1
|
Karmaker S, Rosales PD, Tirumuruhan B, Viravalli A, Boehnke N. More than a delivery system: the evolving role of lipid-based nanoparticles. NANOSCALE 2025; 17:11864-11893. [PMID: 40293317 DOI: 10.1039/d4nr04508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid-based nanoparticles, including liposomes and lipid nanoparticles (LNPs), make up an important class of drug delivery systems. Their modularity enables encapsulation of a wide range of therapeutic cargoes, their ease of functionalization allows for incorporation of targeting motifs and anti-fouling coatings, and their scalability facilitates rapid translation to the clinic. While the discovery and early understanding of lipid-based nanoparticles is heavily rooted in biology, formulation development has largely focused on materials properties, such as how liposome and lipid nanoparticle composition can be altered to maximize drug loading, stability and circulation. To achieve targeted delivery and enable improved accumulation of therapeutics at target tissues or disease sites, emphasis is typically placed on the use of external modifications, such as peptide, protein, and polymer motifs. However, these approaches can increase the complexity of the nanocarrier and complicate scale up. In this review, we focus on how our understanding of lipid structure and function in biological contexts can be used to design intrinsically functional and targeted nanocarriers. We highlight formulation-based strategies, such as the incorporation of bioactive lipids, that have been used to modulate liposome and lipid nanoparticle properties and improve their functionality while retaining simple nanocarrier designs. We also highlight classes of naturally occurring lipids, their functions, and how they have been incorporated into lipid-based nanoparticles. We will additionally position these approaches into the historical context of both liposome and LNP development.
Collapse
Affiliation(s)
- Senjuti Karmaker
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Plinio D Rosales
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Barath Tirumuruhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Amartya Viravalli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Nagao K, Paniagua EV, Lei K, Beckham JL, Worthington P, Manthey M, Ye M, Koehler F, Kim YJ, Malkin E, Onoda M, Kent N, Michida S, Guerra EC, Macfarlane RJ, Anikeeva P. Adeno-associated viruses escort nanomaterials to specific cells and tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647267. [PMID: 40291644 PMCID: PMC12026743 DOI: 10.1101/2025.04.04.647267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The delivery of nanotherapeutics to specific tissues relies on bespoke targeting strategies or invasive surgeries. Conversely, adeno-associated viruses (AAVs) can target specific tissues following intravenous injections. Here we show that cell-targeting properties of AAVs could be broadly conferred to nanomaterials. We develop a strategy to couple AAV capsids to nanoparticles that is invariant of viral serotype or nanomaterial chemistry and permits control over stoichiometry of the AAV-nanoparticle chimeras. The chimeras selectively escort nanoparticles into cell classes governed by AAV serotypes. When applied to magnetic nanoparticles, the AAV-nanoparticle chimeras enable magnetically localized gene delivery. In vivo, we show that leveraging the brain-targeting AAV serotype CAP-B10 achieves nanoparticle delivery to the parenchyma with ∼10% efficiency (% injected dose/g [brain] ) while avoiding accumulation in the liver. The enhanced delivery efficiency and tissue specificity highlight the potential of AAV-chimeras as a versatile strategy to escort broad classes of nanotherapeutics to the brain and beyond.
Collapse
|
3
|
Ebenezer O, Oyebamiji AK, Olanlokun JO, Tuszynski JA, Wong GKS. Recent Update on siRNA Therapeutics. Int J Mol Sci 2025; 26:3456. [PMID: 40331977 PMCID: PMC12026779 DOI: 10.3390/ijms26083456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Small interfering RNA (siRNA) has been deemed a promising therapeutic method for treating diverse diseases. siRNA-based therapeutics provide a distinct mechanism of action by selectively targeting and silencing disease-causing genes at the post-transcriptional level. This paper provides an overview of the present state of siRNA-based therapeutics, highlighting their potential in different therapeutic areas. The first section of this review introduces the basic principles of siRNA technology, including its mechanism of action and delivery methods. Subsequently, we discuss the impediments associated with siRNA delivery and manufacturing development and the strategies for overcoming these obstacles. The clinical advancement of siRNA therapeutics in various disease areas, including cancer, genetic disorders, viral infections, and inflammatory diseases, is summarized. Lastly, we summarize the successes, failures, and lessons learned from the development of siRNAs. With advancements in delivery systems and improvements in target selection, the field of medicine can be revolutionized, and siRNA therapeutics can offer new treatment options for patients.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | | | - John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
4
|
Qin ZX, Zuo L, Zeng Z, Ma R, Xie W, Zhu X, Zhou X. GalNac-siRNA conjugate delivery technology promotes the treatment of typical chronic liver diseases. Expert Opin Drug Deliv 2025; 22:455-469. [PMID: 39939158 DOI: 10.1080/17425247.2025.2466767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Nucleic acid-based therapeutics have become a key pillar of the 'third wave' of modern medicine, following the eras of small molecule inhibitors and antibody drugs. Their rapid progress is heavily dependent on delivery technologies, with the development of N-acetylgalactosamine (GalNAc) conjugates marking a breakthrough in targeting liver diseases. This technology has gained significant attention for its role in addressing chronic conditions like chronic hepatitis B (CHB) and nonalcoholic steatohepatitis (NASH), which are challenging to treat with conventional methods. AREAS COVERED This review explores the origins, mechanisms, and advantages of GalNAc-siRNA delivery systems, highlighting their ability to target hepatocytes via the asialoglycoprotein receptor (ASGPR). The literature reviewed covers preclinical and clinical advancements, particularly in CHB and NASH. Key developments in stabilization chemistry and conjugation technologies are examined, emphasizing their impact on enhancing therapeutic efficacy and patient compliance. EXPERT OPINION GalNAc-siRNA technology represents a transformative advancement in RNA interference (RNAi) therapies, addressing unmet needs in liver-targeted diseases. While significant progress has been made, challenges remain, including restricted targeting scope and scalability concerns. Continued innovation is expected to expand applications, improve delivery efficiency, and overcome limitations, establishing GalNAc-siRNA as a cornerstone for future nucleic acid-based treatments.
Collapse
Affiliation(s)
- Zhen-Xin Qin
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Ziran Zeng
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Rongguan Ma
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Wenyan Xie
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
5
|
Wang M, Wang Y, Zhang P, Gu C, Zhao X, Gong X, Yang X, Pan J, Xi Y. Neutrophil-like cell membrane-coated metal-organic frameworks for siRNA delivery targeting NOX4 to alleviate oxidative stress in acute ischemic injury. Acta Biomater 2025; 196:487-505. [PMID: 40024424 DOI: 10.1016/j.actbio.2025.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Although reperfusion is the most effective treatment for acute ischemic stroke, it often results in serious secondary ischemia/reperfusion (I/R) injury due to oxidative stress. This oxidative stress primarily results from the overproduction of reactive oxygen species (ROS) during reperfusion which, in turn, is largely induced by high expression of NADPH oxidase 4 (NOX4). Inhibiting NOX4 gene expression has therefore been proposed as a direct approach to reduce ROS production and promote angiogenesis. Recognizing both the potential of siRNA-based therapies for selective gene silencing and the critical role of neutrophil-endothelial interactions during I/R injury, here we present a unique therapeutic approach where neutrophil-like cell membrane coated porous metal-organic framework nanoparticles are loaded with siNOX4 (M-MOF-siNOX4) and designed to target damaged brain microvascular tissue. These then mitigate oxidative stress by suppressing NOX4 expression. Using an in vitro oxygen-glucose deprivation/re-oxygenation model, we demonstrate that M-MOF-siNOX4 nanoparticles specifically bind to activated endothelial cells, effectively reducing NOX4 expression, decreasing both ROS production and cell apoptosis, and restoring cell viability. Use of an in vivo mouse model of middle cerebral artery occlusion further confirmed M-MOF-siNOX4 nanoparticles to substantially alleviate brain damage and protect neurological function following ischemic stroke. Taken together, our study presents an innovative and effective siRNA-based strategy for reducing oxidative stress in ischemic stroke therapy. STATEMENT OF SIGNIFICANCE: Ischemia/reperfusion (I/R) injury, a major complication of acute ischemic stroke, is primarily driven by oxidative stress due to the excessive production of reactive oxygen species (ROS). Current treatments targeting oxidative stress and cell death often lack specificity, leading to off-target effects. This study introduces an innovative nanoparticle-based therapy using neutrophil-like cell membrane-coated metal-organic frameworks (MOFs) to deliver siNOX4, an siRNA targeting NOX4, a key ROS-producing enzyme. This approach enhances targeted delivery, reduces ROS production and cell death, and significantly improves neurological recovery in stroke models. By overcoming the limitations of existing therapies, this strategy holds strong potential for revolutionizing ischemic stroke treatment and addressing other disorders related to oxidative stress.
Collapse
Affiliation(s)
- Min Wang
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Yunbo Wang
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Pengqi Zhang
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Chenjie Gu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xianlei Zhao
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Xinghan Gong
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Xiaohang Yang
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China.
| | - Jianwei Pan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Yongmei Xi
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Pipe SW, Lissitchkov T, Georgiev P, Mangles S, Hegemann I, Trinchero A, Chowdary P, Forbes A, Feng L, Menapace LA, Kichou S, Andersson S, Demissie M, Ragni MV. Long-term safety and efficacy of fitusiran prophylaxis, and perioperative management, in people with hemophilia A or B. Blood Adv 2025; 9:1147-1158. [PMID: 39642315 PMCID: PMC11914172 DOI: 10.1182/bloodadvances.2024013900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/08/2024] Open
Abstract
ABSTRACT Fitusiran is an investigational small interfering RNA therapeutic that targets antithrombin (AT) to rebalance hemostasis in people with hemophilia. Here, we present the results of a completed phase 2 open-label extension study, which evaluated the long-term safety and efficacy of fitusiran in participants with moderate or severe hemophilia A or B, with or without inhibitors. Male participants who had completed the phase 1 study (ClinicalTrials.gov identifier: NCT02035605) were enrolled. Participants received monthly subcutaneous fitusiran (50 or 80 mg) under the original dose regimen until a voluntary dosing pause in 2020, after which the AT-based dose regimen was introduced, targeting the recommended AT activity levels of 15% to 35%. Thirty-four participants (hemophilia A, n = 27; hemophilia B, n = 7) were enrolled in the phase 2 study and treated with fitusiran for a median exposure of 4.1 years. Adverse events reported on the original and the AT-based dose regimen were consistent with the identified risks of fitusiran. After implementation of the AT-based dose regimen, there were no thrombotic events, and a reduction in the incidence of elevated transaminases and biliary events was reported. The observed median annualized bleed rate (ABR) on the AT-based dose regimen (0.87) was comparable with the ABR under the original dose regimen (0.70). Furthermore, fitusiran prophylaxis was associated with improved health-related quality of life compared with baseline and provided successful hemostatic control during surgical procedures and invasive interventions. Overall, fitusiran was well tolerated, and effective bleeding control was maintained on an AT-based dose regimen. This trial was registered at www.clinicaltrials.gov as #NCT02554773.
Collapse
Affiliation(s)
- Steven W. Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI
| | - Toshko Lissitchkov
- Clinic of Haematology, Specialized Hospital for Active Treatment of Haematological Diseases, Sofia, Bulgaria
| | - Pencho Georgiev
- Division of Hematology, University Multiprofile Hospital for Active Treatment "Sveti Georgi" and Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sarah Mangles
- Haemophilia, Haemostasis and Thrombosis Centre, Hampshire Hospitals NHS Foundation Trust, Basingstoke, United Kingdom
| | - Inga Hegemann
- Hemophilia Comprehensive Care Center, University Hospital Zurich, Zurich, Switzerland
| | - Alice Trinchero
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, United Kingdom
| | - Adam Forbes
- Haematology Department, Royal Cornwall Hospital, Cornwall, United Kingdom
| | | | | | | | | | | | - Margaret V. Ragni
- Division Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA
- Hemophilia Center of Western Pennsylvania, Pittsburgh, PA
| |
Collapse
|
7
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
8
|
Moqbel Redhwan MA, M G H, Samaddar S, Bafail D, Hard SAAA, Guha S, Dhavale A. siRNA targeting PARP-1 alleviates diabetic peripheral neuropathy in a streptozotocin-induced rat model. J Drug Target 2025; 33:424-435. [PMID: 39565138 DOI: 10.1080/1061186x.2024.2431316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes mellitus, affecting nearly 50% of diabetic patients and leading to chronic pain, numbness and progressive sensory and motor function loss. This study investigates the potential of siRNA-mediated silencing of poly(ADP-ribose) polymerase 1 (PARP1) to alleviate DPN in a rat model. PARP1 overactivation, driven by hyperglycaemia-induced oxidative stress, exacerbates neuronal damage in DPN. Using chitosan nanoparticles (ChNPs) to deliver PARP1-targeting siRNA intrathecally in diabetic rats induced with streptozotocin (STZ) 55 mg/kg intraperitoneally, we conducted behavioural and physiological assessments, including Sciatic Functional Index (SFI), motor nerve conduction velocity (MNCV), grip strength and pain sensitivity tests, alongside qRT-PCR analyses, to evaluate therapeutic outcomes. Our findings indicate statistically significant improvements, with siRNA ChNPs-mediated PARP1 silencing alleviating neuropathic symptoms in DPN rats (p < .001 for SFI and MNCV improvements). Biochemical analyses revealed reductions in oxidative stress markers, such as MDA, and increased antioxidant levels, including GSH, CAT and SOD (p < .001). Pro-inflammatory cytokines and apoptotic markers, including NF-κB, IL6, IL1β, TNFa, TGF-β, CAS3, CAS9, BAK and BAX, also showed significant reductions (p < .01), confirming the neuroprotective effects of PARP1 inhibition. These results highlight the potential of siRNA-based therapies targeting PARP1 as a promising therapeutic approach for DPN, paving the way for future research with clinical applications.
Collapse
Affiliation(s)
- Moqbel Ali Moqbel Redhwan
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| | - Hariprasad M G
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| | - Suman Samaddar
- BGS GIMS Research Institute, BGS Global Institute of Medical Sciences, Bengaluru, India
| | - Duaa Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sumaia Abdulbari Ahmed Ali Hard
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, India
| | - Sourav Guha
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| | - Apurwa Dhavale
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| |
Collapse
|
9
|
Alhajlah S, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Mohammed JS, Fenjan MN, Edan RT, Sharma MK, Zwamel AH. Exploring the role of exosomal lncRNA in cancer immunopathogenesis: Unraveling the immune response and EMT pathways. Exp Cell Res 2025; 445:114401. [PMID: 39740727 DOI: 10.1016/j.yexcr.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Exosomes are membrane-bound vesicles secreted by diverse cell types, serving as crucial mediators in intercellular communication and significantly influencing cancer development. Exosomes facilitate complex signaling processes in the tumor microenvironment for immunomodulation, metastasis, angiogenesis, and treatment resistance. Notably, long non-coding RNAs (lncRNAs), a class of non-coding RNAs, engage with mRNA, DNA, proteins, and miRNAs to modulate gene expression through multiple mechanisms, including transcriptional, post-transcriptional, translational, and epigenetic pathways. The quantitative dynamics of exosomal lncRNAs show a consistent variation correlating with cancer progression and metastasis, suggesting their potential utility as biomarkers for cancer diagnosis and prognosis. Additionally, exosomal lncRNAs can yield critical insights into therapeutic responses in patients. The identification of exosomal lncRNAs as indicators for various cancer subtypes presents them not only as prognostic tools but also as promising therapeutic targets. Despite their potential, the precise functions of exosomal lncRNAs in the cancer biology landscape remain inadequately understood. This paper delves into the multifaceted roles of exosomal lncRNAs, particularly in the context of breast cancer, highlighting their promise for therapeutic applications. A thorough comprehension of exosomal lncRNAs is imperative for advancing our knowledge of the underlying mechanisms of breast cancer, ultimately paving the way for the development of more effective treatment strategies for patients.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, 71911, Saudi Arabia; National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India.
| | - Jaafaru Sani Mohammed
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Iraq.
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| | - Reem Turki Edan
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
| | - M K Sharma
- Chaudhary Charan Singh University Meerut, Uttar Pradesh, India.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
10
|
Erel-Akbaba G, Akbaba H, Karaman O, Tian T, Tannous BA, Turunc E. Rabies virus-mimicking liposomes for targeted gene therapy in Alzheimer's disease. Int J Pharm 2025; 668:124962. [PMID: 39592065 DOI: 10.1016/j.ijpharm.2024.124962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
RNA interference (RNAi) harbors significant potential for treating neurological disorders; nevertheless, limited efficacy has been discerned. The presence of barriers within the central nervous system, coupled with the inherent instability of nucleic acids within biological conditions, poses formidable challenges in advancing effective gene delivery strategies. In this study, we designed and prepared a virus-mimic non-viral gene vector, rabies virus glycoprotein (RVG29)-decorated liposome (f(Lipo)-RVG29), to deliver small interfering RNAs to the brain. Alzheimer's disease (AD) was chosen as a model of neurodegenerative disease in this context, and b-site APP cleaving enzyme silencing siRNA (siBACE1) was used. The developed liposomal delivery system has a particle size of under 80 nm with a spherical shape, positive zeta potential, and the ability to protect siRNA against nucleases. In vitro studies demonstrate that functionalizing the cationic liposome by the RVG29 targeting ligand significantly enhances the effectiveness of gene delivery and silencing. Examination through ex vivo imaging illustrates an increased deposition of fluorescent-labeled f(Lipo)-RVG29 within brain tissue after 12 h post application. Additionally, the in vivo delivery of f(Lipo)-RVG29 carrying siRNA has substantially suppressed BACE1 expression at both mRNA and protein levels within the brain tissue. Our results suggest that the developed non-viral vector could be a promising gene carrier system combining the synergistic effect of virus-mimic RVG29 ligand with bioinspired liposome that imitates the natural lipid bilayers of cell membranes for brain-targeted RNAi therapeutics.
Collapse
Affiliation(s)
- Gulsah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey.
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey; Vaccine Development Application and Research Center, Ege University, 35100 Izmir, Türkiye
| | - Ozan Karaman
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, United States; Program in Neuroscience, Harvard Medical School, Boston, MA 02129, United States
| | - Ezgi Turunc
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey
| |
Collapse
|
11
|
Zhang M, Guo R, Yuan Z, Wang H. Lipid Nanoparticle (LNP) -A Vector Suitable for Evolving Therapies for Advanced Hepatocellular Carcinoma (HCC). GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400217. [PMID: 39802046 PMCID: PMC11717671 DOI: 10.1002/gch2.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Indexed: 01/16/2025]
Abstract
Hepatocellular carcinoma (HCC) stands as the predominant form of primary liver cancer, characterized by a dismal prognosis. Therapeutic options for advanced HCC remain sparse, with efficacy significantly hampered by the emergence of drug resistance. In parallel with research into novel pharmacological agents, advances in drug delivery systems represent a promising avenue for overcoming resistance. Lipid nanoparticles (LNPs) have demonstrated considerable efficacy in the delivery of nucleic acid-based therapeutics and hold potential for broader applications in drug delivery. This review describes the development of LNPs tailored for HCC treatment and consolidates recent investigations using LNPs to target HCC.
Collapse
Affiliation(s)
- Mingxuan Zhang
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| | - Ruiping Guo
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| | - Zhuhui Yuan
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| | - Hao Wang
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| |
Collapse
|
12
|
Aundhia C, Shah N, Talele C, Zanwar A, Kumari M, Patil S. Enhancing Gene Therapy through Ultradeformable Vesicles for Efficient siRNA Delivery. Pharm Nanotechnol 2025; 13:55-69. [PMID: 38284710 DOI: 10.2174/0122117385271654231215064542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024]
Abstract
Gene therapy is a revolutionary approach aimed at treating various diseases by manipulating the expression of specific genes. The composition and formulation of ultra-deformable vesicles play a crucial role in determining their properties and performance as siRNA delivery vectors. In the development of ultra-deformable vesicles for siRNA delivery, careful lipid selection and optimization are crucial for achieving desirable vesicle characteristics and efficient siRNA encapsulation and delivery. The stratum corneum acts as a protective barrier, limiting the penetration of molecules, including siRNA, into the deeper layers of the skin. Ultradeformable vesicles offer a promising solution to overcome this barrier and facilitate efficient siRNA delivery to target cells in the skin. The stratum corneum, the outermost layer of the skin, acts as a significant barrier to the penetration of siRNA.These engineering approaches enable the production of uniform and well-defined vesicles with enhanced deformability and improved siRNA encapsulation efficiency. Looking ahead, advancements in ultra-deformable vesicle design and optimization, along with continued exploration of combination strategies and regulatory frameworks, will further drive the field of ultra-deformable vesicle-based siRNA delivery.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Nirmal Shah
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Aarti Zanwar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Mamta Kumari
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Sapana Patil
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
13
|
Rady T, Lehot V, Most J, Erb S, Cianferani S, Chaubet G, Basse N, Wagner A. Protocol to generate, purify, and analyze antibody-oligonucleotide conjugates from off-the-shelf antibodies. STAR Protoc 2024; 5:103329. [PMID: 39342618 PMCID: PMC11470600 DOI: 10.1016/j.xpro.2024.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a fast-expanding modality for targeted delivery of therapeutic oligonucleotides to tissues. Here, we present a protocol to generate, purify, and analyze AOCs from off-the-shelf antibodies. We describe steps to conjugate single/double-stranded oligonucleotides bearing amine handles to linkers and, then, to antibodies using well-established chemistry. In addition, we provide details regarding the purification techniques and analytical methods suitable for AOC. This protocol can be applied for several purposes where AOC is a modality of interest. For complete details on the use and execution of this protocol, please refer to Rady et al.1.
Collapse
Affiliation(s)
- Tony Rady
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| | - Victor Lehot
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Julien Most
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Stephane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Nicolas Basse
- Sanofi, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
14
|
Purewal JS, Doshi GM. RNAi in psoriasis: A melodic exploration of miRNA, shRNA, and amiRNA with a spotlight on siRNA. Eur J Pharmacol 2024; 985:177083. [PMID: 39481628 DOI: 10.1016/j.ejphar.2024.177083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Psoriasis (Pso) is an autoimmune inflammatory skin disease characterised by well-demarcated, red plaques covered in silver scales. It affects people of all ages and can be passed down through generations. Genetics play an important role in determining vulnerability to develop Pso. Several large-scale genome-wide association studies have identified over 80 genetic loci associated with Pso susceptibility. Gene expression can be regulated via RNA interference (RNAi). RNAi suppresses gene expression by degrading mRNA molecules. Since its discovery, RNAi has generated considerable excitement over its potential therapeutic benefits. RNAi is mediated by endogenous small RNA molecules like microRNA (miRNA) or exogenous small RNA molecules like small interfering RNA (siRNA), short hairpin RNA (shRNA), and artificial micro RNA (amiRNA). These small RNA molecules can silence a disease-related gene in a sequence-specific manner. Targeting RNAi pathways can help modify disease-related biological processes in various medical conditions, including autoimmune disorders. In Pso, RNAi can downregulate the expression of molecules involved in the pathophysiology of the disease. Significant progress has been made in the field of RNAi therapeutics. However, further research is needed to fine-tune the design and delivery of RNAi therapeutics in humans. In this review, we discuss various effectors of RNAi, some challenges related to RNAi therapeutics (emphasizing siRNA) and strategies to overcome these challenges. Furthermore, we have discussed some studies that employ RNAi therapeutics for Pso.
Collapse
|
15
|
Bozzer S, Grimaldi MC, De Maso L, Manfredi M, Toffoli G, Dal Bo M, Sblattero D, Macor P. Stealth-Engineered Albumin-Coated Nanoparticles for Targeted Therapy: Effective Drug Delivery and Tumor Suppression in Xenograft-Zebrafish Model. Int J Nanomedicine 2024; 19:13267-13286. [PMID: 39679253 PMCID: PMC11645898 DOI: 10.2147/ijn.s476241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose In the bloodstream, nanoparticles (NPs) interact with serum proteins to form the protein corona, which includes both opsonins, promoting NP recognition and elimination, and dysopsonins, which can inhibit opsonin activity. Albumin, the most abundant serum protein, is part of this corona and can act as a dysopsonin, potentially hiding NPs from the immune system. This study aims to investigate how a covalently bound layer of human serum albumin (HSA) on polymeric NPs affects the protein corona and their behavior in the immune system. Methods We covalently attached HSA to the surface of polymeric NPs to modify the protein corona composition. These HSA-covered nanostructures were then decorated with an anti-CD19 recombinant antibody fragment to target malignant B cells, specifically acute lymphoblastic leukemia (ALL) cells. The safety profile and bioavailability of these targeted HSA-nanoparticles were evaluated in vitro and in vivo using a human-zebrafish xenograft model of ALL. The efficacy of the nanostructures in delivering encapsulated doxorubicin and suppressing tumor growth was also assessed. Results The HSA coating on polymeric NPs effectively modified the protein corona, preventing opsonization and subsequent macrophage-mediated elimination. The targeted HSA-nanoparticles maintained a safe profile with reduced macrophage interaction and specifically targeted tumor cells in the xenograft model. This resulted in the successful delivery of doxorubicin, tumor growth suppression, and increased survival of the model organisms. Conclusion The study demonstrates that HSA-coated nanoparticles can be used as a therapeutic nanoplatform with a safe profile and enhanced bioavailability. The ability to decorate these nanostructures with specific targeting agents, such as anti-CD19 antibodies, opens up the potential for developing versatile therapeutic platforms that can be tailored to target various clinical conditions.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | | | - Luca De Maso
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Diseases, CAAD, University of Piemonte Orientale, Novara, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, C.R.O.-IRCCS, Aviano, 33081, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, C.R.O.-IRCCS, Aviano, 33081, Italy
| | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| |
Collapse
|
16
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm 2024; 663:124545. [PMID: 39098747 DOI: 10.1016/j.ijpharm.2024.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cancers are increasing in prevalence and many challenges remain for their treatment, such as chemoresistance and toxicity. In this context, siRNA-based therapeutics have many potential advantages for cancer therapies as a result of their ability to reduce or prevent expression of specific cancer-related genes. However, the direct delivery of naked siRNA is hindered by issues like enzymatic degradation, insufficient cellular uptake, and poor pharmacokinetics. Hence, the discovery of a safe and efficient delivery vehicle is essential. This review explores various lipid and polymer-based delivery systems for siRNA in cancer treatment. Both polymers and lipids have garnered considerable attention as carriers for siRNA delivery. While all of these systems protect siRNA and enhance transfection efficacy, each exhibits its unique strengths. Lipid-based delivery systems, for instance, demonstrate high entrapment efficacy and utilize cost-effective materials. Conversely, polymeric-based delivery systems offer advantages through chemical modifications. Nonetheless, certain drawbacks still limit their usage. To address these limitations, combining different materials in formulations (lipid, polymer, or targeting agent) could enhance pharmaceutical properties, boost transfection efficacy, and reduce side effects. Furthermore, co-delivery of siRNA with other therapeutic agents presents a promising strategy to overcome cancer resistance. Lipid-based delivery systems have been demonstrated to encapsulate many therapeutic agents and with high efficiency, but most are limited in terms of the functionalities they display. In contrast, polymeric-based delivery systems can be chemically modified by a wide variety of routes to include multiple components, such as release or targeting elements, from the same materials backbone. Accordingly, by incorporating multiple materials such as lipids, polymers, and/or targeting agents in RNA formulations it is possible to improve the pharmaceutical properties and therapeutic efficacy while reducing side effects. This review focuses on strategies to improve siRNA cancer treatments and discusses future prospects in this important field.
Collapse
Affiliation(s)
- Nazgol Karimi Dastgerdi
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Karimi Dastgerdi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran.
| | | | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
18
|
Ferraresso F, Badior K, Seadler M, Zhang Y, Wietrzny A, Cau MF, Haugen A, Rodriguez GG, Dyer MR, Cullis PR, Jan E, Kastrup CJ. Protein is expressed in all major organs after intravenous infusion of mRNA-lipid nanoparticles in swine. Mol Ther Methods Clin Dev 2024; 32:101314. [PMID: 39253356 PMCID: PMC11382111 DOI: 10.1016/j.omtm.2024.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
In vivo delivery of mRNA is promising for the study of gene expression and the treatment of diseases. Lipid nanoparticles (LNPs) enable efficient delivery of mRNA constructs, but protein expression has been assumed to be limited to the liver. With specialized LNPs, delivery to extrahepatic tissue occurs in small animal models; however, it is unclear if global delivery of mRNA to all major organs is possible in humans because delivery may be affected by differences in innate immune response and relative organ size. Furthermore, limited studies with LNPs have been performed in large animal models, such as swine, due to their sensitivity to complement activation-related pseudoallergy (CARPA). In this study, we found that exogenous protein expression occurred in all major organs when swine were injected intravenously with a relatively low dose of mRNA encapsulated in a clinically relevant LNP formulation. Exogenous protein was detected in the liver, spleen, lung, heart, uterus, colon, stomach, kidney, small intestine, and brain of the swine without inducing CARPA. Furthermore, protein expression was detected in the bone marrow, including megakaryocytes, hematopoietic stem cells, and granulocytes, and in circulating white blood cells and platelets. These results show that nearly all major organs contain exogenous protein expression and are viable targets for mRNA therapies.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Monica Seadler
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Youjie Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Haugen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Geoffrey G Rodriguez
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mitchell R Dyer
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Christian J Kastrup
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
19
|
Vaidya A, Moore S, Chatterjee S, Guerrero E, Kim M, Farbiak L, Dilliard SA, Siegwart DJ. Expanding RNAi to Kidneys, Lungs, and Spleen via Selective ORgan Targeting (SORT) siRNA Lipid Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313791. [PMID: 38973655 DOI: 10.1002/adma.202313791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Inhibition of disease-causing mutations using RNA interference (RNAi) has resulted in clinically approved medicines with additional candidates in late stage trials. However, targetable tissues currently in preclinical development are limited to liver following systemic intravenous (IV) administration because predictable delivery of siRNA to non-liver tissues remains an unsolved challenge. Here, evidence of durable extrahepatic gene silencing enabled by siRNA Selective ORgan Targeting lipid nanoparticles (siRNA SORT LNPs) to the kidneys, lungs, and spleen is provided. LNPs excel at dose-dependent silencing of tissue-enriched endogenous targets resulting in 60%-80% maximal knockdown after a single IV injection and up to 88% downregulation of protein expression in mouse lungs after two doses. To examine knockdown potency and unbiased organ targeting, B6.129TdTom/EGFP mice that constitutively express the TdTomato transgene across all cell types are utilized to demonstrate 58%, 45%, and 15% reduction in TdTomato fluorescence in lungs, spleen, and kidneys, respectively. Finally, physiological relevance of siRNA SORT LNP-mediated gene silencing is established via acute suppression of endogenous Tie2 which induces lung-specific phenotypic alteration of vascular endothelial barrier. Due to plethora of extrahepatic diseases that may benefit from RNAi interventions, it is anticipated that the findings will expand preclinical landscape of therapeutic targets beyond the liver.
Collapse
Affiliation(s)
- Amogh Vaidya
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Stephen Moore
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Sumanta Chatterjee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Erick Guerrero
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Lukas Farbiak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Sean A Dilliard
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| |
Collapse
|
20
|
Wu S, Lin L, Shi L, Liu S. An overview of lipid constituents in lipid nanoparticle mRNA delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1978. [PMID: 38965928 DOI: 10.1002/wnan.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
mRNA therapeutics have shown great potential for a broad spectrum of disease treatment. However, the challenges of mRNA's inherent instability and difficulty in cellular entry have hindered its progress in the biomedical field. To address the cellular barriers and deliver mRNA to cells of interest, various delivery systems are designed. Among these, lipid nanoparticles (LNPs) stand out as the most extensively used mRNA delivery systems, particularly following the clinical approvals of corona virus disease 2019 (COVID-19) mRNA vaccines. LNPs are comprised of ionizable cationic lipids, phospholipids, cholesterol, and polyethylene glycol derived lipids (PEG-lipids). In this review, we primarily summarize the recent advancements of the LNP mRNA delivery technology, focusing on the structures of four lipid constituents and their biomedical applications. We delve into structure-activity relationships of the lipids, while also exploring the future prospects and challenges in developing more efficacious mRNA delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Shiqi Wu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lu Shi
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Shaw I, Boafo GF, Ali YS, Liu Y, Mlambo R, Tan S, Chen C. Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development. J Microencapsul 2024; 41:226-254. [PMID: 38560994 DOI: 10.1080/02652048.2024.2326091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Yimer Seid Ali
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Department of Pharmacy, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
22
|
Ralvenius WT, Andresen JL, Huston MM, Penney J, Bonner JM, Fenton OS, Langer R, Tsai LH. Nanoparticle-Mediated Delivery of Anti-PU.1 siRNA via Localized Intracisternal Administration Reduces Neuroinflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309225. [PMID: 38018280 DOI: 10.1002/adma.202309225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Neuroinflammation is a hallmark of neurodegenerative disorders including Alzheimer's disease (AD). Microglia, the brain's immune cells, express many of the AD-risk loci identified in genome wide association studies and present a promising target for anti-inflammatory RNA therapeutics but are difficult to transfect with current methods. Here, several lipid nanoparticle (LNP) formulations are examined, and a lead candidate that supports efficient RNA delivery in cultures of human stem cell-derived microglia-like cells (iMGLs) and animal models of neuroinflammation is identified. The lead microglia LNP (MG-LNP) formulation shows minimal toxicity and improves delivery efficiency to inflammatory iMGLs, suggesting a preference for delivery into activated microglia. Intraperitoneal injection of the MG-LNP formulation generates widespread expression of the delivered reporter construct in all organs, whereas local intracisternal injection directly into the cerebrospinal fluid leads to preferential expression in the brain. It is shown that LNP-mediated delivery of siRNA targeting the PU.1 transcription factor, a known AD-risk locus, successfully reduces PU.1 levels in iMGLs and reduces neuroinflammation in mice injected with LPS and in CK-p25 mice that mimic the chronic neuroinflammation seen in AD patients. The LNP formulation represents an effective RNA delivery vehicle when applied intrathecally and can be broadly utilized to test potential neuroinflammation-directed gene therapies.
Collapse
Affiliation(s)
- William T Ralvenius
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jason L Andresen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Margaret M Huston
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Julia Maeve Bonner
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Owen S Fenton
- UNC Eshelman School of Pharmacy, Department of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
He X, Chang Z, Chen F, Zhang W, Sun M, Shi T, Liu J, Chen P, Zhang K, Guan S, Zhao Z, Li M, Dong WF, Shao D, Yang C. Engineering a biomimetic system for hepatocyte-specific RNAi treatment of non-alcoholic fatty liver disease. Acta Biomater 2024; 174:281-296. [PMID: 37951519 DOI: 10.1016/j.actbio.2023.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
RNA interference (RNAi) presents great potential against intractable liver diseases. However, the establishment of specific, efficient, and safe delivery systems targeting hepatocytes remains a great challenge. Herein, we described a promising hepatocytes-targeting system through integrating triantennary N-acetylgalactosamine (GalNAc)-engineered cell membrane with biodegradable mesoporous silica nanoparticles, which efficiently and safely delivered siRNA to hepatocytes and silenced the target PCSK9 gene expression for the treatment of non-alcoholic fatty liver disease. Having optimized the GalNAc-engineering strategy, insertion orders, and cell membrane source, we obtained the best-performing GalNAc-formulations allowing strong hepatocyte-specific internalization with reduced Kupffer cell capture, resulting in robust gene silencing and less hepatotoxicity when compared with cationic lipid-based GalNAc-formulations. Consequently, a durable reduction of lipid accumulation and damage was achieved by systemic administering siRNAs targeting PCSK9 in high-fat diet-fed mice, accompanied by displaying desirable safety profiles. Taken together, this GalNAc-engineering biomimetics represented versatile, efficient, and safe carriers for the development of hepatocyte-specific gene therapeutics, and prevention of metabolic diseases. STATEMENT OF SIGNIFICANCE: Compared to MSN@LP-GN3 (MC3-LNP), MSN@CM-GN3 exhibited strong hepatocyte targeting and Kupffer cell escaping, as well as good biocompatibility for safe and efficient siRNA delivery. Furthermore, siPCSK9 delivered by MSN@CM-GN3 reduced both serum and liver LDL-C, TG, TC levels and lipid droplets in HFD-induced mice, resulting in better performance than MSN/siPCSK9@LP-GN3 in terms of lipid-lowering effect and safety profiles. These findings indicated promising advantages of our biomimetic GN3-based systems for hepatocyte-specific gene delivery in chronic liver diseases. Our work addressed the challenges associated with the lower targeting efficiency of cell membrane-mimetic drug delivery systems and the immunogenicity of traditional GalNAc delivery systems. In conclusion, this study provided an effective and versatile approach for efficient and safe gene editing using ligand-integrated biomimetic nanoplatforms.
Collapse
Affiliation(s)
- Xuan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou 215163, China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou 215163, China.
| | - Wensheng Zhang
- Department of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Madi Sun
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Tongfei Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Jie Liu
- Department of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Peiyu Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Kunbao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Shan Guan
- National Engineering Research Center of Immunological Products, The Third Military Medical University, Chongqing 400038, China
| | - Zhibin Zhao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou 215163, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Chao Yang
- Department of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
24
|
Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, Kaushik NK, Noorani MS, Kaushal A, Gupta S. Vaccine development: Current trends and technologies. Life Sci 2024; 336:122331. [PMID: 38070863 DOI: 10.1016/j.lfs.2023.122331] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Despite the effectiveness of vaccination in reducing or eradicating diseases caused by pathogens, there remain certain diseases and emerging infections for which developing effective vaccines is inherently challenging. Additionally, developing vaccines for individuals with compromised immune systems or underlying medical conditions presents significant difficulties. As well as traditional vaccine different methods such as inactivated or live attenuated vaccines, viral vector vaccines, and subunit vaccines, emerging non-viral vaccine technologies, including viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer new strategies to address the existing challenges in vaccine development. These advancements have also greatly enhanced our understanding of vaccine immunology, which will guide future vaccine development for a broad range of diseases, including rapidly emerging infectious diseases like COVID-19 and diseases that have historically proven resistant to vaccination. This review provides a comprehensive assessment of emerging non-viral vaccine production methods and their application in addressing the fundamental and current challenges in vaccine development.
Collapse
Affiliation(s)
- Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, 01-142 Warsaw, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Yashika Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Bharat Singh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India.
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India.
| |
Collapse
|
25
|
Juchem M, Cushman S, Lu D, Chatterjee S, Bär C, Thum T. Encapsulating In Vitro Transcribed circRNA into Lipid Nanoparticles Via Microfluidic Mixing. Methods Mol Biol 2024; 2765:247-260. [PMID: 38381344 DOI: 10.1007/978-1-0716-3678-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
This chapter serves as a guide for researchers embarking on circular RNA-based translational studies. It provides a foundation for the successful encapsulation of circular RNA into lipid nanoparticles (LNPs) and facilitates progress in this emerging field. Crucial scientific methods and techniques involved in the formulation process, particle characterization, and downstream processing of circ-LNPs are covered. The production of in vitro transcribed circular RNA-containing LNPs based on a commercially available lipid mix is provided, in addition to the fundamentals for successful encapsulation based on lipid mixes composed of single components. Furthermore, the transfection and validation protocols for the identification of a functional and potentially therapeutic circRNA candidate for initial in vitro verification, before subsequent LNP studies, are explained.
Collapse
Affiliation(s)
- Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
26
|
Kevadiya BD, Islam F, Deol P, Zaman LA, Mosselhy DA, Ashaduzzaman M, Bajwa N, Routhu NK, Singh PA, Dawre S, Vora LK, Nahid S, Mathur D, Nayan MU, Baldi A, Kothari R, Patel TA, Madan J, Gounani Z, Bariwal J, Hettie KS, Gendelman HE. Delivery of gene editing therapeutics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102711. [PMID: 37813236 PMCID: PMC10843524 DOI: 10.1016/j.nano.2023.102711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Pallavi Deol
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Institute of Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Lubaba A Zaman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, ARC, Dokki, Giza 12618, Egypt.
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Neha Bajwa
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Nanda Kishore Routhu
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Preet Amol Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMs, NMIMS, Babulde Banks of Tapi River, MPTP Park, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Sumaiya Nahid
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | - Mohammad Ullah Nayan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Ashish Baldi
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Ramesh Kothari
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| | - Tapan A Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-NIPER, Hyderabad 500037, Telangana, India.
| | - Zahra Gounani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430-6551, USA.
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
27
|
Wong B, Birtch R, Rezaei R, Jamieson T, Crupi MJF, Diallo JS, Ilkow CS. Optimal delivery of RNA interference by viral vectors for cancer therapy. Mol Ther 2023; 31:3127-3145. [PMID: 37735876 PMCID: PMC10638062 DOI: 10.1016/j.ymthe.2023.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rayanna Birtch
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taylor Jamieson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
28
|
Benavides I, Scott WA, Cai X, Zhou ZH, Deming TJ. Preparation and stability of pegylated poly(S-alkyl-L-homocysteine) coacervate core micelles in aqueous media. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:81. [PMID: 37707598 DOI: 10.1140/epje/s10189-023-00339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
We report development and preparation of synthetic polypeptide based, coacervate core polyelectrolyte complex micelles, PCMs, in aqueous media, which were characterized and evaluated for the encapsulation and in vitro release of a model single-stranded RNA, polyadenylic acid, poly(A). Cationic, α-helical polypeptides pegylated at their N-termini, PEG113-b-5bn and PEG113-b-5cn, were designed to form coacervate core PCMs upon mixing with multivalent anions in aqueous media. Sodium tripolyphosphate (TPP) and poly(A) were used as model multivalent anions that allowed optimization of polypeptide composition and chain length for formation of stable, nanoscale PCMs. PEG113-b-5c27 was selected for preparation of PCMs that were characterized under different environmental conditions using dynamic light scattering, atomic force microscopy and cryoelectron microscopy. The PCMs were found to efficiently encapsulate poly(A), were stable at physiologically relevant pH and solution ionic strength, and were able to release poly(A) in the presence of excess polyvalent anions. These PCMs were found to be a promising model system for further development of polypeptide based therapeutic delivery vehicles.
Collapse
Affiliation(s)
- Isaac Benavides
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Wendell A Scott
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Timothy J Deming
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Abdelaal AM, Sohal IS, Iyer S, Sudarshan K, Kothandaraman H, Lanman NA, Low PS, Kasinski AL. A first-in-class fully modified version of miR-34a with outstanding stability, activity, and anti-tumor efficacy. Oncogene 2023; 42:2985-2999. [PMID: 37666938 PMCID: PMC10541324 DOI: 10.1038/s41388-023-02801-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/06/2023]
Abstract
Altered by defects in p53, epigenetic silencing, and genomic loss, the microRNA miR-34a represents one of the most clinically relevant tumor-suppressive microRNAs. Without question, a striking number of patients with cancer would benefit from miR-34a replacement, if poor miR-34a stability, non-specific delivery, and delivery-associated toxicity could be overcome. Here, we highlight a fully modified version of miR-34a (FM-miR-34a) that overcomes these hurdles when conjugated to a synthetically simplistic ligand. FM-miR-34a is orders of magnitude more stable than a partially modified version, without compromising its activity, leading to stronger repression of a greater number of miR-34a targets. FM-miR-34a potently inhibited proliferation and invasion, and induced sustained downregulation of endogenous target genes for >120 h following in vivo delivery. In vivo targeting was achieved through conjugating FM-miR-34a to folate (FM-FolamiR-34a), which inhibited tumor growth leading to complete cures in some mice. These results have the ability to revitalize miR-34a as an anti-cancer agent, providing a strong rationale for clinical testing.
Collapse
Affiliation(s)
- Ahmed M Abdelaal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ikjot S Sohal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Shreyas Iyer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kasireddy Sudarshan
- Department of of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Harish Kothandaraman
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadia A Lanman
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Philip S Low
- Department of of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
30
|
Zeng S, Chen Y, Zhou F, Zhang T, Fan X, Chrzanowski W, Gillies MC, Zhu L. Recent advances and prospects for lipid-based nanoparticles as drug carriers in the treatment of human retinal diseases. Adv Drug Deliv Rev 2023; 199:114965. [PMID: 37315899 DOI: 10.1016/j.addr.2023.114965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
The delivery of cures for retinal diseases remains problematic. There are four main challenges: passing through multiple barriers of the eye, the delivery to particular retinal cell types, the capability to carry different forms of therapeutic cargo and long-term therapeutic efficacy. Lipid-based nanoparticles (LBNPs) are potent to overcome these challenges due to their unique merits: amphiphilic nanoarchitectures to pass biological barriers, vary modifications with specific affinity to target cell types, flexible capacity for large and mixed types of cargos and slow-release formulations for long-term treatment. We have reviewed the latest research on the applications of LBNPs for treating retinal diseases and categorized them by different payloads. Furthermore, we identified technical barriers and discussed possible future development for LBNPs to expand the therapeutic potential in treating retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yingying Chen
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ting Zhang
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Mark C Gillies
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
31
|
Khan S, Rehman U, Parveen N, Kumar S, Baboota S, Ali J. siRNA therapeutics: insights, challenges, remedies and future prospects. Expert Opin Drug Deliv 2023; 20:1167-1187. [PMID: 37642354 DOI: 10.1080/17425247.2023.2251890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Among conventional and novel therapeutic approaches, the siRNA strategy stands out for treating disease by silencing the gene responsible for the corresponding disorder. Gene silencing is supposedly intended to target any disease-causing gene, and therefore, several attempts and investments were made to exploit siRNA gene therapy and advance it into clinical settings. Despite the remarkable beneficial prospects, the applicability of siRNA therapeutics is very challenging due to various pathophysiological barriers that hamper its target reach, which is the cytosol, and execution of gene silencing action. AREAS COVERED The present review provides insights into the field of siRNA therapeutics, significant in vivo hurdles that mitigate the target accessibility of siRNA, and remedies to overcome these siRNA delivery challenges. Nonetheless, the current review also highlights the on-going clinical trials and the regulatory aspects of siRNA modalities. EXPERT OPINION The siRNAs have the potential to reach previously untreated target sites and silence the concerned gene owing to their modification as polymeric or lipidic nanoparticles, conjugates, and the application of advanced drug delivery strategies. With such mounting research attempts to improve the delivery of siRNA to target tissue, we might shortly witness revolutionary therapeutic outcomes, new approvals, and clinical implications.
Collapse
Affiliation(s)
- Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
32
|
Kim YK. RNA therapy. Exp Mol Med 2023; 55:1281-1282. [PMID: 37430085 PMCID: PMC10393985 DOI: 10.1038/s12276-023-01051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| |
Collapse
|
33
|
Swart LE, Fens MHAM, van Oort A, Waranecki P, Mata Casimiro LD, Tuk D, Hendriksen M, van den Brink L, Schweighart E, Seinen C, Nelson R, Krippner-Heidenreich A, O'Toole T, Schiffelers RM, Kooijmans S, Heidenreich O. Increased Bone Marrow Uptake and Accumulation of Very-Late Antigen-4 Targeted Lipid Nanoparticles. Pharmaceutics 2023; 15:1603. [PMID: 37376052 DOI: 10.3390/pharmaceutics15061603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Lipid nanoparticles (LNPs) have evolved rapidly as promising delivery systems for oligonucleotides, including siRNAs. However, current clinical LNP formulations show high liver accumulation after systemic administration, which is unfavorable for the treatment of extrahepatic diseases, such as hematological disorders. Here we describe the specific targeting of LNPs to hematopoietic progenitor cells in the bone marrow. Functionalization of the LNPs with a modified Leu-Asp-Val tripeptide, a specific ligand for the very-late antigen 4 resulted in an improved uptake and functional siRNA delivery in patient-derived leukemia cells when compared to their non-targeted counterparts. Moreover, surface-modified LNPs displayed significantly improved bone-marrow accumulation and retention. These were associated with increased LNP uptake by immature hematopoietic progenitor cells, also suggesting similarly improved uptake by leukemic stem cells. In summary, we describe an LNP formulation that successfully targets the bone marrow including leukemic stem cells. Our results thereby support the further development of LNPs for targeted therapeutic interventions for leukemia and other hematological disorders.
Collapse
Affiliation(s)
- Laura E Swart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anita van Oort
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - L Daniel Mata Casimiro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - David Tuk
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Martijn Hendriksen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Luca van den Brink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Elizabeth Schweighart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Cor Seinen
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ryan Nelson
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | | | - Tom O'Toole
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sander Kooijmans
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RY, UK
| |
Collapse
|
34
|
Balgobind A, Daniels A, Ariatti M, Singh M. HER2/neu Oncogene Silencing in a Breast Cancer Cell Model Using Cationic Lipid-Based Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041190. [PMID: 37111675 PMCID: PMC10142055 DOI: 10.3390/pharmaceutics15041190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The overexpression of the human epidermal growth factor 2 (HER2/neu) oncogene is predictive of adverse breast cancer prognosis. Silencing the HER2/neu overexpression using siRNA may be an effective treatment strategy. Major requirements for siRNA-based therapy are safe, stable, and efficient delivery systems to channel siRNA into target cells. This study assessed the efficacy of cationic lipid-based systems for the delivery of siRNA. Cationic liposomes were formulated with equimolar ratios of the respective cholesteryl cytofectins, 3β-N-(N', N'-dimethylaminopropyl)-carbamoyl cholesterol (Chol-T) or N, N-dimethylaminopropylaminylsuccinylcholesterylformylhydrazide (MS09), with the neutral helper lipid, dioleoylphosphatidylethanolamine (DOPE), with and without a polyethylene glycol stabilizer. All cationic liposomes efficiently bound, compacted, and protected the therapeutic siRNA against nuclease degradation. Liposomes and siRNA lipoplexes were spherical, <200 nm in size, with moderate particle size distributions (PDI < 0.4). The siRNA lipoplexes exhibited minimal dose-dependent cytotoxicity and effective HER2/neu siRNA transfection in the HER2/neu overexpressing SKBR-3 cells. The non-PEGylated Chol-T-siRNA lipoplexes induced the highest HER2/neu silencing at the mRNA (10000-fold decrease) and protein levels (>111.6-fold decrease), surpassing that of commercially available Lipofectamine 3000 (4.1-fold reduction in mRNA expression). These cationic liposomes are suitable carriers of HER2/neu siRNA for gene silencing in breast cancer.
Collapse
Affiliation(s)
- Adhika Balgobind
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mario Ariatti
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
35
|
Mendonça MCP, Kont A, Kowalski PS, O'Driscoll CM. Design of lipid-based nanoparticles for delivery of therapeutic nucleic acids. Drug Discov Today 2023; 28:103505. [PMID: 36708760 DOI: 10.1016/j.drudis.2023.103505] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/04/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
The successful development of nonviral delivery systems for nucleic acids has been reported extensively over the past number of years. Among them, lipid-based nanoparticles (LNPs) represent the most advanced platform. This review provides an overview of the state-of-the-art in LNP technology, focusing on the delivery of a range of nucleic acids. Recent advances in the development of an efficient and safe lipid-based system are critically analyzed with a particular emphasis on the rationale behind the design of LNPs and on attempts to elucidate the resulting molecular assembly and structure, their interactions with cellular proteins and biodistribution. In addition, manufacturing methods including microfluidics and their potential to influence stability and scale-up are summarized.
Collapse
Affiliation(s)
| | - Ayse Kont
- School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Piotr S Kowalski
- School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | | |
Collapse
|
36
|
Alhamhoom Y, Kakinani G, Rahamathulla M, Ali M. Osmani R, Hani U, Yoonus Thajudeen K, Kiran Raj G, Gowda DV. Recent advances in the liposomal nanovesicles based immunotherapy in the treatment of cancer: A review. Saudi Pharm J 2023; 31:279-294. [PMID: 36942270 PMCID: PMC10023551 DOI: 10.1016/j.jsps.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy, along with chemotherapy, targeted delivery, radiation and surgery has become one of the most common cancer treatments. The aim of cancer immunology is to use the bodys immune system to combat tumors and develop a robust antitumor immune response. In the last few years, immune checkpoint inhibitors and chimeric antigen receptor-modified T cells have made substantial advancements in cancer immunotherapy. By boosting cell type-specific delivery and immunological responses, nanocarriers like liposomes have the ability to enhance greater immune responses. The efficacy of anti-tumor therapeutics is being significantly improved as liposomes can assist in resolving a number of issues that can arise from a variety of cancer immunotherapies. Since, liposomes can be loaded with both hydrophilic and hydrophobic drugs and protect the immunotherapeutic agents loaded inside the core, they offer significant advantages over other nano delivery systems. The use of liposomes for accurate and timely delivery of immunotherapies to particular targeted neoplasms, with little or no injury to healthy cells, maximizes immunotherapy efficacy. Liposomes are also suitable vehicles for delivering medications simultaneously with other therapies such as chemotherapy, radiation, and phototherapy. Liposomal nanoparticles will be introduced and used as an objective immunotherapy delivery system for great precision, making them a viable cancer treatment approach.With an emphasis on dendritic cells, T cells, tumor and natural killer cells, and macrophages; outline of many forms of immune-therapies in oncology and cutting-edge advances in liposomal nanovesicles for cancer immunotherapy are covered in this review.
Collapse
Affiliation(s)
- Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Greeshma Kakinani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Kamal Yoonus Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - G. Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Devegowda V. Gowda
- Department of Pharmaceutics, Cauvery College of Pharmacy, Mysuru 570 028, Karnataka, India
| |
Collapse
|
37
|
Clarke LA, Amaral MD. What Can RNA-Based Therapy Do for Monogenic Diseases? Pharmaceutics 2023; 15:pharmaceutics15010260. [PMID: 36678889 PMCID: PMC9863139 DOI: 10.3390/pharmaceutics15010260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The use of RNA-based approaches to treat monogenic diseases (i.e., hereditary disorders caused by mutations in single genes) has been developed on different fronts. One approach uses small antisense oligonucleotides (ASOs) to modulate RNA processing at various stages; namely, to enhance correct splicing, to stimulate exon skipping (to exclude premature termination codon variants), to avoid undesired messenger RNA (mRNA) transcript degradation via the nonsense-mediated decay (NMD) pathway, or to induce mRNA degradation where they encode toxic proteins (e.g., in dominant diseases). Another approach consists in administering mRNA, which, like gene therapy, is a mutation-agnostic approach with potential application to any recessive monogenic disease. This is simpler than gene therapy because instead of requiring targeting of the nucleus, the mRNA only needs to be delivered to the cytoplasm. Although very promising (as demonstrated by COVID-19 vaccines), these approaches still have potential for optimisation, namely regarding delivery efficiency, adverse drug reactions and toxicity.
Collapse
|
38
|
The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol 2023; 38:327-344. [PMID: 35507149 PMCID: PMC9066145 DOI: 10.1007/s00467-021-05352-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparticles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development for kidney diseases, with particular interest in inherited kidney disorders.
Collapse
|
39
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|
40
|
Tagore R, Alagarasu K, Patil P, Pyreddy S, Polash SA, Kakade M, Shukla R, Parashar D. Targeted in vitro gene silencing of E2 and nsP1 genes of chikungunya virus by biocompatible zeolitic imidazolate framework. Front Bioeng Biotechnol 2022; 10:1003448. [PMID: 36601387 PMCID: PMC9806579 DOI: 10.3389/fbioe.2022.1003448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chikungunya fever caused by the mosquito-transmitted chikungunya virus (CHIKV) is a major public health concern in tropical, sub-tropical and temperate climatic regions. The lack of any licensed vaccine or antiviral agents against CHIKV warrants the development of effective antiviral therapies. Small interfering RNA (siRNA) mediated gene silencing of CHIKV structural and non-structural genes serves as a potential antiviral strategy. The therapeutic efficiency of siRNA can be improved by using an efficient delivery system. Metal-organic framework biocomposits have demonstrated an exceptional capability in protecting and efficiently delivering nucleic acids into cells. In the present study, carbonated ZIF called ZIF-C has been utilized to deliver siRNAs targeted against E2 and nsP1 genes of CHIKV to achieve a reduction in viral replication and infectivity. Cellular transfection studies of E2 and nsP1 genes targeting free siRNAs and ZIF-C encapsulated siRNAs in CHIKV infected Vero CCL-81 cells were performed. Our results reveal a significant reduction of infectious virus titre, viral RNA levels and percent of infected cells in cultures transfected with ZIF-C encapsulated siRNA compared to cells transfected with free siRNA. The results suggest that delivery of siRNA through ZIF-C enhances the antiviral activity of CHIKV E2 and nsP1 genes directed siRNAs.
Collapse
Affiliation(s)
- Rajarshee Tagore
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Kalichamy Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Poonam Patil
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Suneela Pyreddy
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia
| | - Shakil Ahmed Polash
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia
| | - Mahadeo Kakade
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Ravi Shukla
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia,*Correspondence: Ravi Shukla, ; Deepti Parashar,
| | - Deepti Parashar
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India,*Correspondence: Ravi Shukla, ; Deepti Parashar,
| |
Collapse
|
41
|
Yadav DN, Ali MS, Thanekar AM, Pogu SV, Rengan AK. Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy. Mol Pharm 2022; 19:4506-4526. [PMID: 36409653 DOI: 10.1021/acs.molpharmaceut.2c00811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.
Collapse
Affiliation(s)
- Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | | | - Sunil Venkanna Pogu
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| |
Collapse
|
42
|
Abstract
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Collapse
Affiliation(s)
| | | | | | - W. Mark Saltzman
- Department of Biomedical Engineering
- Department of Chemical & Environmental Engineering
- Department of Cellular & Molecular Physiology
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
43
|
Brannagan TH, Berk JL, Gillmore JD, Maurer MS, Waddington‐Cruz M, Fontana M, Masri A, Obici L, Brambatti M, Baker BF, Hannan LA, Buchele G, Viney NJ, Coelho T, Nativi‐Nicolau J. Liver-directed drugs for transthyretin-mediated amyloidosis. J Peripher Nerv Syst 2022; 27:228-237. [PMID: 36345805 PMCID: PMC10100204 DOI: 10.1111/jns.12519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Transthyretin-mediated amyloidosis (ATTR) is a rare, under-recognized, progressively debilitating, fatal disease caused by the aggregation and extracellular deposition of amyloid transthyretin (TTR) fibrils in multiple organs and tissues throughout the body. TTR is predominantly synthesized by the liver and normally circulates as a homotetramer, while misfolded monomers aggregate to form amyloid fibrils. One strategy to treat ATTR amyloidosis is to reduce the amount of TTR produced by the liver using drugs that directly target the TTR mRNA or gene. This narrative review focuses on how TTR gene silencing tools act to reduce TTR production, describing strategies for improved targeted delivery of these agents to hepatocytes where TTR is preferentially expressed. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), termed RNA silencers, cause selective degradation of TTR mRNA, while a TTR gene editing tool reduces TTR expression by introducing nonsense mutations into the TTR gene. Two strategies to facilitate tissue-specific delivery of these nucleic acid-based drugs employ endogenous receptors expressed by hepatocytes. Lipid nanoparticles (LNPs) that recruit apolipoprotein E support low-density lipoprotein receptor-mediated uptake of unconjugated siRNA and are now used for CRISPR gene editing tools. Additionally, conjugating N-acetylgalactosamine (GalNAc) moieties to ASOs or siRNAs facilitates receptor-mediated uptake by the asialoglycoprotein receptor. In summary, ATTR is a progressive disease with various clinical manifestations due to TTR aggregation, deposition, and amyloid formation. Receptor-targeted ligands (eg, GalNAc) and nanoparticle encapsulation (eg, LNPs) are technologies to deliver ASOs, siRNAs, and gene editing tools to hepatocytes, the primary location of TTR synthesis.
Collapse
Affiliation(s)
- Thomas H. Brannagan
- Peripheral Neuropathy CenterColumbia University, Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - John L. Berk
- Amyloidosis CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Julian D. Gillmore
- National Amyloidosis CentreUniversity College London, Royal Free HospitalLondonUK
| | - Mathew S. Maurer
- Cardiac Amyloidosis Program, Division of CardiologyColumbia College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Márcia Waddington‐Cruz
- National Amyloidosis Referral Center‐CEPARMUniversity HospitalFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Marianna Fontana
- National Amyloidosis CentreUniversity College London, Royal Free HospitalLondonUK
| | - Ahmad Masri
- Cardiac Amyloidosis Program, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Laura Obici
- Amyloidosis Research and Treatment CenterIRCCS Fondazione Policlinico San MatteoPaviaItaly
| | | | | | | | | | | | - Teresa Coelho
- Department of NeurosciencesCentro Hospitalar Universitário do PortoPortoPortugal
| | | |
Collapse
|
44
|
Patel P, Fetse J, Lin CY, Guo Y, Hasan MR, Nakhjiri M, Zhao Z, Jain A, Cheng K. Development of amino acid-modified biodegradable lipid nanoparticles for siRNA delivery. Acta Biomater 2022; 154:374-384. [PMID: 36191773 PMCID: PMC10695009 DOI: 10.1016/j.actbio.2022.09.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
The use of siRNA therapeutics to treat cancer is a very promising approach. However, specific delivery of siRNAs to tumors remains a major challenge. The recent success of siRNA delivery to the liver has incentivized the development of biomaterials for siRNA delivery into tumors. Here, we report a new class of amino acid-modified lipids for siRNA delivery to cancer cells. Eight lipids were developed by headgroup modification with histidine and lysine. The lipids were screened in PC3-luciferase stable cells for gene silencing and cellular cytotoxicity study. The best lipid LHHK shows a pKa of 6.08, which is within the optimal pKa range of lipid nanoparticles (LNPs) for siRNA delivery. The LHHK LNP protects siRNA from serum degradation for up to 24 h and shows higher endosomal release and better cellular uptake compared to other lysine-modified lipids in PC3 cells. The LHHK LNP exhibits significant silencing activity of IKKα and IKBKE in prostate cancer and pancreatic cancer, respectively. Moreover, the LHHK LNP encapsulating IKBKE siRNA inhibits cell proliferation of pancreatic cancer cells and suppresses the tumor progression in a pancreatic cancer mouse model. STATEMENT OF SIGNIFICANCE: Lipid nanoparticle (LNP) is a promising platform for siRNA delivery. However, LNP is generally associated with high systemic toxicity. As a result, efficient and biodegradable lipids are highly needed for siRNA-based cancer therapy. Herein, we develop amino acid-modified biodegradable lipids. These lipids show very low cellular toxicity and high transfection efficiency. The best lipid LHHK shows a pKa of 6.08, which is within the optimal pKa range of LNPs for siRNA delivery. The LHHK LNP efficiently silences IKKα and IKBKE in prostate and pancreatic cancer, respectively. Moreover, the LHHK LNP encapsulating IKBKE siRNA inhibits cell proliferation and suppresses tumor growth of pancreatic cancer in vivo. These results suggest that amino acid-modified lipids possess a great potential for siRNA delivery in cancer therapy.
Collapse
Affiliation(s)
- Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yuhan Guo
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Md Reaid Hasan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Maryam Nakhjiri
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Akshay Jain
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
45
|
Shah AM, Giacca M. Small non-coding RNA therapeutics for cardiovascular disease. Eur Heart J 2022; 43:4548-4561. [PMID: 36106499 PMCID: PMC9659475 DOI: 10.1093/eurheartj/ehac463] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023] Open
Abstract
Novel bio-therapeutic agents that harness the properties of small, non-coding nucleic acids hold great promise for clinical applications. These include antisense oligonucleotides that inhibit messenger RNAs, microRNAs (miRNAs), or long non-coding RNAs; positive effectors of the miRNA pathway (short interfering RNAs and miRNA mimics); or small RNAs that target proteins (i.e. aptamers). These new therapies also offer exciting opportunities for cardiovascular diseases and promise to move the field towards more precise approaches based on disease mechanisms. There have been substantial advances in developing chemical modifications to improve the in vivo pharmacological properties of antisense oligonucleotides and reduce their immunogenicity. Carrier methods (e.g. RNA conjugates, polymers, and lipoplexes) that enhance cellular uptake of RNA therapeutics and stability against degradation by intracellular nucleases are also transforming the field. A number of small non-coding RNA therapies for cardiovascular indications are now approved. Moreover, there is a large pipeline of therapies in clinical development and an even larger list of putative therapies emerging from pre-clinical studies. Progress in this area is reviewed herein along with the hurdles that need to be overcome to allow a broader clinical translation.
Collapse
Affiliation(s)
- Ajay M Shah
- King’s College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- King’s College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
46
|
Liyanage W, Wu T, Kannan S, Kannan RM. Dendrimer-siRNA Conjugates for Targeted Intracellular Delivery in Glioblastoma Animal Models. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46290-46303. [PMID: 36214413 DOI: 10.1021/acsami.2c13129] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Small interfering RNAs (siRNAs) are potent weapons for gene silencing, with an opportunity to correct defective genes and stop the production of undesirable proteins, with many applications in central nervous system (CNS) disorders. However, successful delivery of siRNAs to the brain parenchyma faces obstacles such as the blood-brain barrier (BBB), brain tissue penetration, and targeting of specific cells. In addition, siRNAs are unstable under physiological conditions and are susceptible to protein binding and enzymatic degradation, necessitating a higher dosage to remain effective. To address these issues and advance siRNA delivery, we report the development of covalently conjugated hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimer-siRNA conjugates, demonstrated with a siRNA against GFP (siGFP) conjugate (D-siGFP) utilizing glutathione-sensitive linkers. This allows for precise nucleic acid loading, protects the payload from premature degradation, delivers the siRNA cargo into cells, and achieves significant GFP knockdown in vitro (∼40%) and in vivo (∼30%). Compared to commercially available delivery systems such as RNAi Max and Lipofectamine, D-siGFP retains the potency of the siRNA in vitro. In addition, the dendrimer-siGFP conjugate significantly enhances the half-life of siRNA in the presence of plasma and endonucleases and maintains the passive targeting ability of PAMAM dendrimers to reactive microglia. When administered intratumorally to orthotopic glioblastoma multiform tumors (GBM) in CX3CR-1GFP mice, D-siGFP localizes in tumor-associated macrophages (TAMs) within the tumor parenchyma, minimizing off-target effects in other cell populations. The facile conjugation strategy for dendrimer-siRNA conjugates presented here offers a promising approach for targeted, systemic intracellular delivery of siRNA, serving as a potential bridge for the clinical translation of RNAi therapies.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Tony Wu
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute-Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute-Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| |
Collapse
|
47
|
Aptamer-Functionalized Nanoparticles Mediate PD-L1 siRNA Delivery for Effective Gene Silencing in Triple-Negative Breast Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14102225. [PMID: 36297659 PMCID: PMC9609037 DOI: 10.3390/pharmaceutics14102225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Small interfering RNA (siRNA) therapies require effective delivery vehicles capable of carrying the siRNA cargo into target cells. To achieve tumor-targeting, a drug delivery system would have to incorporate ligands that specifically bind to receptors expressed on cancer cells to function as portals via receptor-mediated endocytosis. Cell-targeting and internalizing aptamers are the most suitable ligands for functionalization of drug-loaded nanocarriers. Here, we designed a novel aptamer-based platform for the active delivery of siRNA targeting programmed cell death-ligand 1 (PD-L1) to triple-negative breast cancer (TNBC) cells. The generated nanovectors consist of PLGA-based polymeric nanoparticles, which were loaded with PD-L1 siRNA and conjugated on their surface with a new RNA aptamer, specific for TNBC and resistant to nucleases. In vitro results demonstrated that these aptamer-conjugated nanoparticles promote siRNA uptake specifically into TNBC MDA-MB-231 and BT-549 target cells, along with its endosomal release, without recognizing non-TNBC BT-474 breast cancer cells. Their efficiency resulted in an almost complete suppression of PD-L1 expression as early as 90 min of cell treatment. This research provides a rational strategy for optimizing siRNA delivery systems for TNBC treatments.
Collapse
|
48
|
Amaldoss MJN, Yang JL, Koshy P, Unnikrishnan A, Sorrell CC. Inorganic nanoparticle-based advanced cancer therapies: promising combination strategies. Drug Discov Today 2022; 27:103386. [PMID: 36182068 DOI: 10.1016/j.drudis.2022.103386] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/15/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Inorganic nanoparticles for drug delivery in cancer treatment offer many potential advantages because they can maximize therapeutic effect through targeting ligands while minimizing off-target side-effects through drug adsorption and infiltration. Although inorganic nanoparticles were introduced as drug carriers, they have emerged as having the capacity for combined therapeutic capabilities, including anticancer effects through cytotoxicity, suppression of oncogenes and cancer cell signaling pathway inhibition. The most promising advanced strategies for cancer therapy are as synergistic platforms for RNA interference (siRNA, miRNA, shRNA) and as synergistic drug delivery agents for the inhibition of cancer cell signaling pathways. The present work summarizes relevant current work, the promise of which is suggested by a projected compound annual growth rate of ∼20% for drug delivery alone.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Jia-Lin Yang
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
49
|
Bozzer S, Dal Bo M, Grimaldi MC, Toffoli G, Macor P. Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics 2022; 14:1965. [PMID: 36145713 PMCID: PMC9502742 DOI: 10.3390/pharmaceutics14091965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoparticle-based therapies have been proposed in oncology research using various delivery methods to increase selectivity toward tumor tissues. Enhanced drug delivery through nanoparticle-based therapies could improve anti-tumor efficacy and also prevent drug resistance. However, there are still problems to overcome, such as the main biological interactions of nanocarriers. Among the various nanostructures for drug delivery, drug delivery based on polymeric nanoparticles has numerous advantages for controlling the release of biological factors, such as the ability to add a selective targeting mechanism, controlled release, protection of administered drugs, and prolonging the circulation time in the body. In addition, the functionalization of nanoparticles helps to achieve the best possible outcome. One of the most promising applications for nanoparticle-based drug delivery is in the field of onco-hematology, where there are many already approved targeted therapies, such as immunotherapies with monoclonal antibodies targeting specific tumor-associated antigens; however, several patients have experienced relapsed or refractory disease. This review describes the major nanocarriers proposed as new treatments for hematologic cancer, describing the main biological interactions of these nanocarriers and the related limitations of their use as drug delivery strategies.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | | | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
50
|
Fang H, Chen Q. Applications and challenges of biomaterial mediated mRNA delivery. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:428-444. [PMID: 36071982 PMCID: PMC9446159 DOI: 10.37349/etat.2022.00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
With the rapid development of gene therapy technology and the outbreak of coronavirus disease 2019 (COVID-19), messenger RNA (mRNA) therapeutics have attracted more and more attention, and the COVID-19 mRNA vaccine has been approved by the Food and Drug Administration (FDA) for emergency authorization. To improve the delivery efficiency of mRNA in vitro and in vivo, researchers have developed a variety of mRNA carriers and explored different administration routes. This review will systematically introduce the types of mRNA vectors, routes of administration, storage methods, safety of mRNA therapeutics, and the type of diseases that mRNA drugs are applied for. Finally, some suggestions are supplied on the development direction of mRNA therapeutic agents in the future.
Collapse
Affiliation(s)
- Huapan Fang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|