6:25. [PMID: 27314396 PMCID: PMC4931485 DOI: 10.3390/bios6020025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/27/2022]
Abstract
This paper scrutinizes the magnetic field effect to deliver the superparamagnetic nanoparticles (SPMNs) through the Blood Brain Barrier (BBB). Herein we study the interaction between the nanoparticle (NP) and BBB membrane using Molecular Dynamic (MD) techniques. The MD model is used to enhance our understanding of the dynamic behavior of SPMNs crossing the endothelial cells in the presence of a gradient magnetic field. Actuation of NPs under weak magnetic field offers the great advantage of a non-invasive drug delivery without the risk of causing injury to the brain. Furthermore, a weak magnetic portable stimulator can be developed using low complexity prototyping techniques. Based on MD simulation results in this paper, SPMNs can cross the cell membrane while experiencing very weak mechanical forces in the range of pN. This study also derives guidelines for the design of the SPMNs dedicated to crossing the BBB using external magnetic fields.
Collapse
|
35
|
Li M, Luo Z, Zhao Y. Hybrid Nanoparticles as Drug Carriers for Controlled Chemotherapy of Cancer. CHEM REC 2016; 16:1833-51. [PMID: 27258402 DOI: 10.1002/tcr.201600029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/09/2023]
Abstract
Rapid developments in materials science and biological mechanisms have greatly boosted the research discoveries of new drug delivery systems. In the past few decades, hundreds of nanoparticle-based drug carriers have been reported almost on a daily basis, in which new materials, structures, and mechanisms are proposed and evaluated. Standing out among the drug carriers, the hybrid nanoparticle systems offer a great opportunity for the optimization and improvement of conventional chemotherapy. By combining several features of functional components, these hybrid nanoparticles have shown excellent promises of improved biosafety, biocompatibility, multifunctionality, biodegradability, and so forth. In this Personal Account, we highlight the recent research advances of some representative hybrid nanoparticles as drug delivery systems and discuss their design strategies and responsive mechanisms for controlled drug delivery.
Collapse
Affiliation(s)
- Menghuan Li
- College of Life Science, Chongqing University, Shapingba District Chongqing, 401331, P. R. China
| | - Zhong Luo
- College of Life Science, Chongqing University, Shapingba District Chongqing, 401331, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
36
|
Affiliation(s)
- Matthew C T Fyfe
- Topivert Limited, Imperial College Incubator, London, United Kingdom
| |
Collapse
|
37
|
Abstract
The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs) have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD). Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin), nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy.
Collapse
Affiliation(s)
| | | | - Linda Cardozo
- Department of Urogynaecology, King's College Hospital, London, UK
| |
Collapse
|
38
|
Zhu G, Zhang Y, Wang K, Zhao X, Lian H, Wang W, Wang H, Wu J, Hu Y, Guo H. Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release. Drug Deliv 2015; 23:2820-2826. [PMID: 26515239 DOI: 10.3109/10717544.2015.1101791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guanchen Zhu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China and
- State Key Laboratory of Pharmaceutical Biotechnolgy, Medical School, Nanjing University, Nanjing, China
| | - Yifan Zhang
- State Key Laboratory of Pharmaceutical Biotechnolgy, Medical School, Nanjing University, Nanjing, China
| | - Kaikai Wang
- State Key Laboratory of Pharmaceutical Biotechnolgy, Medical School, Nanjing University, Nanjing, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China and
| | - Huibo Lian
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China and
| | - Wei Wang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China and
| | - Haoran Wang
- State Key Laboratory of Pharmaceutical Biotechnolgy, Medical School, Nanjing University, Nanjing, China
| | - Jinhui Wu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China and
- State Key Laboratory of Pharmaceutical Biotechnolgy, Medical School, Nanjing University, Nanjing, China
| | - Yiqiao Hu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China and
- State Key Laboratory of Pharmaceutical Biotechnolgy, Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China and
| |
Collapse
|
39
|
Chitosan coatings to control release and target tissues for therapeutic delivery. Ther Deliv 2015; 6:855-71. [DOI: 10.4155/tde.15.31] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The natural biopolymer chitosan has versatile applications in therapeutic delivery. Coating drug delivery matrices or biomaterials with chitosan offers several advantages in drug delivery, including control of drug release, slowing degradation rate and improving biocompatibility. Advanced uses of chitosan in coating form include targeting drug delivery vehicles to specific tissue as well as providing a stimulus-controlled release response. The present review summarizes the current applications of chitosan coatings in the context of different biomaterial delivery technologies, as well as future directions of chitosan coatings for drug delivery technologies under development.
Collapse
|
40
|
Awwad S, Lockwood A, Brocchini S, Khaw PT. The PK-Eye: A Novel In Vitro Ocular Flow Model for Use in Preclinical Drug Development. J Pharm Sci 2015; 104:3330-42. [PMID: 26108574 DOI: 10.1002/jps.24480] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023]
Abstract
A 2-compartment in vitro eye flow model has been developed to estimate ocular drug clearance by the anterior aqueous outflow pathway. The model is designed to accelerate the development of longer-acting ophthalmic therapeutics. Dye studies show aqueous flow is necessary for a molecule injected into the vitreous cavity to clear from the model. The clearance times of proteins can be estimated by collecting the aqueous outflow, which was first conducted with bevacizumab using phosphate-buffered saline in the vitreous cavity. A simulated vitreous solution was then used and ranibizumab (0.5 mg) displayed a clearance time of 8.1 ± 3.1 days, which is comparable to that observed in humans. The model can estimate drug release from implants or the dissolution of suspensions as a first step in their clearance mechanism, which will be the rate-limiting step for the overall resident time of a candidate dosage form in the vitreous. A suspension of triamcinolone acetonide (Kenalog®) (4.0 mg) displayed clearance times spanning 26-28 days. These results indicate that the model can be used to determine in vitro-in vivo correlations in preclinical studies to develop long-lasting therapeutics to treat blinding diseases at the back of the eye.
Collapse
Affiliation(s)
- Sahar Awwad
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Alastair Lockwood
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Steve Brocchini
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| |
Collapse
|
41
|
Guadagni V, Novelli E, Piano I, Gargini C, Strettoi E. Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Prog Retin Eye Res 2015; 48:62-81. [PMID: 26113212 DOI: 10.1016/j.preteyeres.2015.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023]
Abstract
Retinal photoreceptors are highly specialized and performing neurons. Their cellular architecture is exquisitely designed to host a high concentration of molecules involved in light capture, phototransduction, electric and chemical signaling, membrane and molecular turnover, light and dark adaption, network activities etc. Such high efficiency and molecular complexity require a great metabolic demand, altogether conferring to photoreceptors particular susceptibility to external and internal insults, whose occurrence usually precipitate into degeneration of these cells and blindness. In Retinitis Pigmentosa, an impressive number of mutations in genes expressed in the retina and coding for a large varieties of proteins leads to the progressive death of photoreceptors and blindness. Recent advances in molecular tools have greatly facilitated the identification of the underlying genetics and molecular bases of RP leading to the successful implementation of gene therapy for some types of mutations, with visual restoration in human patients. Yet, genetic heterogeneity of RP makes mutation-independent approaches highly desirable, although many obstacles pave the way to general strategies for treating this complex disease, which remains orphan. The review will focus on treatments for RP based on pharmacological tools, choosing, among the many ongoing studies, approaches which rely on strong experimental evidence or rationale. For perspective treatments, new concepts are foreseen to emerge from basic studies elucidating the pathways connecting the primary mutations to photoreceptor death, possibly revealing common molecular targets for drug intervention.
Collapse
Affiliation(s)
- Viviana Guadagni
- Neuroscience Institute, Italian National Research Council (CNR), Area della Ricerca, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Elena Novelli
- Neuroscience Institute, Italian National Research Council (CNR), Area della Ricerca, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council (CNR), Area della Ricerca, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
42
|
Fong J, Xiao Z, Takahata K. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery. LAB ON A CHIP 2015; 15:1050-8. [PMID: 25473933 DOI: 10.1039/c4lc01290a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.
Collapse
Affiliation(s)
- Jeffrey Fong
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | | | | |
Collapse
|
43
|
O'Shea TM, Aimetti AA, Kim E, Yesilyurt V, Langer R. Synthesis and characterization of a library of in-situ curing, nonswelling ethoxylated polyol thiol-ene hydrogels for tailorable macromolecule delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:65-72. [PMID: 25381960 DOI: 10.1002/adma.201403724] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/09/2014] [Indexed: 06/04/2023]
Abstract
A transesterfication reaction is used to synthesize tri-thiol-functionalized-ethoxylated polyols that are combined with polyethylene glycol diacrylates to form a biodegradable hydrogel library. Hydrogels display nonswelling equilibration and offer temporal control over material degradation and the release of biomolecules. The demonstrated in vitro biocompatibility makes this a versatile platform that can be used for local drug delivery to volume-constrained anatomical sites.
Collapse
Affiliation(s)
- Timothy M O'Shea
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | | | | | | | | |
Collapse
|