1
|
Zhu Y, Dai Y, Tian Y. The Peptide PROTAC Modality: A New Strategy for Drug Discovery. MedComm (Beijing) 2025; 6:e70133. [PMID: 40135198 PMCID: PMC11933449 DOI: 10.1002/mco2.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
In recent years, proteolysis targeting chimera (PROTAC) technology has made significant progress in the field of drug development. Traditional drugs mainly focus on inhibiting or activating specific proteins, while PROTAC technology provides new ideas for treating various diseases by inducing the degradation of target proteins. Especially for peptide PROTACs, due to their unique structural and functional characteristics, they have become a hot research topic. This review provides a detailed description of the key components, mechanisms, and design principles of peptide PROTACs, elaborates on their applications in skin-related diseases, oncology, and other potential therapeutic fields, analyzes their advantages and challenges, and looks forward to their future development prospects. The development of peptide PROTAC technology not only opens up new paths for drug research and development, but also provides new ideas for solving the resistance and safety issues faced by traditional small-molecule drugs. Compared with small-molecule PROTACs, peptide PROTACs have advantages such as multitargeting, biodegradability, low toxicity, and flexibility in structural design. With the deepening of research and the continuous maturity of technology, peptide PROTACs are expected to become one of the important strategies for future drug discovery, providing new hope for the treatment of more intractable diseases. Peptide PROTACs are ushering in a new era of precision medicine.
Collapse
Affiliation(s)
- Youmin Zhu
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| | - Yu Dai
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
- School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Yuncai Tian
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| |
Collapse
|
2
|
Muhammad AM, Ismail A, Chong PP, Yap WH, Muhamad A, Alitheen NB, Kam A, Loo S, Lee KW. Skin-penetrating peptides (SKPs): Enhancing skin permeation for transdermal delivery of pharmaceuticals and cosmetic compounds. Int J Pharm 2025; 672:125339. [PMID: 39947363 DOI: 10.1016/j.ijpharm.2025.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Skin-penetrating peptides (SKPs) are emerging as a promising class of permeation enhancers that can facilitate macromolecule delivery across the skin. Although their pharmaceutical applications are under extensive study, SKPs are crucial for enhancing skin permeability, enabling larger molecules to penetrate the stratum corneum. This review explores the transformative role of SKPs in non-invasive transdermal drug delivery. Drawing from an extensive collection of literature, it provides insights into the current usage and application of SKPs as tools to enhance skin permeability and facilitate the delivery of larger molecules. Additionally, it highlights the opportunities, challenges, and future directions for SKP applications in transdermal drug delivery.
Collapse
Affiliation(s)
- Ameerah Montree Muhammad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Alif Ismail
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Food Security and Nutrition Impact Lab, Taylor's University, Subang Jaya 47500 Selangor, Malaysia
| | - Azira Muhamad
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia Kajang Selangor Malaysia
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Antony Kam
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shining Loo
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Khai Wooi Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Miao M, Yan J, Sun Y, Liu J, Guo S. Psoriasis: Unraveling Disease Mechanisms and Advancing Pharmacological and Nanotechnological Treatments. J Inflamm Res 2025; 18:2045-2072. [PMID: 39959643 PMCID: PMC11827491 DOI: 10.2147/jir.s506103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Research into the pathogenesis of inflammatory skin diseases, including dermatitis and psoriasis, has yielded significant advancements in the last decades. The identification of age, gender, and genetic factors contributing to these complex conditions has been pivotal in developing novel pharmacological and technological treatments. This review delves into the molecular underpinnings of psoriasis, examining current therapies and promising investigational agents. We highlight the potential of nanotechnology to enhance drug delivery to affected skin areas, with microneedles emerging as a promising platform for psoriasis and other chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- Miao Miao
- Outpatient Department, Disease Prevention and Control Center of Tongshan District, Xuzhou, People’s Republic of China
| | - Jiong Yan
- Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yujin Sun
- Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jia Liu
- Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shun Guo
- Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Yu G, Zhao W, Wang Y, Xu N. Molecular farming expression of recombinant fusion proteins applied to skincare strategies. PeerJ 2024; 12:e17957. [PMID: 39308805 PMCID: PMC11416094 DOI: 10.7717/peerj.17957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
This review discusses the current research progress in molecular farming technology in the field of skincare, with an emphasis on molecular farming expression strategies. The strategies of transdermal drug delivery and their advantages are also highlighted. The expression of cosmetically relevant fused proteins has become an important way to enhance the efficacy of the proteins. Therefore, we also discuss the feasibility and strategies for expressing fusion proteins in A. thaliana, specifically the fusion of Epidermal growth factor (EGF) to a cell-penetrating peptide (CPP), in which the production can be greatly enhanced via plant expression systems since these systems offer higher biosecurity, flexibility, and expansibility than prokaryotic, animal and mammalian expression systems. While the fusion of EGF to CCP can enhance its transdermal ability, the effects of the fusion protein on skin repair, melasma, whitening, and anti-aging are poorly explored. Beyond this, fusing proteins with transdermal peptides presents multiple possibilities for the development of tissue repair and regeneration therapeutics, as well as cosmetics and beauty products. As certain plant extracts are known to contain proteins beneficial for skin health, the expression of these proteins in plant systems will better maintain their integrity and biological activities, thereby facilitating the development of more effective skincare products.
Collapse
Affiliation(s)
- Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| | - Yunpeng Wang
- Jilin Academy of Agricultural Sciences, Northeast Innovation Center of China Agricultural Science and Technology, Ji Lin, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| |
Collapse
|
5
|
Yamaki K, Matsuda A, Koyama Y. Importance of IgE-Induced Unique Plasma Leakage in the Skin for Urticaria-Like Symptoms in an Anaphylaxis-Dependent Spotted Distribution of Immune Complex in Skin (ASDIS) Mouse Model. Int Arch Allergy Immunol 2024; 185:1139-1153. [PMID: 38934152 DOI: 10.1159/000539215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Allergic diseases, such as anaphylaxis and urticaria, pose significant health concerns. The quest for improved prognostic outcomes in these diseases necessitates the exploration of novel therapeutic avenues. To address this need, we have developed a novel mouse model of anaphylaxis, denoted as anaphylaxis-dependent spotted distribution of immune complex in skin (ASDIS). ASDIS manifests as distinct dotted symptoms in the skin, detectable through in vivo imaging, resembling urticarial symptoms. In this study, we investigated the potential underlying mechanisms giving rise to these dotted symptoms, exploring the role of vascular permeability and characterizing the ASDIS model as a new urticaria model. METHODS We employed haired and hairless HR mice (BALB/c background) and hairless HR-1 mice (a commercially available hairless strain with an unidentified genetic background). ASDIS was induced by the simultaneous intravenous injection of anti-ovalbumin IgE and fluorescein isothiocyanate (FITC)-ovalbumin, along with Evans blue - a recognized vascular permeability indicator. Anaphylaxis and scratching behavior were monitored through rectal temperature decrease and optical observation, respectively. Histamine, platelet-activating factor, and compound 48/80 were injected with or without FITC-ovalbumin for comparative analysis. The effects of an α1 adrenergic receptor agonist applied to the skin were also examined. RESULTS In hairless mice, the simultaneous injection of histamine, compound 48/80, or IgE with FITC-ovalbumin induced comparable rectal temperature decreases and vascular permeability. However, only the combination of FITC-ovalbumin and IgE triggered ASDIS, specifically the dotted urticaria-like symptom. Evans blue visualization and optical observation of dotted swelling confirmed that the vascular permeability mediated the phenomenon. Hairless mice exhibited a more pronounced temperature decrease than their haired counterparts when exposed to histamine, platelet-activating factor, compound 48/80, and IgE with FITC-ovalbumin. The application of an α1 adrenergic receptor agonist to the skin attenuated the topical urticaria-like symptom. CONCLUSION Our experiments revealed four findings. The first is that ASDIS mirrors urticaria-like symptoms resulting from increased vascular permeability, akin to human urticaria. The second finding is that the development of dotted symptoms involves an IgE-induced, yet unidentified, mechanism not triggered by histamine or compound 48/80 alone. The third finding highlights the heightened susceptibility of hairless mice to ASDIS induction. The fourth finding demonstrates that the inhibition of ASDIS by the topical application of an α1 adrenergic receptor agonist hints at a potential anti-urticarial application for this vasoconstrictor. Further elucidation of these unidentified IgE-dependent mechanisms and the specific generation of dotted symptoms by IgE-immune complexes could provide novel insights into allergic response processes and therapeutic interventions for these conditions.
Collapse
Affiliation(s)
- Kouya Yamaki
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Akari Matsuda
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
6
|
Gharat S, Basudkar V, Momin M. In-Vitro and in-Vivo Evaluation of the Developed Curcumin-Cyclosporine-Loaded Nanoemulgel for the Management of Rheumatoid Arthritis. Immunol Invest 2024; 53:490-522. [PMID: 38197806 DOI: 10.1080/08820139.2024.2301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Topical nanogel-based formulations have shown potential in the management of rheumatoid arthritis (RA). The aim of this research work was to explore the synergistic effect of Curcumin (CUR) and Cyclosporine (CYC) in combination via a topical route for the management of RA. METHODS The CUR+CYC loaded nanoemulsion was developed using the spontaneous emulsification technique and was subsequently incorporated into Carbopol® Ultrez 30-NF gel. The effect of the developed formulation on levels of proinflammatory cytokines (IL-6, TNF-α) and anti-inflammatory cytokine (IL-10) was evaluated using lipopolysaccharide (LPS) induced RAW 264.7 cell culture model. The anti-arthritic activity was evaluated in a Complete Freund's Adjuvant (CFA) induced arthritic rat model. RESULTS The optimized nanoemulgel (CUR + CYC NE gel) exhibited average globule size of 15.32 nm ±2.7 nm, poly-dispersity index of 0.181 ± 0.034 and zeta potential of -16.3 mV ± 0.9 mV. The cumulative drug release from ex-vivo diffusion studies on porcine ear skin was 99.189% ± 1.419% at the of 24 h and 99.177% ± 1.234% at the end of 18 h for CUR and CYC, respectively. The cell culture studies revealed that the formulation was able to significantly lower (p < .001) the levels of IL-6 and TNF-α, inhibited prostaglandin E2 (PGE2) while significantly elevating (p < .001) the levels of anti-inflammatory cytokine (IL-10). The gel was found to be non-irritating and showed the inhibition of paw edema and substantial reduction of arthritic symptoms in an arthritic rat model as compared to commercial and other conventional alternatives. CONCLUSION This study highlights the potential of the developed nanoemulgel for the management of RA by enhancing the topical permeation of CUR and CYC.
Collapse
Affiliation(s)
- Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Vivek Basudkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Director (I/C), SVKM's Shri C. B. Patel Research Centre for Chemistry and Biological Sciences, Mumbai, India
| |
Collapse
|
7
|
Kamal RM, Sabry MM, El-Halawany AM, Rabie MA, El Sayed NS, Hifnawy MS, Younis IY. GC-MS analysis and the effect of topical application of essential oils of Pinus canariensis C.Sm., Cupressus lusitanica Mill. and Cupressus arizonica Greene aerial parts in Imiquimod-Induced Psoriasis in Mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116947. [PMID: 37482262 DOI: 10.1016/j.jep.2023.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, Coniferous plants, in particular Pinus and Cupressus species, have been used in the treatment of burns, skin infections, and immune-mediated inflammatory diseases such as psoriasis. AIM OF THE STUDY A comparative study between essential oils (EOs) extracted from aerial parts of three coniferous plants: Pinus canariensis C.Sm. (PC), Cupressus lusitanica Mill. (CL) and Cupressus arizonica Greene (CA), cultivated in Egypt, was designed to investigate their composition and their anti-psoriasis mechanism. MATERIALS AND METHODS The phytochemical profiles were confirmed using Gas Chromatography-Mass Spectrometry (GC-MS) method. In-vivo Imiquimod (IMQ)-induced psoriasis model was performed and EOs were applied topically and compared to mometasone cream as a standard subsequently histopathological analysis and inflammatory biomarkers were measured. RESULTS In GC-MS analysis, Monoterpene hydrocarbons, sesquiterpene hydrocarbons and oxygenated monoterpenes were the major detected classes in the three plants, except in Pinus canariensis essential oil, oxygenated monoterpenes were absent. A significant attenuation of imiquimod-induced psoriasis symptoms after topical application of P. canariensis C.Sm., and C. lusitanica Mill. essential oils were observed by reducing the psoriasis area severity index (PASI) score, alleviating histopathological alteration, restoring the spleen index, and decreasing serum levels of interleukins 23 and 17A. Indeed, the results of Pinus canariensis essential oil is comparable to mometasone and showed no significant difference from standard treatment. On the other hand, the topical application of C. arizonica essential oil failed to alleviate imiquimod-induced psoriasis symptoms as observed in the PSAI score, the histopathological investigation, and the spleen index. CONCLUSION The essential oils of P. canariensis C.Sm., and C. lusitanica Mill aerial parts could be promising candidates for psoriasis treatment and for further studies on inflammation-related skin diseases.
Collapse
Affiliation(s)
- Rania M Kamal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mohamed S Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Inas Y Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
8
|
Todke P, Polaka S, Raval N, Gondaliya P, Tambe V, Maheshwari R, Kalia K, Tekade RK. 'Transfersome-embedded-gel' for dual-mechanistic delivery of anti-psoriatic drugs to dermal lymphocytes. J Microencapsul 2022; 39:495-511. [PMID: 35993180 DOI: 10.1080/02652048.2022.2116119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM Develop a platform for co-delivering clobetasol propionate (CP) and cyclosporine (CyA) to the epidermis and dermis to treat psoriasis. METHODS The transfersomes were prepared by thin-film hydration method. Transfersomes were characterised by dynamic light scattering and transmission electron microscope (TEM). Then, the gel stability, viscosity, pH, and spreadability were measured. Cytotoxicity of the CyA-loaded transfersome embedded in CP-dispersed gel (TEG-CyA-CP) was assessed on both human keratinocyte cell line (HaCaT) and Jurkat cells. In vitro cellular uptake and ex vivo dermal distribution was measured. The expression of inflammatory markers was assessed by reverse-transcription PCR (RT-PCR). RESULTS Nanoscale (<150 nm) transferosomes with high CyA encapsulation efficiency (>86%) were made. TEG-CyA-CP demonstrated higher viscosity (4808.8 ± 12.01 mPas), which may help control dual drug release. Ex vivo results showed TEG-CyA-CP ability to deliver CyA in the dermis and CP in the epidermis. RT-PCR studies showed the optimised formulation helps reduce the tumour necrosis factor (TNF-α) and interleukin-1 (IL-1) levels to relieve psoriasis symptoms. CONCLUSION The developed TEG-CyA-CP represents a promising fit-to-purpose delivery platform for the dual-site co-delivery of CyA and CP in treating psoriasis.
Collapse
Affiliation(s)
- Pooja Todke
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Suryanarayana Polaka
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Nidhi Raval
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Piyush Gondaliya
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Vishakha Tambe
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Rahul Maheshwari
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Kiran Kalia
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Rakesh Kumar Tekade
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| |
Collapse
|
9
|
Sadeghi S, Kalantari Y, Seirafianpour F, Goodarzi A. The Efficacy and Safety of Topical Cyclosporine-A in Dermatology: A Systematic Review. Dermatol Ther 2022; 35:e15490. [PMID: 35384191 DOI: 10.1111/dth.15490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
Abstract
Cyclosporine-A (Cyc-A) was initially prescribed as systemic therapy for patients receiving solid organ transplants or in patients with graft versus host disease (GVHD). Topical Cyc-A is an ideal form of Cyclosporine in the treatment of mucocutaneous disorders as it causes fewer systemic side effects and has more stable results than steroids; however, poor absorption through the skin makes the development of new formulations necessary to improve skin permeability. To evaluate the efficacy and safety of topical Cyc-A in different dermatological conditions. A thorough systematic review was performed on PubMed/Medline, Embase, Scopus, and Web of Science databases as well as Google Scholar, and relevant studies from 2000 until January 3rd, 2022, were selected. The study was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA). Topical Cyc-A was observed to be an effective medication in the treatment of oral lichen planus, psoriasis, burning mouth syndrome, Pyoderma Gangrenosum, and Zoon's balanitis. Adverse side effects such as dysphagia, burning sensation, lips swealing, and gastrointestinal upset were reported following Cyc-A mouthwash use, whereas mild erythema, dryness, and fissuring of the skin were observed following the Cyc-A lipogel application. Topical Cyc-A was found to be a good alternative to traditional treatment regimens for immune-mediated mucocutaneous conditions. Cyc-A can be considered as a safe and efficient option in cases of long-term treatment as it does not have the same adverse effects of long-term steroids. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sara Sadeghi
- Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Yasamin Kalantari
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Seirafianpour
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Faculty of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Iran Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| |
Collapse
|
10
|
Zhang C, Duan J, Huang Y, Chen M. Enhanced Skin Delivery of Therapeutic Peptides Using Spicule-Based Topical Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13122119. [PMID: 34959402 PMCID: PMC8709454 DOI: 10.3390/pharmaceutics13122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
This study reports two therapeutic peptides, insulin (INS, as a hydrophilic model peptide) and cyclosporine A (CysA, as a hydrophobic one), that can be administrated through a transdermal or dermal route by using spicule-based topical delivery systems in vitro and in vivo. We obtained a series of spicules with different shapes and sizes from five kinds of marine sponges and found a good correlation between the skin permeability enhancement induced by these spicules and their aspect ratio L/D. In the case of INS, Sponge Haliclona sp. spicules (SHS) dramatically increased the transdermal flux of INS (457.0 ± 32.3 ng/cm2/h) compared to its passive penetration (5.0 ± 2.2 ng/cm2/h) in vitro. Further, SHS treatment slowly and gradually reduced blood glucose to 13.1 ± 6.3% of the initial level in 8 h, while subcutaneous injection resulted in a rapid blood glucose reduction to 15.9 ± 1.4% of the initial level in 4 h, followed by a rise back to 75.1 ± 24.0% of the initial level in 8 h. In the case of CysA, SHS in combination with ethosomes (SpEt) significantly (p < 0.05) increased the accumulation of CysA in viable epidermis compared to other groups. Further, SpEt reduced the epidermis thickness by 41.5 ± 9.4% in 7 days, which was significantly more effective than all other groups. Spicule-based topical delivery systems offer promising strategies for delivering therapeutic peptides via a transdermal or dermal route.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (C.Z.); (J.D.)
| | - Jiwen Duan
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (C.Z.); (J.D.)
| | - Yongxiang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Ming Chen
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (C.Z.); (J.D.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
- Pingtan Research Institute of Xiamen University, Pingtan 350400, China
- Correspondence:
| |
Collapse
|
11
|
Ryu YC, Lee YE, Hwang BH. Efficient and safe small RNA delivery to macrophage using peptide-based nanocomplex. Biotechnol Bioeng 2021; 119:482-492. [PMID: 34761810 DOI: 10.1002/bit.27988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023]
Abstract
As one of the gene therapies, RNA interference (RNAi) effectively suppresses only specific genes, targeting various diseases in which they are involved. For the successful process of RNAi, efficient and safe delivery of small RNAs, including small interfering RNA and short hairpin RNA, is essential. Herein, an S-R11 fusion peptide, SPACE peptide conjugated with poly-arginine, was introduced to deliver small RNAs into immune cells that are difficult to transfect. This S-R11 peptide stably formed a spontaneous self-assembling nanocomplex through electrostatic attraction and hydrogen bonding with small RNAs. The nanocomplex showed about 5.3-fold better permeation efficiency than the conventional Lipofectamine™ 2000 for RAW 264.7 macrophage cells. Moreover, it induced about 66.2% silencing effect of the target gene in the cells activated with polyinosinic:polycytidylic acid (poly (I:C)). In addition, the cell viability of fusion peptide was ensured even in a concentration range exceeding the concentration used in the nanocomplex. Based on these results, it is expected that the nanocomplex in this study can be used as a new gene delivery system that can overcome the challenge of gene therapies to immune cells.
Collapse
Affiliation(s)
- Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Korea
| | - Yoo Eun Lee
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Korea.,Division of Bioengineering, Incheon National University, Incheon, Korea
| |
Collapse
|
12
|
Pandey S, Tripathi P, Gupta A, Yadav JS. A comprehensive review on possibilities of treating psoriasis using dermal cyclosporine. Drug Deliv Transl Res 2021; 12:1541-1555. [PMID: 34550552 DOI: 10.1007/s13346-021-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
Psoriasis is an autoimmune, chronic proliferative, inflammatory skin disease with high comorbidity. Psoriasis is not a curable disease; it can only be managed. Cyclosporine A (CyA) is one of the FDA-approved immunosuppressant drug used in severe Psoriasis. Till date only oral route is used for its administration. Administration of CyA by this route causes serious side effects such as hypertension and renal toxicity. Due to these side effects, a number of researches have been done and taking place in the current times for the dermal delivery of CyA for the management of psoriasis. Dermal delivery of CyA is not an easy task because of its physiochemical properties like high molecular weight, lipophilicity and resistance offered by stratum corneum (SC). Because of the above problems in the dermal delivery a number of new approaches such as nanolipid carriers, microemulsion, liposomes, niosomes etc. are explored. To those deep findings for psoriasis management with dermal delivery of CyA have not been discussed. This comprehensive review includes all the studies, advancements and their critical findings which took place in the recent times for the dermal delivery of CyA and along with the suitable modification needed for the efficient dermal delivery of CyA are also suggested.
Collapse
Affiliation(s)
- Sonia Pandey
- Sakshi College of Pharmacy, Kalyanpur, UP, 208017, Kanpur, India.
| | - Purnima Tripathi
- Department of Pharmaceutics, Bundelkhand University, Jhansi, UP, India
| | - Arti Gupta
- Department of Pharmacy, Institute of Technology and Management, Gorakhpur, UP, 273209, India
| | - Jitendra Singh Yadav
- Department of Pharmacy, Institute of Technology and Management, Gorakhpur, UP, 273209, India
| |
Collapse
|
13
|
Lalan M, Shah P, Barve K, Parekh K, Mehta T, Patel P. Skin cancer therapeutics: nano-drug delivery vectors—present and beyond. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00326-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Skin cancers are among the widely prevalent forms of cancer worldwide. The increasing industrialization and accompanied environmental changes have further worsened the skin cancer statistics. The stern topical barrier although difficult to breach is a little compromised in pathologies like skin cancer. The therapeutic management of skin cancers has moved beyond chemotherapy and surgery.
Main body of the abstract
The quest for a magic bullet still prevails, but topical drug delivery has emerged as a perfect modality for localized self-application with minimal systemic ingress for the management of skin cancers. Advances in topical drug delivery as evidenced by the exploration of nanocarriers and newer technologies like microneedle-assisted/mediated therapeutics have revolutionized the paradigms of topical treatment. The engineered nanovectors have not only been given the liberty to experiment with a wide-array of drug carriers with very distinguishing characteristics but also endowed them with target specificity. The biologicals like nucleic acid-based approaches or skin penetrating peptide vectors are another promising area of skin cancer therapeutics which has demonstrated potential in research studies. In this review, a panoramic view is presented on the etiology, therapeutic options, and emerging drug delivery modalities for skin cancer.
Short conclusion
Nanocarriers have presented innumerable opportunities for interventions in skin cancer therapeutics. Challenge persists for the bench to bedside translation of these highly potential upcoming therapeutic strategies.
Graphic abstract
Collapse
|
14
|
Petit RG, Cano A, Ortiz A, Espina M, Prat J, Muñoz M, Severino P, Souto EB, García ML, Pujol M, Sánchez-López E. Psoriasis: From Pathogenesis to Pharmacological and Nano-Technological-Based Therapeutics. Int J Mol Sci 2021; 22:4983. [PMID: 34067151 PMCID: PMC8125586 DOI: 10.3390/ijms22094983] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Research in the pathogenesis of inflammatory skin diseases, such as skin dermatitis and psoriasis, has experienced some relevant breakthroughs in recent years. The understanding of age-related factors, gender, and genetic predisposition of these multifactorial diseases has been instrumental for the development of new pharmacological and technological treatment approaches. In this review, we discuss the molecular mechanisms behind the pathological features of psoriasis, also addressing the currently available treatments and novel therapies that are under clinical trials. Innovative therapies developed over the last 10 years have been researched. In this area, advantages of nanotechnological approaches to provide an effective drug concentration in the disease site are highlighted, together with microneedles as innovative candidates for drug delivery systems in psoriasis and other inflammatory chronic skin diseases.
Collapse
Affiliation(s)
- Robert Gironés Petit
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases Network, Carlos III Health Institute, 28031 Madrid, Spain
| | - Alba Ortiz
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Prat
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Montserrat Muñoz
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Patrícia Severino
- University of Tiradentes (Unit) Av. Murilo Dantas, Aracaju 49010-390, Brazil;
- Institute of Technology and Research (ITP) Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Eliana B. Souto
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria L. García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases Network, Carlos III Health Institute, 28031 Madrid, Spain
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases Network, Carlos III Health Institute, 28031 Madrid, Spain
| |
Collapse
|
15
|
Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds. mBio 2020; 11:mBio.01414-20. [PMID: 32605990 PMCID: PMC7327176 DOI: 10.1128/mbio.01414-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Trauma-related necrotizing myocutaneous mucormycosis (NMM) has a high morbidity and mortality in victims of combat-related injuries, geometeorological disasters, and severe burns. Inspired by the observation that several recent clusters of NMM have been associated with extreme mechanical forces (e.g., during tornados), we studied the impact of mechanical stress on Mucoralean biology and virulence in a Drosophila melanogaster infection model. In contrast to other experimental procedures to exert mechanical stress, tornadic shear challenge (TSC) by magnetic stirring induced a hypervirulent phenotype in several clinically relevant Mucorales species but not in Aspergillus or Fusarium Whereas fungal growth rates, morphogenesis, and susceptibility to noxious environments or phagocytes were not altered by TSC, soluble factors released in the supernatant of shear-challenged R. arrhizus spores rendered static spores hypervirulent. Consistent with a rapid decay of TSC-induced hypervirulence, minimal transcriptional changes were revealed by comparative RNA sequencing analysis of static and shear-challenged Rhizopus arrhizus However, inhibition of the calcineurin/heat shock protein 90 (hsp90) stress response circuitry by cyclosporine and tanespimycin abrogated the increased pathogenicity of R. arrhizus spores following TSC. Similarly, calcineurin loss-of-function mutants of Mucor circinelloides displayed no increased virulence capacity in flies after undergoing TSC. Collectively, these results establish that TSC induces hypervirulence specifically in Mucorales and point out the calcineurin/hsp90 pathway as a key orchestrator of this phenotype. Our findings invite future studies of topical calcineurin inhibitor treatment of wounds as an adjunct mitigation strategy for NMM following high-energy trauma.IMPORTANCE Given the limited efficacy of current medical treatments in trauma-related necrotizing mucormycosis, there is a dire need to better understand the Mucoralean pathophysiology in order to develop novel strategies to counteract fungal tissue invasion following severe trauma. Here, we describe that tornadic shear stress challenge transiently induces a hypervirulent phenotype in various pathogenic Mucorales species but not in other molds known to cause wound infections. Pharmacological and genetic inhibition of calcineurin signaling abrogated hypervirulence in shear stress-challenged Mucorales, encouraging further evaluation of (topical) calcineurin inhibitors to improve therapeutic outcomes of NMM after combat-related blast injuries or violent storms.
Collapse
|
16
|
Hasan M, Khatun A, Fukuta T, Kogure K. Noninvasive transdermal delivery of liposomes by weak electric current. Adv Drug Deliv Rev 2020; 154-155:227-235. [PMID: 32589904 DOI: 10.1016/j.addr.2020.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Noninvasive transdermal drug delivery (NTDD) offers an exciting new method of administration relative to conventional routes, but is associated with some challenges. Liposomes are capable of encapsulating transdermally-unfavorable drugs. However, the horny layer of skin is a significant barrier that limits efficient transdermal delivery of liposomes. Iontophoresis using weak electric current (WEC) represents a NTDD technology. WEC treatment of liposomes applied to the skin surface improves transdermal penetration of encapsulated drugs by cooperative effects. In this review, we provide an overview of the application of WEC/liposomes for transdermal delivery of macromolecules and low molecular weight drugs. We compare the transdermal delivery and therapeutic efficiency of the combined system with conventional routes of administration and their individual use. We discuss a novel perspective on the mechanism of WEC-mediated transdermal delivery of liposomes, which suggests that WEC activates the intracellular signaling pathway for transdermal permeation and induces unique endocytosis in skin cells.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan; Tokyo Biochemical Research Foundation (TBRF) Fellow, Tokushima, Japan
| | - Anowara Khatun
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan.
| |
Collapse
|
17
|
Freeze-Dried Softisan ® 649-Based Lipid Nanoparticles for Enhanced Skin Delivery of Cyclosporine A. NANOMATERIALS 2020; 10:nano10050986. [PMID: 32455668 PMCID: PMC7279451 DOI: 10.3390/nano10050986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory skin diseases, including psoriasis and atopic dermatitis, affect around one quarter to one third of the world population. Systemic cyclosporine A, an immunosuppressant agent, is included in the current therapeutic armamentarium of these diseases. Despite being highly effective, it is associated with several side effects, and its topical administration is limited by its high molecular weight and poor water solubility. To overcome these limitations, cyclosporine A was incorporated into solid lipid nanoparticles obtained from Softisan® 649, a commonly used cosmetic ingredient, aiming to develop a vehicle for application to the skin. The nanoparticles presented sizes of around 200 nm, low polydispersity, negative surface charge, and stability when stored for 8 weeks at room temperature or 4 °C. An effective incorporation of 88% of cyclosporine A within the nanoparticles was observed, without affecting its morphology. After the freeze-drying process, the Softisan® 649-based nanoparticles formed an oleogel. Skin permeation studies using pig ear as a model revealed low permeation of the applied cyclosporine A in the freeze-dried form of the nanoparticles in relation to free drug and the freshly prepared nanoparticles. About 1.0 mg of cyclosporine A was delivered to the skin with reduced transdermal permeation. These results confirm local delivery of cyclosporine A, indicating its promising topical administration.
Collapse
|
18
|
Lin X, Wang Z, Ou H, Mitragotri S, Chen M. Correlations Between Skin Barrier Integrity and Delivery of Hydrophilic Molecules in the Presence of Penetration Enhancers. Pharm Res 2020; 37:100. [PMID: 32436083 DOI: 10.1007/s11095-020-02800-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE We investigated the potential correlations between skin barrier integrity and hydrophilic drugs distribution in skin in the presence of different types of penetration enhancers (PEs) and their combinations. METHODS We measured skin conductivity to evaluate skin barrier integrity before and after the topical application of different chemical PEs, physical PE, peptide PE and their combinations in vitro. We also investigated their effect on the skin distribution profiles of two hydrophilic model drugs, Fluorescein sodium (376 Da) and Fluorescein isothiocyanate-dextrans 10 (10 KDa). RESULTS The physical PE significantly increased the skin conductivity compared to all other PEs, while the peptide PE had no effect on it. The drug deposition in different skin layers was not only dependent on PE applied but also its own molecular weight. We further found two excellent correlations: one (R2 = 0.9388) between skin barrier integrity and total skin absorption of FNa and another one(R2 = 0.9212) between skin barrier integrity and the deposition of FNa in dermis and receptor in presence of chemical or physical PEs and their combinations. CONCLUSIONS The total skin absorption or the deposition in dermis and receptor of small hydrophilic drug in the presence of chemical and physical PEs and their combinations show a good correlation with skin barrier integrity. However, such correlations hold true neither for large hydrophilic drug nor for peptide PE. All good relationships found in this work will allow screening suitable PEs or combinations by measuring the skin conductivity induced by corresponding PEs. Graphical Abstract The total skin absorption of small hydrophilic drug shows a good correlation with skin barrier integrity in the presence of chemical and physical penetration enhancers and their combinations. However, such a correlation hold true neither for large hydrophilic drug nor for peptide penetration enhancer.
Collapse
Affiliation(s)
- XueKe Lin
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Department of Marine Biological Science & Technology, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China
| | - ZhenHua Wang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - HuiLong Ou
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Department of Marine Biological Science & Technology, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Ming Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Department of Marine Biological Science & Technology, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
19
|
|
20
|
Hyun S, Li L, Yoon KC, Yu J. An amphipathic cell penetrating peptide aids cell penetration of cyclosporin A and increases its therapeutic effect in an in vivo mouse model for dry eye disease. Chem Commun (Camb) 2019; 55:13657-13660. [PMID: 31595891 DOI: 10.1039/c9cc05960a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell penetrating peptide (CPP), LK-3, causes a ca. 10-fold increase in the cell penetration of cyclosporin A (CsA) at nanomolar concentrations. The results of an in vivo dry eye mouse model demonstrated that a 100-fold lower dose of the CsA/LK-3 complex than that of Restasis® is sufficient to cause the same therapeutic effect.
Collapse
Affiliation(s)
- Soonsil Hyun
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Jaehoon Yu
- Department of Chemistry and Education, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
21
|
Cao B, Li Y, Yang T, Bao Q, Yang M, Mao C. Bacteriophage-based biomaterials for tissue regeneration. Adv Drug Deliv Rev 2019; 145:73-95. [PMID: 30452949 PMCID: PMC6522342 DOI: 10.1016/j.addr.2018.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Bacteriophage, also called phage, is a human-safe bacteria-specific virus. It is a monodisperse biological nanostructure made of proteins (forming the outside surface) and nucleic acids (encased in the protein capsid). Among different types of phages, filamentous phages have received great attention in tissue regeneration research due to their unique nanofiber-like morphology. They can be produced in an error-free format, self-assemble into ordered scaffolds, display multiple signaling peptides site-specifically, and serve as a platform for identifying novel signaling or homing peptides. They can direct stem cell differentiation into specific cell types when they are organized into proper patterns or display suitable peptides. These unusual features have allowed scientists to employ them to regenerate a variety of tissues, including bone, nerves, cartilage, skin, and heart. This review will summarize the progress in the field of phage-based tissue regeneration and the future directions in this field.
Collapse
Affiliation(s)
- Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Zhejiang, Hangzhou 310058, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| |
Collapse
|
22
|
Alvarez-Figueroa MJ, Abarca-Riquelme JM, González-Aramundiz JV. Influence of protamine shell on nanoemulsions as a carrier for cyclosporine-A skin delivery. Pharm Dev Technol 2018; 24:630-638. [DOI: 10.1080/10837450.2018.1550789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - José María Abarca-Riquelme
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Benigni M, Pescina S, Grimaudo MA, Padula C, Santi P, Nicoli S. Development of microemulsions of suitable viscosity for cyclosporine skin delivery. Int J Pharm 2018; 545:197-205. [PMID: 29698819 DOI: 10.1016/j.ijpharm.2018.04.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022]
Abstract
Psoriasis is a widespread chronic disease affecting 2-4% of the population in Western countries. Its mild-to-moderate form, representing approximately 80% of the total cases, is treated by topical application, with corticosteroid being the standard treatment. However, in case of psoriasis, no single treatment works for every patient and optimizing topical therapy is a key aspect. A possible alternative is represented by cyclosporine, an immunosuppressant cyclic peptide administered orally in the treatment of the severe form. Its topical application could avoid the problems related to systemic immunosuppression, but the unfavourable physico-chemical properties (MW: 1202 Da; LogP ≈ 3) hinder its permeation across the stratum corneum. The aim of the paper was the preparation, characterization and ex-vivo evaluation of cyclosporine loaded microemulsions using oleic acid as oil phase, either Tween®80 or a soluble derivative of vitamin E (TPGS) as surfactants and either Transcutol®, propylene glycol or 1,3 propanediol as co-surfactants. The issue of formulation viscosity was also addressed 1) by evaluating the thickening of Tween®80-based microemulsions by direct addition of different rheological modifiers, 2) by building pseudo-ternary phase diagrams using TPGS, to identify the water/oil/surfactants proportions resulting in viscous self-gelifying systems. Nine formulations (five Tween®80-based and four TPGS-based) were selected, characterized in terms of droplets size (low viscosity systems) or rheological properties (high viscosity systems), loaded with 6 mg/g cyclosporine and applied ex-vivo on porcine skin for 22 h. A relevant skin accumulation was obtained either with a low-viscosity Tween®80-based microemulsion (9.78 ± 3.86 µg/cm2), or with a high viscosity TPGS-based microemulsion (18.3 ± 5.69 µg/cm2), with an increase of about 3 and 6 times respectively for comparison with a control cyclosporine solution in propylene glycol. The role of water content, surfactant, co-surfactant and viscosity was also addressed and discussed. The kinetic of skin uptake from the best performing formulation was finally evaluated, highlighting a relatively quick skin uptake and the achievement, after 2 h of contact, of potentially therapeutic cyclosporine skin concentrations.
Collapse
Affiliation(s)
- Marta Benigni
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Silvia Pescina
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | - Cristina Padula
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Patrizia Santi
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Sara Nicoli
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
24
|
Chaulagain B, Jain A, Tiwari A, Verma A, Jain SK. Passive delivery of protein drugs through transdermal route. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:472-487. [PMID: 29378433 DOI: 10.1080/21691401.2018.1430695] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
Skin is the largest external organ in the human body but its use for therapeutic purposes has been minimal. Stratum corneum residing on the uppermost layer of the skin provides a tough barrier to transport the drugs across the skin. Very small group of drugs sharing Lipinski properties, i.e. drugs having molecular weight not larger than 500 Da, having high lipophilicity and optimum polarity are fortunate enough to be used on skin therapeutics. But, at a time where modern therapeutics is slowly shifting from use of small molecular drugs towards the use of macromolecular therapeutic agents such as peptides, proteins and nucleotides in origin, skin therapeutics need to be evolved accordingly to cater the delivery of these agents. Physical technologies like iontophoresis, laser ablation, micro-needles and ultrasound, etc. have been introduced to enhance skin permeability. But their success is limited due to their complex working mechanisms and involvement of certain irreversible skin damage in some or other way. This review therefore explores the delivery strategies for transport of mainly peptide and protein drugs that do not involve any injuries (non-invasive) to the skin termed as passive delivery techniques. Chemical enhancers, nanocarriers, certain biological peptides and miscellaneous approaches like prodrugs are also thoroughly reviewed for their applications in protein delivery.
Collapse
Affiliation(s)
- Bivek Chaulagain
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| | - Ankit Jain
- b Institute of Pharmaceutical Research, GLA University , Mathura , India
| | - Ankita Tiwari
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| | - Amit Verma
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| | - Sanjay K Jain
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| |
Collapse
|
25
|
Zhang S, Xin P, Ou Q, Hollett G, Gu Z, Wu J. Poly(ester amide)-based hybrid hydrogels for efficient transdermal insulin delivery. J Mater Chem B 2018; 6:6723-6730. [DOI: 10.1039/c8tb01466c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transdermal drug delivery is an attractive, non-invasive treatment.
Collapse
Affiliation(s)
- Shaohan Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Peikun Xin
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Qianmin Ou
- Guanghua School of Stomatology
- Hospital of Stomatology
- Guangdong Provincial Key Laboratory of Stomatology
- Sun Yat-sen University
- Guangzhou 510055
| | - Geoffrey Hollett
- Materials Science and Engineering Program
- University of California San Diego
- La Jolla
- USA
| | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
26
|
Ross K. Towards topical microRNA-directed therapy for epidermal disorders. J Control Release 2017; 269:136-147. [PMID: 29133119 DOI: 10.1016/j.jconrel.2017.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023]
Abstract
There remains an unmet dermatological need for innovative topical agents that achieve better longterm outcomes with fewer side effects. Modulation of the expression and activity of microRNA (miRNAs) represents an emerging translational framework for the development of such innovative therapies because changes in the expression of one miRNA can have wide-ranging effects on diverse cellular processes associated with disease. In this short review, the roles of miRNA in epidermal development, psoriasis, cutaneous squamous cell carcinoma and re-epithelisation are highlighted. Consideration is given to the delivery of oligonucleotides that mimic or inhibit miRNA function using vehicles such as cell penetrating peptides, spherical nucleic acids, deformable liposomes and liquid crystalline nanodispersions. Formulation of miRNA-directed oligonucleotides with such skin-penetrating epidermal agents will drive the development of RNA-based cutaneous therapeutics for deployment as primary or adjuvant therapies for epidermal disorders.
Collapse
Affiliation(s)
- Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
27
|
Collado Camps E, Brock R. An opportunistic route to success: Towards a change of paradigm to fully exploit the potential of cell-penetrating peptides. Bioorg Med Chem 2017; 26:2780-2787. [PMID: 29157727 DOI: 10.1016/j.bmc.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023]
Abstract
About 25years ago it was demonstrated that certain peptides possess the ability to cross the plasma membrane. This led to the development of cell-penetrating peptides (CPPs) as vectors to mediate the cellular entry of (macro-)molecules that do not show cell entry by themselves. Nonetheless, in spite of an early bloom of promising pre-clinical studies, not a single CPP-based drug has been approved, yet. It is a paradigm in CPP research that the peptides are taken up by virtually all cells. In exploratory research and early preclinical development, this assumption guides the choice of the therapeutic target. However, while this indiscriminatory uptake may be the case for tissue culture experiments, in an organism this is clearly not the case. Biodistribution analyses demonstrate that CPPs only target a very limited number of cells and many tissues are hardly reached at all. Here, we review biodistribution analyses of CPPs and CPP-based drug delivery systems. Based on this analysis we propose a paradigm change towards a more opportunistic approach in CPP research. The application of CPPs should focus on those pathophysiologies for which the relevant target cells have been shown to be reached in vivo.
Collapse
Affiliation(s)
- Estel Collado Camps
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Vij M, Alam S, Gupta N, Gotherwal V, Gautam H, Ansari KM, Santhiya D, Natarajan VT, Ganguli M. Non-invasive Oil-Based Method to Increase Topical Delivery of Nucleic Acids to Skin. Mol Ther 2017; 25:1342-1352. [PMID: 28366765 DOI: 10.1016/j.ymthe.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 10/19/2022] Open
Abstract
Topical delivery of nucleic acids to skin has huge prospects in developing therapeutic interventions for cutaneous disorders. In spite of initial success, clinical translation is vastly impeded by the constraints of bioavailability as well as stability in metabolically active environment of skin. Various physical and chemical methods used to overcome these limitations involve invasive procedures or compounds that compromise skin integrity. Hence, there is an increasing demand for developing safe skin penetration enhancers for efficient nucleic acid delivery to skin. Here, we demonstrate that pretreatment of skin with silicone oil can increase the transfection efficiency of non-covalently associated peptide-plasmid DNA nanocomplexes in skin ex vivo and in vivo. The method does not compromise skin integrity, as indicated by microscopic evaluation of cellular differentiation, tissue architecture, enzyme activity assessment, dye penetration tests using Franz assay, and cytotoxicity and immunogenicity analyses. Stability of nanocomplexes is not hampered on pretreatment, thereby avoiding nuclease-mediated degradation. The mechanistic insights through Fourier transform infrared (FTIR) spectroscopy reveal some alterations in the skin hydration status owing to possible occlusion effects of the enhancer. Overall, we describe a topical, non-invasive, efficient, and safe method that can be used to increase the penetration and delivery of plasmid DNA to skin for possible therapeutic applications.
Collapse
Affiliation(s)
- Manika Vij
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Shamshad Alam
- CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow (Uttar Pradesh) 226001, India
| | - Nidhi Gupta
- Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi 110042, India
| | - Vishvabandhu Gotherwal
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Hemlata Gautam
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110020, India
| | - Kausar M Ansari
- CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow (Uttar Pradesh) 226001, India
| | - Deenan Santhiya
- Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi 110042, India
| | - Vivek T Natarajan
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
29
|
Kim WJ, Koo JH, Cho HJ, Lee JU, Kim JY, Lee HG, Lee S, Kim JH, Oh MS, Suh M, Shin EC, Ko JY, Sohn MH, Choi JM. Protein tyrosine phosphatase conjugated with a novel transdermal delivery peptide, astrotactin 1-derived peptide recombinant protein tyrosine phosphatase (AP-rPTP), alleviates both atopic dermatitis-like and psoriasis-like dermatitis. J Allergy Clin Immunol 2017; 141:137-151. [PMID: 28456618 DOI: 10.1016/j.jaci.2017.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) and psoriasis are the 2 most common chronic inflammatory skin diseases. There is an unmet medical need to overcome limitations for transcutaneous drug development posed by the skin barrier. OBJECTIVE We aimed to identify a novel transdermal delivery peptide and to develop a transcutaneously applicable immunomodulatory protein for treating AD and psoriasis. METHODS We identified and generated reporter proteins conjugated to astrotactin 1-derived peptide (AP), a novel transdermal delivery peptide of human origin, and analyzed the intracellular delivery efficiency of these proteins in mouse and human skin cells and tissues using multiphoton confocal microscopy. We also generated a recombinant therapeutic protein, AP-recombinant protein tyrosine phosphatase (rPTP), consisting of the phosphatase domain of the T-cell protein tyrosine phosphatase conjugated to AP. The immunomodulatory function of AP-rPTP was confirmed in splenocytes on cytokine stimulation and T-cell receptor stimulation. Finally, we confirmed the in vivo efficacy of AP-rPTP transdermal delivery in patients with oxazolone-induced contact hypersensitivity, ovalbumin-induced AD-like, and imiquimod-induced psoriasis-like skin inflammation models. RESULTS AP-conjugated reporter proteins exhibited significant intracellular transduction efficacy in keratinocytes, fibroblasts, and immune cells. In addition, transcutaneous administration of AP-dTomato resulted in significant localization into the dermis and epidermis in both mouse and human skin. AP-rPTP inhibited phosphorylated signal transducer and activator of transcription (STAT) 1, STAT3, and STAT6 in splenocytes and also regulated T-cell activation and proliferation. Transcutaneous administration of AP-rPTP through the paper-patch technique significantly ameliorated skin tissue thickening, inflammation, and cytokine expression in both AD-like and psoriasis-like dermatitis models. CONCLUSION We identified a 9-amino-acid novel transdermal delivery peptide, AP, and demonstrated its feasibility for transcutaneous biologic drug development. Moreover, AP-rPTP is a novel immunomodulatory drug candidate for human dermatitis.
Collapse
Affiliation(s)
- Won-Ju Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Hyun-Jung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Ji Yun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Sohee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea
| | - Jong Hoon Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Mi Seon Oh
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea; Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Joo Yeon Ko
- Department of Dermatology, College of Medicine, Hanyang University, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea; Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea.
| |
Collapse
|
30
|
Liu J, Ding W, Ruan R, Zou L, Chen M, Wei P, Wen L. A Theoretical Study on Inhibition of Melanoma with Controlled and Targeted Delivery of siRNA via Skin Using SPACE-EGF. Ann Biomed Eng 2017; 45:1407-1419. [PMID: 28349327 DOI: 10.1007/s10439-017-1825-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/20/2017] [Indexed: 11/26/2022]
Abstract
Melanoma is a potentially lethal skin cancer with high mortality rate. Recently, the peptide-mediated transdermal delivery of small interference RNA (siRNA) emerges as a promising strategy to treat melanoma by inducing the apoptosis of tumor cells, but the related theoretical model describing the delivery of siRNA under the effect of SPACE-EGF, the growth inhibition of melanoma and the dynamic expanding of the bump on the skin due to the growth of melanoma has not been reported yet. In this article, a theoretical model is developed to describe the percutaneous siRNA delivery mediated by SPACE-EGF to melanoma and the growth inhibition of melanoma. The results present the spatial-temporal distribution of siRNA and the growth of melanoma under the inhibition of siRNA, which shows a good consistency with the experimental results. In addition, this model represents the uplift process of tumors on the skin surface. The model presented here is a useful tool to understand the whole process of the SPACE-EGF-mediated delivery of the siRNA to melanoma through skin, to predict the therapeutic effect, and to optimize the therapeutic strategy, providing valuable references for the treatment of melanoma.
Collapse
Affiliation(s)
- Juanjuan Liu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Renquan Ruan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Lili Zou
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ming Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Pengfei Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Longping Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| |
Collapse
|
31
|
Gautam A, Nanda JS, Samuel JS, Kumari M, Priyanka P, Bedi G, Nath SK, Mittal G, Khatri N, Raghava GPS. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8. Sci Rep 2016; 6:26278. [PMID: 27189051 PMCID: PMC4870705 DOI: 10.1038/srep26278] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Skin, being the largest organ of the body, is an important site for drug administration. However, most of the drugs have poor permeability and thus drug delivery through the skin is very challenging. In this study, we examined the transdermal delivery capability of IMT-P8, a novel cell-penetrating peptide. We generated IMT-P8-GFP and IMT-P8-KLA fusion constructs and evaluated their internalization into mouse skin after topical application. Our results demonstrate that IMT-P8 is capable of transporting green fluorescent protein (GFP) and proapoptotic peptide, KLA into the skin and also in different cell lines. Interestingly, uptake of IMT-P8-GFP was considerably higher than TAT-GFP in HeLa cells. After internalization, IMT-P8-KLA got localized to the mitochondria and caused significant cell death in HeLa cells signifying an intact biological activity. Further in vivo skin penetration experiments revealed that after topical application, IMT-P8 penetrated the stratum corneum, entered into the viable epidermis and accumulated inside the hair follicles. In addition, both IMT-P8-KLA and IMT-P8-GFP internalized into the hair follicles and dermal tissue of the skin following topical application. These results suggested that IMT-P8 could be a potential candidate to be used as a topical delivery vehicle for various cosmetic and skin disease applications.
Collapse
Affiliation(s)
- Ankur Gautam
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Jagpreet Singh Nanda
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Jesse S Samuel
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Manisha Kumari
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Priyanka Priyanka
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Gursimran Bedi
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Samir K Nath
- Department of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Garima Mittal
- Experimental Animal Facility, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Neeraj Khatri
- Experimental Animal Facility, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | |
Collapse
|
32
|
Zakrewsky M, Muraski JA, Mitragotri S. Mechanistic Analysis of Cellular Internalization of a Cell- and Skin-Penetrating Peptide. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2016. [DOI: 10.1007/s40883-016-0011-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Abstract
Transdermal delivery of drugs, a compelling route of systemic drug delivery, provides painless, reliable, targeted, efficient and cost effective therapeutic regimen for patients. However, its use is limited by skin barrier especially the stratum corneum barrier. Moreover, transdermal delivery of macromolecules remains a challenge. Naturally, varieties of physical methods, chemical enhancers and drug carriers have been used to counteract this limitation. Recently, transdermal peptides discovered as safer, more efficient and more specific enhancers could promote the delivery of macromolecules across the skin. Herein, the underlying transdermal peptides are included. Subsequently, we have discussed typical applications and the possible mechanism of two groups of biologically inspired transdermal peptide enhancers, namely cell penetration peptides and transdermal enhanced peptides.
Collapse
|
34
|
Abstract
INTRODUCTION Topical administration is the favored route for local delivery of therapeutic agents due to its convenience and affordability. The specific challenge of designing a therapeutic system is to achieve an optimal concentration of a certain drug at its site of action for an appropriate duration. AREAS COVERED This review summarizes innovations from the past 3 years (2012-2015) in the field of topical drug delivery for the treatment of local infections of the vagina, nose, eye and skin. The review also throws some light on the anatomy and physiology of these organs and their various defensive barriers which affect the delivery of drugs administered topically. EXPERT OPINION Topical administration has been gaining attention over the last few years. However, conventional topical drug delivery systems suffer from drawbacks such as poor retention and low bioavailability. The successful formulation of topical delivery products requires the careful manipulation of defensive barriers and selection of a soluble drug carrier. Extensive research is required to develop newer topical drug delivery systems aiming either to improve the efficacy or to reduce side effects compared to current patented systems.
Collapse
Affiliation(s)
- Deepinder Singh Malik
- a Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| | - Neeraj Mital
- a Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| | - Gurpreet Kaur
- a Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| |
Collapse
|
35
|
Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J Control Release 2015; 240:165-190. [PMID: 26686079 DOI: 10.1016/j.jconrel.2015.12.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Gene therapy is becoming an influential part of the rapidly increasing armamentarium of biopharmaceuticals for improving health and combating diseases. Currently, three gene therapy treatments are approved by regulatory agencies. While these treatments utilize viral vectors, non-viral alternative technologies are also being developed to improve the safety profile and manufacturability of gene carrier formulations. We present an overview of gene-based therapies focusing on non-viral gene delivery systems and the genetic therapeutic tools that will further revolutionize medical treatment with primary focus on the range and development of non-invasive delivery systems for dermal, transdermal, ocular and pulmonary administrations and perspectives on other administration methods such as intranasal, oral, buccal, vaginal, rectal and otic delivery.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nafiseh Nafissi
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Daniella Calderon
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lokesh Narsineni
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amirreza Rafiee
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|