1
|
Li DD, Lan N, Zhao P, Tang YY. Advances in Etiology and Prevention of Capsular Contracture After Breast Implantation. Aesthetic Plast Surg 2025; 49:1915-1926. [PMID: 39586860 PMCID: PMC12031949 DOI: 10.1007/s00266-024-04500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
Capsular contracture (CC) is one of the most common complications of breast implant usage in breast augmentation or reconstruction. The CC approach can cause breast hardening, pain, and varying degrees of deformity, affecting the quality of life of patients. Considerably, it has become one of the most common reasons for frequent surgeries. Nonetheless, the etiology and pathogenesis of CC remain unclear. Moreover, there exist still a lot of uncertainties regarding prevention and treatment measures. In this article, we present discussions on the research status of the etiology, pathogenesis, prevention, and treatment measures of CC. In summary, this study provides a reference for further research on CC and clinical use.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Dan-Dan Li
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 of Kunzhou Street, Xishan District, Kunming, 650000, China
| | - Nan Lan
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 of Kunzhou Street, Xishan District, Kunming, 650000, China
| | - Ping Zhao
- The First Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519 of Kunzhou Street, Kunming, 650000, China.
| | - Yi-Yin Tang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 of Kunzhou Street, Xishan District, Kunming, 650000, China.
| |
Collapse
|
2
|
Hu M, Liang C, Wang D. Implantable bioelectrodes: challenges, strategies, and future directions. Biomater Sci 2024; 12:270-287. [PMID: 38175154 DOI: 10.1039/d3bm01204b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Implantable bioelectrodes for regulating and monitoring biological behaviors have become indispensable medical devices in modern healthcare, alleviating pathological symptoms such as epilepsy and arrhythmia, and assisting in reversing conditions such as deafness and blindness. In recent years, developments in the fields of materials science and biomedical engineering have contributed to advances in research on implantable bioelectrodes. However, the foreign body reaction (FBR) is still a major constraint for the long-term application of electrodes. In this paper, four types of commonly used implantable bioelectrodes are reviewed, concentrating on their background, development, and a series of complications caused by FBR after long-term implantation. Strategies for resisting FBRs are then devised in terms of physics, chemistry, and nanotechnology. We analyze the major trends in the future development of implantable bioelectrodes and outline some promising research to optimize the long-term operational stability of electrodes. Although current implantable bioelectrodes have been able to achieve good biocompatibility, low impedance, and low mechanical mismatch and trauma, these devices still face the challenge of FBR. Resistance to FBR is still the key for the long-term effectiveness of bioelectrodes, and a better understanding of the mechanisms of FBR, as well as miniaturization, long-term passivation, and coupling with gene therapy may be the way forward for the next generation of implantable bioelectrodes.
Collapse
Affiliation(s)
- Mengyuan Hu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Donghui Wang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
3
|
Yang B, Rutkowski N, Elisseeff J. The foreign body response: emerging cell types and considerations for targeted therapeutics. Biomater Sci 2023; 11:7730-7747. [PMID: 37904536 DOI: 10.1039/d3bm00629h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The foreign body response (FBR) remains a clinical challenge in the field of biomaterials due to its ability to elicit a chronic and sustained immune response. Modulating the immune response to materials is a modern paradigm in tissue engineering to enhance repair while limiting fibrous encapsulation and implant isolation. Though the classical mediators of the FBR are well-characterized, recent studies highlight that our understanding of the cell types that shape the FBR may be incomplete. In this review, we discuss the emerging role of T cells, stromal-immune cell interactions, and senescent cells in the biomaterial response, particularly to synthetic materials. We emphasize future studies that will deepen the field's understanding of these cell types in the FBR, with the goal of identifying therapeutic targets that will improve implant integration. Finally, we briefly review several considerations that may influence our understanding of the FBR in humans, including rodent models, aging, gut microbiota, and sex differences. A better understanding of the heterogeneous host cell response during the FBR can enable the design and development of immunomodulatory materials that favor healing.
Collapse
Affiliation(s)
- Brenda Yang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalie Rutkowski
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Peng Z, Chang Q, Liu X, Chen D, Lu F, Chen X. Polydopamine-assisted tranilast immobilization on a PLA chamber to enhance fat flaps regeneration by reducing tissue fibrosis. RSC Adv 2023; 13:9195-9207. [PMID: 36950704 PMCID: PMC10025940 DOI: 10.1039/d2ra05237g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/22/2023] [Indexed: 03/22/2023] Open
Abstract
Tissue engineering chambers (TECs) have been shown to be useful in regenerating adipose tissue. However, tissue fibrosis caused by the chambers compromises the final volume of the newly formed adipose tissue. Surface modifications can compensate for the lack of biocompatibility of an implant. Tranilast (Tra) is an antifibrotic drug used to treat fibrotic pathologies, including keloids and scleroderma. In this study, a polydopamine-assisted tranilast coating (pDA + Tra) was prepared on a polylactic acid (PLA) chamber to minimize tissue fibrosis and achieve a large volume of fat flap regeneration. The in vitro results showed that, in contrast to a PLA chamber, roughness increased, and the fibroblast adhesion and smooth muscle antibody-positive immunoreactivity decreased in the PLA + pDA + Tra chamber. In addition, pedicled adipose tissue flaps were separated from the back of the rabbit and inserted into each chamber using the classic TEC procedure. After 16 weeks, the marked attenuation of fibrosis and promotion of fat regeneration was observed in the PLA + pDA + Tra chamber in contrast to the PLA chamber. Moreover, in contrast to the PLA chamber, Q-PCR results showed that fibrotic factor TGF-β was significantly reduced, associated with a remarkable increase in adipogenic differentiation transcription factors PPAR-γ and C/EBPα in the PLA + pDA + Tra chamber after 16 weeks (p < 0.05). Thus, PLA chambers loaded with pDA + Tra on the surface have good biocompatibility, and chemical anti-fibrosis reagents can synergistically reduce fibrosis formation while excellently promoting adipose tissue regeneration.
Collapse
Affiliation(s)
- Zhangsong Peng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| | - Xilong Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University Guangzhou China
| | - Danni Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| |
Collapse
|
5
|
Nabai L, Ghahary A, Jackson J. Localized Controlled Release of Kynurenic Acid Encapsulated in Synthetic Polymer Reduces Implant-Induced Dermal Fibrosis. Pharmaceutics 2022; 14:pharmaceutics14081546. [PMID: 35893802 PMCID: PMC9331703 DOI: 10.3390/pharmaceutics14081546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Excessive fibrosis following surgical procedures is a challenging condition with serious consequences and no effective preventive or therapeutic option. Our group has previously shown the anti-fibrotic effect of kynurenic acid (KynA) in vitro and as topical cream formulations or nanofiber dressings in open wounds. Here, we hypothesized that the implantation of a controlled release drug delivery system loaded with KynA in a wound bed can prevent fibrosis in a closed wound. Poly (lactic-co-glycolic acid) (PLGA), and a diblock copolymer, methoxy polyethylene glycol-block-poly (D, L-lactide) (MePEG-b-PDLLA), were used for the fabrication of microspheres which were evaluated for their characteristics, encapsulation efficiency, in vitro release profile, and in vivo efficacy for reduction of fibrosis. The optimized formulation exhibited high encapsulation efficiency (>80%), low initial burst release (~10%), and a delayed, gradual release of KynA. In vivo evaluation of the fabricated microspheres in the PVA model of wound healing revealed that KynA microspheres effectively reduced collagen deposition inside and around PVA sponges and α-smooth muscle actin expression after 66 days. Our results showed that KynA can be efficiently encapsulated in PLGA microspheres and its controlled release in vivo reduces fibrotic tissue formation, suggesting a novel therapeutic option for the prevention or treatment of post-surgical fibrosis.
Collapse
Affiliation(s)
- Layla Nabai
- BC Professional Fire Fighters’ Burn & Wound Healing Research Lab, ICORD, The Blusson Spinal Cord Centre, 818 West 10th Ave, Vancouver, BC V5Z 1M9, Canada; (L.N.); (A.G.)
| | - Aziz Ghahary
- BC Professional Fire Fighters’ Burn & Wound Healing Research Lab, ICORD, The Blusson Spinal Cord Centre, 818 West 10th Ave, Vancouver, BC V5Z 1M9, Canada; (L.N.); (A.G.)
| | - John Jackson
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2045 Westbrook Mall, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| |
Collapse
|
6
|
Huang SQ, Chen Y, Zhu Q, Zhang YM, Lei ZY, Zhou X, Fan DL. In Vivo and In Vitro Fibroblasts' Behavior and Capsular Formation in Correlation with Smooth and Textured Silicone Surfaces. Aesthetic Plast Surg 2022; 46:1164-1177. [PMID: 35237878 DOI: 10.1007/s00266-022-02769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND As the most principal complication following breast augmentation with silicone breast implants, capsular contracture is greatly influenced by surface texture. However, there have long been widespread debates on the function of smooth or textured surface implants in reducing capsular contracture. MATERIALS AND METHODS Three commercially available silicone breast implants with smooth and textured surfaces were subjected to surface characterization, and in vitro and in vivo assessments were then implemented to investigate the effect of these different surfaces on the biological behaviors of fibroblasts and capsular formation in rat models. RESULTS Surface characterization demonstrated that all three samples were hydrophobic with distinct roughness values. Comparing the interactions of fibroblasts or tissues with different surfaces, we observed that as surface roughness increased, the adhesion and cell spreading of fibroblasts, the level of echogenicity, the density of collagen and α-SMA-positive immunoreactivity decreased, while the proliferation of fibroblasts and capsule thickness increased. CONCLUSIONS Our findings elucidated that the effect of silicone implant surface texture on fibroblasts' behaviors and capsular formation was associated with variations in surface roughness, and the number of myofibroblasts may have a more significant influence on the process of contracture than capsule thickness in the early stage of capsular formation. These results highlight that targeting myofibroblasts may be wielded in the prevention and treatment strategies of capsular contracture clinically. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Shu-Qing Huang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Yao Chen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi-Ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Ze-Yuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Xin Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China.
| | - Dong-Li Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
7
|
Ji HB, Hong JY, Kim CR, Min CH, Han JH, Kim MJ, Kim SN, Lee C, Choy YB. Microchannel-embedded implantable device with fibrosis suppression for prolonged controlled drug delivery. Drug Deliv 2022; 29:489-498. [PMID: 35147052 PMCID: PMC8843219 DOI: 10.1080/10717544.2022.2032873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
For the prolonged, controlled delivery of systemic drugs, we propose an implantable drug-delivery chip (DDC) embedded with pairs of a microchannel and drug-reservoir serving as a drug diffusion barrier and depot, respectively. We pursued a DDC for dual drugs: a main-purpose drug, diclofenac (DF), for systemic exposure, and an antifibrotic drug, tranilast (TR), for local delivery. Thus, the problematic fibrotic tissue formation around the implanted device could be diminished, thereby less hindrance in systemic exposure of DF released from the DDC. First, we separately prepared DDCs for DF or TR delivery, and sought to find a proper microchannel length for a rapid onset and sustained pattern of drug release, as well as the required drug dose. Then, two distinct DDCs for DF and TR delivery, respectively, were assembled to produce a Dual_DDC for the concurrent delivery of DF and TR. When the Dual_DDC was implanted in living rats, the DF concentration in blood plasma did not drop significantly in the later periods after implantation relative to that in the early periods before fibrotic tissue formation. When the Dual_DDC was implanted without TR, there was a significant decrease in the blood plasma DF concentration as the time elapsed after implantation. Biopsied tissues around the Dual_DDC exhibited a significant decrease in the fibrotic capsule thickness and collagen density relative to the Dual_DDC without TR, owing to the effect of the local, sustained release of the TR.
Collapse
Affiliation(s)
- Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jae Young Hong
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Chang Hee Min
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea.,Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Beneficial effects of transdermal administration of tamoxifen on capsular contracture after breast implantation in murine models. Breast Cancer 2022; 29:343-351. [PMID: 35050493 DOI: 10.1007/s12282-021-01316-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND AIM Capsular contracture is the most common complication with smooth-type silicone implants. We investigated the preventive effect of an active metabolite of tamoxifen, 4-hydroxytamoxifen (4-OH TAM), on capsular contracture. METHODS A silicone sheet was implanted into the back of 28 female ICR mice. Mixtures of gel with 0.2% 4-OH TAM and 0.1% 4-OH TAM were administered transdermally once a day for 4 weeks. Saline was administered to the control. After killing the mice, capsular thickness was measured in H&E-stained specimens. Estrogen receptor (ER), α-smooth muscle actin (α-SMA), and transforming growth factor-β (TGF-β) expressions were immunohistochemically investigated in the capsules. RESULTS The capsule was thinner in the 0.2% 4-OH TAM gel group than in the control group (control, 0.1% 4-OH TAM gel, 0.2% 4-OH TAM gel: 52.8 ± 3.4 µm, 54.2 ± 6.8 µm, 46.4 ± 3.3 µm, respectively). ER was found in most fibroblasts of all samples. α-SMA expression in the capsule was significantly lower in the 4-OH TAM gel groups than in the control group (control = 70.0 ± 3.4%, 0.1% 4-OH TAM = 57.0 ± 3.4%, 0.2% 4-OH TAM = 49.4 ± 4.9%). TGF-β expression was significantly reduced by the 4-OH TAM gel injections dose-dependently (control = 67.3 ± 2.2%, 0.1% 4-OH TAM = 52.4 ± 3.1%, 0.2% 4-OH TAM = 45.1 ± 2.4%). CONCLUSIONS The transdermal administration of 0.1% and 0.2% 4-OH TAM gels inhibited capsule development. The inhibition of TGF-β expression is a mechanism by which 4-OH TAM suppresses fibroblast growth, preventing capsular formation.
Collapse
|
9
|
Suppression of the fibrotic encapsulation of silicone implants by inhibiting the mechanical activation of pro-fibrotic TGF-β. Nat Biomed Eng 2021; 5:1437-1456. [PMID: 34031559 DOI: 10.1038/s41551-021-00722-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The fibrotic encapsulation of implants involves the mechanical activation of myofibroblasts and of pro-fibrotic transforming growth factor beta 1 (TGF-β1). Here, we show that both softening of the implant surfaces and inhibition of the activation of TGF-β1 reduce the fibrotic encapsulation of subcutaneous silicone implants in mice. Conventionally stiff silicones (elastic modulus, ~2 MPa) coated with a soft silicone layer (elastic modulus, ~2 kPa) reduced collagen deposition as well as myofibroblast activation without affecting the numbers of macrophages and their polarization states. Instead, fibroblasts around stiff implants exhibited enhanced intracellular stress, increased the recruitment of αv and β1 integrins, and activated TGF-β1 signalling. In vitro, the recruitment of αv integrin to focal adhesions and the activation of β1 integrin and of TGF-β were higher in myofibroblasts grown on latency-associated peptide (LAP)-coated stiff silicones than on soft silicones. Antagonizing αv integrin binding to LAP through the small-molecule inhibitor CWHM-12 suppressed active TGF-β signalling, myofibroblast activation and the fibrotic encapsulation of stiff subcutaneous implants in mice.
Collapse
|
10
|
Functionalization of Silicone Surface with Drugs and Polymers for Regulation of Capsular Contracture. Polymers (Basel) 2021; 13:polym13162731. [PMID: 34451270 PMCID: PMC8400777 DOI: 10.3390/polym13162731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
Breast reconstruction is achieved using silicone implants, which are currently associated with major complications. Several strategies have been considered to overcome the existing limitations as well as to improve their performance. Recently, surface modification has proved to be an effective clinical approach to prevent bacterial adhesion, reduce capsular thickness, prevent foreign body reactions, and reduce other implant-associated problems. This review article summarizes the ongoing strategies for the surface modification of silicone implants in breast reconstruction applications. The article mostly discusses two broad categories of surface modification: drug-mediated and polymer-based. Different kinds of drugs have been applied with silicone that are associated with breast reconstruction. Initially, this article discusses studies related to drugs immobilized on silicone implants, focusing on drug-loading methods and their effects on capsule contracture. Moreover, the pharmacological action of drugs on fibroblast cells is considered in this section. Next, the polymeric modification of the silicone surface is introduced, and we discuss its role in reducing capsule thickness at the cellular and biological levels. The polymeric modification techniques, their chemistry, and their physical properties are described in detail. Notably, polymer activities on macrophages and inflammation are also briefly discussed. Each of the reviewed articles is summarized, highlighting their discussion of capsular thickness, foreign body reactions, and bacterial attachment. The aim of this review is to provide the main points of some research articles regarding the surface modification of silicon, which can lead to a decrease in capsular thickness and provides better patient compliance.
Collapse
|
11
|
Silicone Breast Implant Coated with Triamcinolone Inhibited Breast-Implant-Induced Fibrosis in a Porcine Model. MATERIALS 2021; 14:ma14143917. [PMID: 34300843 PMCID: PMC8307199 DOI: 10.3390/ma14143917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022]
Abstract
Cosmetic silicone implants for breast reconstruction often lead to medical complications, such as abnormally excessive fibrosis driven by foreign body granulomatous inflammation. The purpose of this study was to develop a silicone breast implant capable of local and controlled release of a glucocorticoid drug triamcinolone acetonide (TA) for the prevention of silicone-breast-implant-induced fibrosis in a Yorkshire pig model (in vivo). Implants were dip-coated in a TA solution to load 1.85 μg/cm2 of TA in the implant shell, which could release the drug in a sustained manner for over 50 days. Immunohistochemical analysis for 12 weeks showed a decline in tumor necrosis factor-α expression, capsule thickness, and collagen density by 82.2%, 55.2%, and 32.3%, respectively. Furthermore, the counts of fibroblasts, macrophages, and myofibroblasts in the TA-coated implants were drastically reduced by 57.78%, 48.8%, and 64.02%, respectively. The TA-coated implants also lowered the expression of vimentin and α-smooth muscle actin proteins, the major profibrotic fibroblast and myofibroblast markers, respectively. Our findings suggest that TA-coated silicone breast implants can be a promising strategy for safely preventing fibrosis around the implants.
Collapse
|
12
|
Kang SH, Sutthiwanjampa C, Kim HS, Heo CY, Kim MK, Kim HK, Bae TH, Chang SH, Kim WS, Park H. Optimization of oxygen plasma treatment of silicone implant surface for inhibition of capsular contracture. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Moon DJ, Deva AK. Adverse Events Associated with Breast Implants: The Role of Bacterial Infection and Biofilm. Clin Plast Surg 2021; 48:101-108. [PMID: 33220897 DOI: 10.1016/j.cps.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David J Moon
- Department of Plastic and Reconstructive Surgery, Macquarie University, Suite 301, Level 3, 2 Technology place, New South Wales 2109, Australia
| | - Anand K Deva
- Department of Plastic and Reconstructive Surgery, Macquarie University, Suite 301, Level 3, 2 Technology place, New South Wales 2109, Australia; Integrated Specialist Healthcare Education and Research Foundation, Miranda, New South Wales, 2228, Australia.
| |
Collapse
|
14
|
Welch NG, Winkler DA, Thissen H. Antifibrotic strategies for medical devices. Adv Drug Deliv Rev 2020; 167:109-120. [PMID: 32553685 DOI: 10.1016/j.addr.2020.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
A broad range of medical devices initiate an immune reaction known as the foreign body response (FBR) upon implantation. Here, collagen deposition at the surface of the implant occurs as a result of the FBR, ultimately leading to fibrous encapsulation and, in many cases, reduced function or failure of the device. Despite significant efforts, the prevention of fibrotic encapsulation has not been realized at this point in time. However, many next-generation medical technologies including cellular therapies, sensors and devices depend on the ability to modulate and control the FBR. For these technologies to become viable, significant advances must be made in understanding the underlying mechanism of this response as well as in the methods modulating this response. In this review, we highlight recent advances in the development of materials and coatings providing a reduced FBR and emphasize key characteristics of high-performing approaches. We also provide a detailed overview of the state-of-the-art in strategies relying on controlled drug release, the surface display of bioactive signals, materials-based approaches, and combinations of these approaches. Finally, we offer perspectives on future directions in this field.
Collapse
|
15
|
Kim Y, Wu L, Park HC, Yang HC. Reduction of fibrous encapsulation by polyethylene glycol-grafted liposomes containing phosphatidylserine. ACTA ACUST UNITED AC 2020; 15:065007. [PMID: 32615550 DOI: 10.1088/1748-605x/aba238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biomedical implants tend to induce fibrous encapsulation which can cause malfunction of devices and local discomfort of patients. The purpose of this study was to reduce foreign body-induced fibrous capsule formation by immunomodulation of macrophages. Polyethylene-glycol-grafted liposomes containing phosphatidylserine (PEG-PSLs) were used to modulate macrophages. Mixed cellulose ester (MCE) membranes coated with a PEG-PSLs-entrapped alginate-gelatin matrix were subcutaneously implanted into rats, and the thickness of the fibrous capsule around each MCE membrane was analyzed after four weeks. PEG-PSLs significantly reduced fibrous capsule thickness, while liposomes containing phosphatidylserine (PSLs) did not affect fibrosis. In in vitro assays, PEG-PSLs suppressed TGF-β1 secretion and multinucleated giant cell (MGC) formation in IL-4-treated RAW 264.7, a murine macrophage cell line. Although PSLs inhibited MGC formation, they exerted no effect on the secretion of TGF- β1, which is known to be an important factor in tissue fibrosis. Therefore, our results suggest that PEG-PSLs reduce fibrous capsule formation by mediating the suppression of TGF-β1 secretion from macrophages.
Collapse
Affiliation(s)
- Yongjoon Kim
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | | | | | | |
Collapse
|
16
|
Choi JS, Huh BK, Lee SJ, Han MJ, Eom MR, Ahn HJ, Jin YJ, Park SA, Choy YB, Kwon SK. Tranilast-loaded tubular scaffold and surgical suture for suppression of stenosis after tracheal prosthesis transplantation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
A multi-center, retrospective, preliminary observational study to assess the safety of BellaGel® after augmentation mammaplasty. EUROPEAN JOURNAL OF PLASTIC SURGERY 2020. [DOI: 10.1007/s00238-020-01626-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Background
BellaGel® is the only cohesive silicone gel-filled breast implant from a Korean manufacturer, and it was first developed in 2005. It was approved by the CE in 2008, thus becoming the first Asian breast implant available in the EU. We conducted this study to assess the safety of BellaGel® in patients receiving augmentation mammaplasty.
Methods
We evaluated a consecutive series of 239 patients (478 breasts) who received esthetic augmentation mammaplasty using the BellaGel® (round smooth, round textured, round nanotextured, and anatomical textured types of implant) (HansBiomed Co. Ltd., Seoul, Korea) at three clinics in Korea (JW Plastic Surgery Center, BS The Body Plastic Surgery Clinic and Grace Plastic Surgery Clinic) during a period from December 1, 2015 to January 31, 2018.
Results
A total of 239 patients with a mean age of 33.1 ± 8.5 years old were followed up during a mean period of 399.58 ± 232.71 days, where there were no cases of capsular contracture in our clinical series of the patients. Other complications include one case (0.4%) of seroma, three cases (1.3%) of hematoma, and one case (0.4%) of infection. Moreover, there were no significant differences in the cumulative incidences of complications between the four types of the BellaGel® (χ2 = 2.322, df = 3, P = 0.508). Furthermore, the cumulative Kaplan-Meier survival rate was estimated at 0.979 (95% CI 0.961–0.997).
Conclusions
Our results indicate that the BellaGel® is such a safe breast implant that surgeons might consider using it for esthetic augmentation mammaplasty.
Level of evidence: Level III, risk/prognostic study.
Collapse
|
18
|
Huh BK, Kim BH, Kim CR, Kim SN, Shin BH, Ji HB, Lee SH, Kim MJ, Heo CY, Choy YB. Elastic net of polyurethane strands for sustained delivery of triamcinolone around silicone implants of various sizes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110565. [PMID: 32228902 DOI: 10.1016/j.msec.2019.110565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/12/2019] [Accepted: 12/15/2019] [Indexed: 12/22/2022]
Abstract
We propose an elastic net made of a biocompatible polymer to wrap silicone implants of various sizes, which also allows for the sustained release of an anti-inflammatory drug, triamcinolone, to prevent fibrosis. For this, we first prepared a strand composed of a mixture of polyurethane and triamcinolone via electrospinning, which was then assembled to prepare the elastic drug-delivery net (DDN). The DDN was prepared to just fit for wrapping the small silicone implant sample herein, but was also able to wrap a sample 7 times as large at 72% strain due to the elastic property of polyurethane. The DDN exhibited sustained drug release for 4 weeks, the profile of which was not very different between the intact and strained DDNs. When implanted in a subcutaneous pocket in living rats, the DDN-wrapped silicone implant samples showed an obvious antifibrotic effect due to the sustained release of triamcinolone. Importantly, this effect was similar for the small and large silicone samples, both wrapped with the same DDN. Therefore, we conclude that this drug-loaded net made of an elastic, biocompatible polymer has high potential for sustained drug delivery around silicone implants manufactured in various sizes.
Collapse
Affiliation(s)
- Beom Kang Huh
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Byung Hwi Kim
- Department of Biomedical Engineering, Seoul National University, College of Medicine, Seoul 03080, South Korea
| | - Cho Rim Kim
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Se-Na Kim
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Byung Ho Shin
- Department of Biomedical Engineering, Seoul National University, College of Medicine, Seoul 03080, South Korea
| | - Han Bi Ji
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Seung Ho Lee
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Min Ji Kim
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Chan Yeong Heo
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, South Korea; Department of Plastic and Reconstructive Surgery, Seoul National University, College of Medicine, Seoul 03080, South Korea; Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea.
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, South Korea; Department of Biomedical Engineering, Seoul National University, College of Medicine, Seoul 03080, South Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, South Korea.
| |
Collapse
|
19
|
Biocompatible Interface-Modified Tissue Engineering Chamber Reduces Capsular Contracture and Enlarges Regenerated Adipose Tissue. ACS Biomater Sci Eng 2019; 5:3440-3447. [PMID: 33405728 DOI: 10.1021/acsbiomaterials.8b00930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Implantable multireservoir device with stimulus-responsive membrane for on-demand and pulsatile delivery of growth hormone. Proc Natl Acad Sci U S A 2019; 116:11664-11672. [PMID: 31123147 DOI: 10.1073/pnas.1906931116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Implantable devices for on-demand and pulsatile drug delivery have attracted considerable attention; however, many devices in clinical use are embedded with the electronic units and battery inside, hence making them large and heavy for implantation. Therefore, we propose an implantable device with multiple drug reservoirs capped with a stimulus-responsive membrane (SRM) for on-demand and pulsatile drug delivery. The SRM is made of thermosensitive POSS(MEO2MA-co-OEGMA) and photothermal nanoparticles of reduced graphene oxide (rGO), and each of the drug reservoirs is filled with the same amount of human growth hormone (hGH). Therefore, with noninvasive near-infrared (NIR) irradiation from the outside skin, the rGO nanoparticles generate heat to rupture the SRM in the implanted device, which can open a single selected drug reservoir to release hGH. Therefore, the device herein is shown to release hGH reproducibly only at the times of NIR irradiation without drug leakage during no irradiation. When implanted in rats with growth hormone deficiency and irradiated with an NIR light from the outside skin, the device exhibits profiles of hGH and IGF1 plasma concentrations, as well as body weight change, similar to those in animals treated with conventional s.c. hGH injections.
Collapse
|
21
|
Preventive Effect of Synthetic Tryptophan Metabolite on Silicone Breast Implant-Induced Capsule Formation. Ann Plast Surg 2019; 80:565-571. [PMID: 29389705 DOI: 10.1097/sap.0000000000001335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In the field of plastic surgery, capsular contracture after silicone breast implant surgery is a major clinical problem. This experimental study confirms that the synthetic tryptophan metabolite N-(3',4'-dimethoxycinnamonyl) anthranilic acid (Tranilast) reduces capsule formation and prevents capsular contracture. METHODS Eighteen New Zealand white rabbits were divided into 2 groups. In the experimental group, implants were inserted into each rabbit, and oral synthetic tryptophan metabolite was administered daily at a dose of 5 mg/kg in 10 mL of saline. In the control group, rabbits received implants and the same amount of saline without the metabolite. After 2 months, peri-implant tissues were harvested and analyzed. RESULTS The thickness of the capsules and the inflammatory cell counts were decreased in the experimental group (P < 0.001). The collagen fibers in the experimental group were thinner, less dense, and more organized than in control group. The results of reverse transcription quantitative polymerase chain reaction analysis showed that the genes for transforming growth factor β1 (P = 0.002), alpha smooth muscle actin (P < 0.001), and collagen types I (P = 0.002) and III (P = 0.004) were underexpressed in the experimental groups. Furthermore, the counts of T-cell immunity-related cytokine presenting cells were decreased in the experimental groups (CD3, 4, 25, 45RA, 45RO, 69, interleukin-2, 4 [P < 0.001], and interferon γ [P = 0.028]). CONCLUSIONS This study confirms that a synthetic derivative of a tryptophan metabolite decreases capsule formation and prevents capsular contracture by inhibiting the differentiation of fibroblasts to myofibroblasts, selectively inhibiting collagen synthesis, and decreasing specific T-cell immune responses by changing anti-inflammatory cytokine expression.
Collapse
|
22
|
Delattre C, Velazquez D, Roques C, Pavon-Djavid G, Ollivier V, Lokajczyk A, Avramoglou T, Gueguen V, Louedec L, Caligiuri G, Jandrot-Perrus M, Boisson-Vidal C, Letourneur D, Meddahi-Pelle A. In vitro and in vivo evaluation of a dextran-graft-polybutylmethacrylate copolymer coated on CoCr metallic stent. ACTA ACUST UNITED AC 2019; 9:25-36. [PMID: 30788257 PMCID: PMC6378099 DOI: 10.15171/bi.2019.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
Introduction: The major complications of stent implantation are restenosis and late stent thrombosis. PBMA polymers are used for stent coating because of their mechanical properties. We previously synthesized and characterized Dextrangraft-polybutylmethacrylate copolymer (Dex-PBMA) as a potential stent coating. In this study, we evaluated the haemocompatibility and biocompatibility properties of Dex-PBMA in vitro and in vivo. Methods: Here, we investigated: (1) the effectiveness of polymer coating under physiological conditions and its ability to release Tacrolimus®, (2) the capacity of Dex-PBMA to inhibit Staphylococcus aureus adhesion, (3) the thrombin generation and the human platelet adhesion in static and dynamic conditions, (4) the biocompatibility properties in vitro on human endothelial colony forming cells ( ECFC) and on mesenchymal stem cells (MSC) and in vivo in rat models, and (5) we implanted Dex-PBMA and Dex-PBMATAC coated stents in neointimal hyperplasia restenosis rabbit model. Results: Dex-PBMA coating efficiently prevented bacterial adhesion and release Tacrolimus®. Dex-PBMA exhibit haemocompatibility properties under flow and ECFC and MSC compatibility. In vivo, no pathological foreign body reaction was observed neither after intramuscular nor intravascular aortic implantation. After Dex-PBMA and Dex-PBMATAC coated stents 30 days implantation in a restenosis rabbit model, an endothelial cell coverage was observed and the lumen patency was preserved. Conclusion: Based on our findings, Dex-PBMA exhibited vascular compatibility and can potentially be used as a coating for metallic coronary stents.
Collapse
Affiliation(s)
- Cécilia Delattre
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat
| | - Diego Velazquez
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat
| | - Caroline Roques
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| | - Graciela Pavon-Djavid
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| | - Véronique Ollivier
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| | - Anna Lokajczyk
- Inserm UMR_S1140, Paris France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Thierry Avramoglou
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| | - Virginie Gueguen
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| | - Liliane Louedec
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| | - Giuseppina Caligiuri
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| | - Martine Jandrot-Perrus
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| | | | - Didier Letourneur
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| | - Anne Meddahi-Pelle
- INSERM, UMR_S1148, Laboratory for Vascular Translational Sciences, Hôpital Bichat.,Université Paris 13, Sorbonne Paris Cité, France
| |
Collapse
|
23
|
Witherel CE, Abebayehu D, Barker TH, Spiller KL. Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis. Adv Healthc Mater 2019; 8:e1801451. [PMID: 30658015 PMCID: PMC6415913 DOI: 10.1002/adhm.201801451] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Biomaterial-mediated inflammation and fibrosis remain a prominent challenge in designing materials to support tissue repair and regeneration. Despite the many biomaterial technologies that have been designed to evade or suppress inflammation (i.e., delivery of anti-inflammatory drugs, hydrophobic coatings, etc.), many materials are still subject to a foreign body response, resulting in encapsulation of dense, scar-like extracellular matrix. The primary cells involved in biomaterial-mediated fibrosis are macrophages, which modulate inflammation, and fibroblasts, which primarily lay down new extracellular matrix. While macrophages and fibroblasts are implicated in driving biomaterial-mediated fibrosis, the signaling pathways and spatiotemporal crosstalk between these cell types remain loosely defined. In this review, the role of M1 and M2 macrophages (and soluble cues) involved in the fibrous encapsulation of biomaterials in vivo is investigated, with additional focus on fibroblast and macrophage crosstalk in vitro along with in vitro models to study the foreign body response. Lastly, several strategies that have been used to specifically modulate macrophage and fibroblast behavior in vitro and in vivo to control biomaterial-mediated fibrosis are highlighted.
Collapse
Affiliation(s)
- Claire E. Witherel
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - Daniel Abebayehu
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Thomas H. Barker
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Kara L. Spiller
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA,
| |
Collapse
|
24
|
Kim BH, Huh BK, Lee WS, Kim CR, Lee KS, Nam SY, Lee M, Heo CY, Choy YB. Silicone Implant Coated with Tranilast-Loaded Polymer in a Pattern for Fibrosis Suppression. Polymers (Basel) 2019; 11:polym11020223. [PMID: 30960207 PMCID: PMC6419080 DOI: 10.3390/polym11020223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
Pathologic fibrosis around silicone implants is problematic, and thus, these implants have been coated with a mixture of a biocompatible polymer and antifibrotic drug for sustained drug release to prevent fibrosis. However, a coating applied over an entire surface would be subject to mechanical instability as the implant would be severely crumpled for implant insertion. Therefore, in this work, we proposed localized, patterned coating dots, each composed of poly(lactic-co-glycolic acid) (PLGA) and tranilast, to be applied on the surface of silicone implants. The drug loaded in the pattern-coated implant herein was well retained after a cyclic tensile test. Due to the presence of PLGA in each coating dot, the tranilast could be released in a sustained manner for more than 14 days. When implanted in a subcutaneous pocket in living rats for 12 weeks, compared with the intact implant, the pattern-coated implant showed a decreased capsule thickness and collagen density, as well as less transforming growth factor-β (TGF-β) expression and fewer fibroblasts; importantly, these changes were similar between the surfaces with and without the coating dots. Therefore, we conclude that the pattern-coating strategy proposed in this study can still effectively prevent fibrosis by maintaining the physical stability of the coatings.
Collapse
Affiliation(s)
- Byung Hwi Kim
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Korea.
| | - Won Suk Lee
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Korea.
| | - Cho Rim Kim
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Korea.
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Miji Lee
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Chan Yeong Heo
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Korea.
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Young Bin Choy
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul 03080, Korea.
- Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Korea.
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
25
|
Shin BH, Kim BH, Kim S, Lee K, Choy YB, Heo CY. Silicone breast implant modification review: overcoming capsular contracture. Biomater Res 2018; 22:37. [PMID: 30598837 PMCID: PMC6302391 DOI: 10.1186/s40824-018-0147-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/07/2018] [Indexed: 12/25/2022] Open
Abstract
Background Silicone implants are biomaterials that are frequently used in the medical industry due to their physiological inertness and low toxicity. However, capsular contracture remains a concern in long-term transplantation. To date, several studies have been conducted to overcome this problem. This review summarizes and explores these trends. Main body First, we examined the overall foreign body response from initial inflammation to fibrosis capsule formation in detail and introduced various studies to overcome capsular contracture. Secondly, we introduced that the main research approaches are to inhibit fibrosis with anti-inflammatory drugs or antibiotics, to control the topography of the surface of silicone implants, and to administer plasma treatment. Each study examined aspects of the various mechanisms by which capsular contracture could occur, and addressed the effects of inhibiting fibrosis. Conclusion This review introduces various silicone surface modification methods to date and examines their limitations. This review will help identify new directions in inhibiting the fibrosis of silicone implants.
Collapse
Affiliation(s)
- Byung Ho Shin
- 1Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Byung Hwi Kim
- 1Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Sujin Kim
- 2Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kangwon Lee
- 2Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea.,7Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229 South Korea
| | - Young Bin Choy
- 1Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea.,3Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul, 08826 Republic of Korea.,6Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Chan Yeong Heo
- 3Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul, 08826 Republic of Korea.,4Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea.,5Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620 Republic of Korea
| |
Collapse
|
26
|
Tranilast-delivery surgical sutures to ameliorate wound healing by reducing scar formation through regulation of TGF-β expression and fibroblast recruitment. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Luan J, Zhang Z, Shen W, Chen Y, Yang X, Chen X, Yu L, Sun J, Ding J. Thermogel Loaded with Low-Dose Paclitaxel as a Facile Coating to Alleviate Periprosthetic Fibrous Capsule Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30235-30246. [PMID: 30102023 DOI: 10.1021/acsami.8b13548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Medical-grade silicones as implants have been utilized for decades. However, the postoperative complications, such as capsular formation and contracture, have not yet been fully controlled and resolved. The aim of the present study is to elucidate whether the capsular formation can be alleviated by local and sustained delivery of low-dose paclitaxel (PTX) during the critical phase after the insertion of silicone implants. A biocompatible and thermogelling poly(lactic acid- co-glycolic acid)- b-poly(ethylene glycol)- b-poly(lactic acid- co-glycolic acid) triblock copolymer was synthesized by us. The micelles formed by the amphiphilic polymers in water could act as a reservoir for the solubilization of PTX, a very hydrophobic drug. The concentrated polymer aqueous solution containing PTX exhibited a sol-gel transition upon heating and formed a thermogel depot at body temperature. In vitro release tests demonstrated that the entrapped microgram-level PTX displayed a sustained release manner up to 57 days without a significant initial burst effect. Customized silicone implants coated with the PTX-loaded thermogels at various drug concentrations were inserted into the pockets of the subpanniculus carnosus plane of rats. The histological observations performed 1 month postoperation showed that the sustained release of PTX with an appropriate dose significantly reduced the peri-implant capsule thickness, production and deposition of collagen, and expression of contracture-mediating factors compared with bare silicone implants. More importantly, such an optimum dose had an excellent repeatability for the suppression of the capsular formation. Therefore, this study provides a strategic foothold regarding the sustained release of low-dose PTX to alleviate fibrotic capsule formation after implantation, and the microgram-level PTX-loaded thermogel holds great potential as an "all-purpose antifibrosis coating" for veiling the surfaces of various implantable medical devices.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zheng Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yipei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jian Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
28
|
Lee SH, Kim BH, Park CG, Lee C, Lim BY, Choy YB. Implantable small device enabled with magnetic actuation for on-demand and pulsatile drug delivery. J Control Release 2018; 286:224-230. [DOI: 10.1016/j.jconrel.2018.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
|
29
|
Yoo BY, Kim BH, Lee JS, Shin BH, Kwon H, Koh WG, Heo CY. Dual surface modification of PDMS-based silicone implants to suppress capsular contracture. Acta Biomater 2018; 76:56-70. [PMID: 29908334 DOI: 10.1016/j.actbio.2018.06.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/26/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
In this study, we report a new physicochemical surface on poly(dimethylsiloxane) (PDMS)-based silicone implants in an effort to minimize capsular contracture. Two different surface modification strategies, namely, microtexturing as a physical cue and multilayer coating as a chemical cue, were combined to achieve synergistic effects. The deposition of uniformly sized microparticles onto uncured PDMS surfaces and the subsequent removal after curing generated microtextured surfaces with concave hemisphere micropatterns. The size of the individual micropattern was controlled by the microparticle size. Micropatterns of three different sizes (37.16, 70.22, and 97.64 μm) smaller than 100 μm were produced for potential application to smooth and round-shaped breast implants. The PDMS surface was further chemically modified by layer-by-layer (LbL) deposition of poly-l-lysine and hyaluronic acid. Short-term in vitro experiments demonstrated that all the PDMS samples were cytocompatible. However, lower expression of TGF-β and α-SMA, the major profibrotic cytokine and myofibroblast marker, respectively, was observed in only multilayer-coated PDMS samples with larger size micropatterns (70.22 and 97.64 μm), thereby confirming the synergistic effects of physical and chemical cues. An in vivo study conducted for 8 weeks after implantation in rats also indicated that PDMS samples with larger size micropatterns and multilayer coating most effectively inhibited capsular contracture based on analyses of tissue inflammation, number of macrophage, fibroblast and myofibroblast, TGF-β expression, collagen density, and capsule thickness. STATEMENT OF SIGNIFICANCE Although poly(dimethylsiloxane) (PDMS)-based silicone implants have been widely used for various applications including breast implants, they usually cause typical side effects called as capsular contracture. Prior studies have shown that microtexturing and surface coating could reduce capsular contracture. However, previous methods are limited in their scope for application, and it is difficult to obtain FDA approval because of the large and nonuniform size of the microtexture as well as the use of toxic chemical components. Herein, those issues could be addressed by creating a microtexture of size less than 100 m, with a narrow size distribution and using layer-by-layer deposition of a biocompatible polymer without using any toxic compounds. Furthermore, this is the first attempt to combine microtexture with multilayer coating to obtain synergetic effects in minimizing the capsular contracture.
Collapse
|
30
|
Jeon BS, Shin BH, Huh BK, Kim BH, Kim SN, Ji HB, Lee SH, Kang SI, Shim JH, Kang SM, Lee JC, Lee KS, Heo CY, Choy YB. Silicone implants capable of the local, controlled delivery of triamcinolone for the prevention of fibrosis with minimized drug side effects. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Current Approaches Including Novel Nano/Microtechniques to Reduce Silicone Implant-Induced Contracture with Adverse Immune Responses. Int J Mol Sci 2018; 19:ijms19041171. [PMID: 29649133 PMCID: PMC5979366 DOI: 10.3390/ijms19041171] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
Capsular contracture, which is the pathologic development of fibrous capsules around implants, is a major complication of reconstructive and aesthetic breast surgeries. Capsular contracture can cause implant failure with breast hardening, deformity, and severe pain. The exact mechanisms underlying this complication remain unclear. In addition, anaplastic large cell lymphoma is now widely recognized as a very rare disease associated with breast implants. Foreign body reactions are an inevitable common denominator of capsular contracture. A number of studies have focused on the associated immune responses and their regulation. The present article provides an overview of the currently available techniques, including novel nano/microtechniques, to reduce silicone implant-induced contracture and associated foreign body responses.
Collapse
|
32
|
Luo Z, Zhang S, Pan J, Shi R, Liu H, Lyu Y, Han X, Li Y, Yang Y, Xu Z, Sui Y, Luo E, Zhang Y, Wei S. Time-responsive osteogenic niche of stem cells: A sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Biomaterials 2018; 163:25-42. [PMID: 29452946 DOI: 10.1016/j.biomaterials.2018.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 01/24/2023]
Abstract
The efficacy of stem cell-based bone tissue engineering has been hampered by cell death and limited fate control. A smart cell culture system with the capability of sequentially delivering multiple factors in specific growth stages, like the mechanism of the natural extracellular matrix modulating tissue formation, is attractive for enhancing cell activity and controlling cell fate. Here, a bone forming peptide-1 (BFP-1)-laden mesoporous silica nanoparticles (pep@MSNs) incorporated adhesion peptide, containing the arginine-glycine-aspartic acid (RGD) domain, modified alginate hydrogel (RA) system (pep@MSNs-RA) was developed to promote the activity and stimulate osteo-differentiation of human mesenchymal stem cells (hMSCs) in sequence. The survivability and proliferation of hMSCs were enhanced in the adhesion peptide modified hydrogel. Next, BFP-1 released from pep@MSNs induced hMSCs osteo-differentiation after the proliferation stage. Moreover, BFP-1 near the cells was self-captured by the additional cell-peptide cross-linked networks formed by the ligands (RGD) binding to receptors on the cell surface, leading to long-term sustained osteo-stimulation of hMSCs. The results suggest that independent and sequential stimulation in proliferation and osteo-differentiation stages could synergistically enhance the survivability, expansion, and osteogenesis of hMSCs, as compared to stimulating alone or simultaneously. Overall, this study provided a new and valid strategy for stem cell expansion and osteo-differentiation in 2D or 3D culture systems, possessing potential applications in 3D bio-printing and tissue regeneration.
Collapse
Affiliation(s)
- Zuyuan Luo
- Central Laboratory, School and Hospital of Stomatology, Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China; Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Siqi Zhang
- Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jijia Pan
- Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rui Shi
- Central Laboratory, School and Hospital of Stomatology, Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Hao Liu
- Central Laboratory, School and Hospital of Stomatology, Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Yalin Lyu
- Department of Stomatology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Xiao Han
- Department of Stomatology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yan Li
- Central Laboratory, School and Hospital of Stomatology, Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Yue Yang
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhixiu Xu
- Department of Oral Pathology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Yi Sui
- Central Laboratory, School and Hospital of Stomatology, Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - En Luo
- Department of Oral and Maxillofacial Surgery, West China School and Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Shicheng Wei
- Central Laboratory, School and Hospital of Stomatology, Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China; Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
33
|
Ahn HJ, Khalmuratova R, Park SA, Chung EJ, Shin HW, Kwon SK. Serial Analysis of Tracheal Restenosis After 3D-Printed Scaffold Implantation: Recruited Inflammatory Cells and Associated Tissue Changes. Tissue Eng Regen Med 2017; 14:631-639. [PMID: 30603516 DOI: 10.1007/s13770-017-0057-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/04/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
Tracheal restenosis is a major obstacle to successful tracheal replacement, and remains the greatest challenge in tracheal regeneration. However, there have been no detailed investigations of restenosis. The present study was performed to analyze the serial changes in recruited inflammatory cells and associated histological changes after tracheal scaffold implantation. Asymmetrically porous scaffolds, which successfully prevented tracheal stenosis in a partial trachea defect model, designed with a tubular shape by electrospinning and reinforced by 3D-printing to reconstruct 2-cm circumferential tracheal defect. Serial rigid bronchoscopy, micro-computed tomography, and histology [H&E, Masson's Trichrome, IHC against α-smooth muscle actin (α-SMA)] were performed 1, 4, and 8 weeks after transplantation. Progressive stenosis developed especially at the site of anastomosis. Neutrophils were the main inflammatory cells recruited in the early stage, while macrophage infiltration increased with time. Recruitment of fibroblasts peaked at 4 weeks and deposition of α-SMA increased from 4 weeks and was maintained through 8 weeks. During the first 8 weeks post-transplantation, neutrophils and macrophages played significant roles in restenosis of the trachea. Antagonists to these would be ideal targets to reduce restenosis and thus play a pivotal role in successful tracheal regeneration.
Collapse
Affiliation(s)
- Hee-Jin Ahn
- 1Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Roza Khalmuratova
- 2Obstructive Upper Airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, 103 Daehak-ro, Seoul, 03080 Korea
| | - Su A Park
- 3Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Gajeongbuk-ro 156, Daejeon, 34103 Korea
| | - Eun-Jae Chung
- 1Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Hyun-Woo Shin
- 1Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea.,2Obstructive Upper Airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, 103 Daehak-ro, Seoul, 03080 Korea.,4Department of Biomedical Sciences, Seoul National University Graduate School, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea.,5Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Seong Keun Kwon
- 1Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
34
|
Pattern-coated titanium bone fixation plate for dual delivery of vancomycin and alendronate. Macromol Res 2017. [DOI: 10.1007/s13233-017-5073-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Jannasch M, Gaetzner S, Weigel T, Walles H, Schmitz T, Hansmann J. A comparative multi-parametric in vitro model identifies the power of test conditions to predict the fibrotic tendency of a biomaterial. Sci Rep 2017; 7:1689. [PMID: 28490729 PMCID: PMC5431855 DOI: 10.1038/s41598-017-01584-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/31/2017] [Indexed: 01/19/2023] Open
Abstract
Despite growing effort to advance materials towards a low fibrotic progression, all implants elicit adverse tissue responses. Pre-clinical biomaterial assessment relies on animals testing, which can be complemented by in vitro tests to address the Russell and Burch’s 3R aspect of reducing animal burden. However, a poor correlation between in vitro and in vivo biomaterial assessments confirms a need for suitable in vitro biomaterial tests. The aim of the study was to identify a test setting, which is predictive and might be time- and cost-efficient. We demonstrated how sensitive in vitro biomaterial assessment based on human primary macrophages depends on test conditions. Moreover, possible clinical scenarios such as lipopolysaccharide contamination, contact to autologous blood plasma, and presence of IL-4 in an immune niche influence the outcome of a biomaterial ranking. Nevertheless, by using glass, titanium, polytetrafluorethylene, silicone, and polyethylene representing a specific material-induced fibrotic response and by comparison to literature data, we were able to identify a test condition that provides a high correlation to state-of-the-art in vivo studies. Most important, biomaterial ranking obtained under native plasma test conditions showed a high predictive accuracy compared to in vivo assessments, strengthening a biomimetic three-dimensional in vitro test platform.
Collapse
Affiliation(s)
- Maren Jannasch
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany
| | - Sabine Gaetzner
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany
| | - Tobias Weigel
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany
| | - Heike Walles
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology, Translational Center Wuerzburg Regenerative Therapies in Oncology and Musculoskeletal Disease, 97070, Wuerzburg, Germany
| | - Tobias Schmitz
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany
| | - Jan Hansmann
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany. .,Fraunhofer Institute for Interfacial Engineering and Biotechnology, Translational Center Wuerzburg Regenerative Therapies in Oncology and Musculoskeletal Disease, 97070, Wuerzburg, Germany.
| |
Collapse
|
36
|
Lee SH, Lee YB, Kim BH, Lee C, Cho YM, Kim SN, Park CG, Cho YC, Choy YB. Implantable batteryless device for on-demand and pulsatile insulin administration. Nat Commun 2017; 8:15032. [PMID: 28406149 PMCID: PMC5399301 DOI: 10.1038/ncomms15032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Many implantable systems have been designed for long-term, pulsatile delivery of insulin, but the lifetime of these devices is limited by the need for battery replacement and consequent replacement surgery. Here we propose a batteryless, fully implantable insulin pump that can be actuated by a magnetic field. The pump is prepared by simple-assembly of magnets and constituent units and comprises a drug reservoir and actuator equipped with a plunger and barrel, each assembled with a magnet. The plunger moves to noninvasively infuse insulin only when a magnetic field is applied on the exterior surface of the body. Here we show that the dose is easily controlled by varying the number of magnet applications. Also, pump implantation in diabetic rats results in profiles of insulin concentration and decreased blood glucose levels similar to those observed in rats treated with conventional subcutaneous insulin injections.
Collapse
Affiliation(s)
- Seung Ho Lee
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Young Bin Lee
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hwi Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Se-Na Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong-Chan Cho
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Bin Choy
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
37
|
Kim BH, Park M, Park HJ, Lee SH, Choi SY, Park CG, Han SM, Heo CY, Choy YB. Prolonged, acute suppression of cysteinyl leukotriene to reduce capsular contracture around silicone implants. Acta Biomater 2017; 51:209-219. [PMID: 28087482 DOI: 10.1016/j.actbio.2017.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/30/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
We hypothesize that periodically early, local suppression of cysteinyl leukotrienes (CysLTs), which are potent inflammatory mediators, can reduce the fibrotic capsular contracture around silicone implants. We tested this hypothesis with the silicone implants enabled with the sustained release of montelukast, a CysLT receptor antagonist, for 3 and 15days. In this work, we inserted each of the distinct implants into the pocket of the subpanniculus carnosus plane of living rats and performed histological and immunofluorescent (IF) analyses of the tissues biopsied at predetermined periods for 12weeks after implant insertion. The implants with montelukast exhibited significantly reduced polymorphonuclear leukocytes (i.e., PMNs), implying a concurrent reduction of CysLT. This effect was more prominent after long-term local montelukast exposure. Thus, fewer fibroblasts were recruited, thereby reducing transforming growth factor (TGF)-β and myofibroblasts in the tissue around the implant. Therefore, the fibrotic capsule formation, which was assessed using the capsule thickness and collagen density, decreased along with the myofibroblasts. Additionally, the tissue biopsied at the experimental end point exhibited significantly decreased mechanical stiffness. STATEMENT OF SIGNIFICANCE Capsular contracture is troublesome, making the tissues hardened around the silicone implant. This causes serious pain and discomfort to the patients, often leading to secondary surgery for implant replacement. To resolve this, we suggest a strategy of long-term, local suppression of cysteinyl leukotriene, an important mediator present during inflammation. For this, we propose a silicone implant abled to release a drug, montelukast, in a sustained manner. We tested our drug-release implant in living animals, which exhibited a significant decrease in capsule formation compared with the intact silicone implant. Therefore, we conclude that the sustained release of montelukast at the local insertion site represents a promising way to reduce capsular contracture around silicone implants.
Collapse
Affiliation(s)
- Byung Hwi Kim
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Min Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Jin Park
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Seung Ho Lee
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Sung Yoon Choi
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Su Min Han
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.
| | - Young Bin Choy
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
38
|
Zhan W, Lu F. Activated macrophages as key mediators of capsule formation on adipose constructs in tissue engineering chamber models. Cell Biol Int 2017; 41:354-360. [DOI: 10.1002/cbin.10731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/15/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Weiqing Zhan
- Department of Plastic and Cosmetic Surgery; Nanfang Hospital, Southern Medical University, Guang Zhou; Guang Dong People's Republic of China
- O'Brien Institute Department; St Vincent's Institute of Medical Research; Victoria Australia
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery; Nanfang Hospital, Southern Medical University, Guang Zhou; Guang Dong People's Republic of China
| |
Collapse
|
39
|
Luo L, He Y, Chang Q, Xie G, Zhan W, Wang X, Zhou T, Xing M, Lu F. Polycaprolactone nanofibrous mesh reduces foreign body reaction and induces adipose flap expansion in tissue engineering chamber. Int J Nanomedicine 2016; 11:6471-6483. [PMID: 27980405 PMCID: PMC5147407 DOI: 10.2147/ijn.s114295] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue engineering chamber technique can be used to generate engineered adipose tissue, showing the potential for the reconstruction of soft tissue defects. However, the consequent foreign body reaction induced by the exogenous chamber implantation causes thick capsule formation on the surface of the adipose flap following capsule contracture, which may limit the internal tissue expansion. The nanotopographical property and architecture of nanofibrous scaffold may serve as a promising method for minimizing the foreign body reaction. Accordingly, electrospinning porous polycaprolactone (PCL) nanofibrous mesh, a biocompatible synthetic polymer, was attached to the internal surface of the chamber for the reducing local foreign body reaction. Adipose flap volume, level of inflammation, collagen quantification, capsule thickness, and adipose tissue-specific gene expression in chamber after implantation were evaluated at different time points. The in vivo study revealed that the engineered adipose flaps in the PCL group had a structure similar to that in the controls and normal adipose tissue structure but with a larger flap volume. Interleukin (IL)-1β, IL-6, and transforming growth factor-β expression decreased significantly in the PCL group compared with the control. Moreover, the control group had much more collagen deposition and thicker capsule than that observed in the PCL group. These results indicate that the unique nanotopographical effect of electrospinning PCL nanofiber can reduce foreign body reaction in a tissue engineering chamber, which maybe a promising new method for generating a larger volume of mature, vascularized, and stable adipose tissue.
Collapse
Affiliation(s)
- Lin Luo
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yunfan He
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qiang Chang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gan Xie
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weiqing Zhan
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xuecen Wang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Tao Zhou
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Malcolm Xing
- Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
40
|
Atluri K, De Jesus AM, Chinnathambi S, Brouillette MJ, Martin JA, Salem AK, Sander EA. Blebbistatin-Loaded Poly(d,l-lactide- co-glycolide) Particles For Treating Arthrofibrosis. ACS Biomater Sci Eng 2016; 2:1097-1107. [PMID: 33445238 DOI: 10.1021/acsbiomaterials.6b00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Joint immobility is a debilitating complication of articular trauma that is characterized by thickening and stiffening of the joint capsule and the formation of fibrotic lesions inside joints. Capsule release surgery can temporarily restore mobility, but contraction often recurs due to the contractile activities of fibroblasts, which exert tension on the capsule ECM via nonmuscle myosin II. Based on these findings we hypothesized that blebbistatin, a drug that reversibly inhibits the activity of this protein, would relax ECM tension imposed by fibroblasts and reduce fibrosis. In this study, we characterized the effectiveness of blebbistatin as an anticontractile treatment. Given that sustained suppression of contractile activity may be required to achieve capsule release and reduce fibrosis, we compared the effects on fibroblast-mediated collagen ECM displacement of blebbistatin-loaded poly(lactide-co-gylcolide) (PLGA) particles versus bolus blebbistatin dosing. Time-lapse imaging of fluorescent microspheres embedded in collagen gels confirmed that PLGA/blebbistatin inhibited force generation and reduced both gel displacement and rate of displacement. In addition, collagen production at 10 days was significantly reduced. Taken together, these data indicate that blebbistatin-loaded PLGA particles can be used to inhibit fibroblast force-generation and reduce collagen production and lay the foundation for optimization of drug delivery technology for treating arthrofibrosis.
Collapse
Affiliation(s)
- K Atluri
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, 115 South Grand Avenue, Iowa City, Iowa 52242, United States
| | - A M De Jesus
- Department of Biomedical Engineering, University of Iowa College of Engineering, 1402 Seamans Center, Iowa City, Iowa 52242, United States
| | - S Chinnathambi
- Department of Biomedical Engineering, University of Iowa College of Engineering, 1402 Seamans Center, Iowa City, Iowa 52242, United States
| | - M J Brouillette
- Department of Orthopaedics and Rehabilitation, University of Iowa Roy J and Lucille A Carver College of Medicine, 25 South Grand Avenue, Iowa City, Iowa 52242, United States
| | - J A Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa Roy J and Lucille A Carver College of Medicine, 25 South Grand Avenue, Iowa City, Iowa 52242, United States
| | - A K Salem
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, 115 South Grand Avenue, Iowa City, Iowa 52242, United States.,Department of Biomedical Engineering, University of Iowa College of Engineering, 1402 Seamans Center, Iowa City, Iowa 52242, United States
| | - E A Sander
- Department of Biomedical Engineering, University of Iowa College of Engineering, 1402 Seamans Center, Iowa City, Iowa 52242, United States
| |
Collapse
|
41
|
Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging. PLoS One 2015; 10:e0130386. [PMID: 26125551 PMCID: PMC4488378 DOI: 10.1371/journal.pone.0130386] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023] Open
Abstract
The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.
Collapse
|