1
|
Wang Y, Zhang R, Zang P, Zhao R, Wu L, Zhu Y, Yang D, Gai S, Yang P. Synergizing Pyroelectric Catalysis and Enzyme Catalysis: Establishing a Reciprocal and Synergistic Model to Enhance Anti-Tumor Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401111. [PMID: 38412487 DOI: 10.1002/adma.202401111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Indexed: 02/29/2024]
Abstract
Nanozyme activity is greatly weakened by the microenvironment and multidrug resistance of tumor cells. Hence, a bi-catalytic nanoplatform, which promotes the anti-tumor activity through "charging empowerment" and "mutual complementation" processes involved in enzymatic and pyroelectric catalysis, by loading ultra-small nanoparticles (USNPs) of pyroelectric ZnSnO3 onto MXene nanozyme (V2CTx nanosheets), is developed. Here, the V2CTx nanosheets exhibit enhanced peroxidase activity by reacting V3+ with H2O2 to generate toxic ·OH, accelerated by the near-infrared (NIR) light mediated heat effect. The resulting V4+ is then converted to V3+ by oxidizing endogenous glutathione (GSH), realizing an enzyme-catalyzed cycle. However, the cycle will lose its persistence once GSH is insufficient; nevertheless, the pyroelectric charges generated by ZnSnO3 USNPs continuously support the V4+/V3+ conversion and ensure nanoenzyme durability. Moreover, the hyperthermia arising from the V2CTx nanosheets by NIR irradiation results in an ideal local temperature gradient for the ZnSnO3 USNPs, giving rise to an excellent pyroelectric catalytic effect by promoting band bending. Furthermore, polarized charges increase the tumor cell membrane permeability and facilitate nanodrug accumulation, thereby resolving the multidrug resistance issue. Thus, the combination of pyroelectric and enzyme catalysis together with the photothermal effect solves the dilemma of nanozymes and improves the antitumor efficiency.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
2
|
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. NANO SELECT 2022. [DOI: 10.1002/nano.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lei Xu
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Department of Ultrasound Medicine Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua Zhejiang 321000 P.R. China
| | - Liting Xie
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
| | - ChengYu Fang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - WenJing Lou
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - Tianan Jiang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province Hangzhou Zhejiang 310000 P.R. China
| |
Collapse
|
3
|
Chen Q, Deng W, He J, Cheng L, Ren PG, Xu Y. Enhancing Drug Utilization Efficiency via Dish-Structured Triboelectric Nanogenerator. Front Bioeng Biotechnol 2022; 10:950146. [PMID: 35875494 PMCID: PMC9298755 DOI: 10.3389/fbioe.2022.950146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the finding of severe side effects and low therapeutic efficacy with cancer chemotherapy, there still remains a great challenge to benefit patients with curative effect. In this work, we designed a self-powered drug delivery system comprising a current source derived from the disk TENG (D-TENG) and a pair of Au electrodes. Thus, cells seeded within the electrode gap could be stimulated by the current followed by D-TENG`s work. Under the rotation frequency of about 7.4 Hz, the peak output current and voltage of the D-TENG reached 3.7 μA and 135 V and achieved an average of 2.8 μA of output current. Furthermore, the D-TENG also showed its good stability to output steady current in a long-term condition. When applying the electric stimulation by this self-powered drug delivery system, a chemotherapy drug, doxorubicin (DOX), had significant uptake by cancer cells. Therefore, utilizing a novel TENG device as a part of chemotherapy would provide a new opportunity in future disease treatment.
Collapse
Affiliation(s)
- Qu Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen International Institute for Biomedical Research, Shenzhen, China
| | - Wenjing Deng
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingjin He
- Shenzhen International Institute for Biomedical Research, Shenzhen, China
| | - Li Cheng
- School of Materials and Energy, Lanzhou University, Lanzhou, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yang Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Yaghoubi A, Ramazani A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J Control Release 2020; 327:198-224. [DOI: 10.1016/j.jconrel.2020.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022]
|
5
|
Golubewa L, Kulahava T, Kunitskaya Y, Bulai P, Shuba M, Karpicz R. Enhancement of single-walled carbon nanotube accumulation in glioma cells exposed to low-strength electric field: Promising approach in cancer nanotherapy. Biochem Biophys Res Commun 2020; 529:647-651. [PMID: 32736687 DOI: 10.1016/j.bbrc.2020.06.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The objective of the study is to determine the patterns of regulation of single-walled carbon nanotube accumulation, distribution, and agglomeration in glioma cells exposed to an external electric field. C6 glioma cells were treated with 5 μg/ml DNA wrapped single-walled carbon nanotubes and exposed to bi-phasic electric pulses (6.6 V/m, 200 Hz, pulse duration 1 ms). Nanotube accumulation was determined by Raman microspectroscopy and their intracellular local concentration was evaluated using the G-band intensity in Raman spectra of single-walled carbon nanotubes. It was revealed that the low-frequency and low-strength electric field stimulation of glioma cells exposed to single-walled carbon nanotubes led to facilitation and, thus, to amplification of nanotube accumulation inside the cells. The number of nanotubes in intracellular agglomerates increased from (28.8 ± 13.1) un./agglom. and (84.0 ± 28.7) un./agglom. in control samples to (60.6 ± 21.4) un./agglom. and (184.2 ± 53.4) un./agglom. for 1 h and 2 h stimulation, respectively. Thus, the tumor exposure to an external electric field makes it possible to more effectively regulate the accumulation and distribution of carbon nanotubes inside glioma cells allowing to reduce the applied therapeutic doses of carbon nanomaterial delivered anticancer drugs.
Collapse
Affiliation(s)
- Lena Golubewa
- Department of Molecular Compounds Physics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania; Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, 220030, Minsk, Belarus.
| | - Tatsiana Kulahava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, 220030, Minsk, Belarus; Department of Biophysics, Belarusian State University, Nezavisimosti ave. 4, 220030, Minsk, Belarus.
| | - Yuliya Kunitskaya
- Department of Biophysics, Belarusian State University, Nezavisimosti ave. 4, 220030, Minsk, Belarus.
| | - Pavel Bulai
- Department of Biophysics, Belarusian State University, Nezavisimosti ave. 4, 220030, Minsk, Belarus.
| | - Mikhail Shuba
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, 220030, Minsk, Belarus; Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia.
| | - Renata Karpicz
- Department of Molecular Compounds Physics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
6
|
Mao Z, Zhang Y, Lu N, Cheng S, Hong R, Liu QH. Carbon Nanotubes Enabling Highly Efficient Cell Apoptosis by Low-Intensity Nanosecond Electric Pulses via Perturbing Calcium Handling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904047. [PMID: 31799810 DOI: 10.1002/smll.201904047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Effective induction of targeted cancer cells apoptosis with minimum side effects has always been the primary objective for anti-tumor therapy. In this study, carbon nanotubes (CNTs) are employed for their unique ability to target tumors and amplify the localized electric field due to the high aspect ratio. Highly efficient and cancer cell specific apoptosis is finally achieved by combining carbon nanotubes with low intensity nanosecond electric pulses (nsEPs). The underlying mechanism may be as follows: the electric field produced by nsEPs is amplified by CNTs, causing an enhanced plasma membrane permeabilization and Ca2+ influx, simultaneously triggering Ca2+ release from intracellular storages to cytoplasm in a direct/indirect manner. All the changes above lead to excessive mitochondrial Ca2+ uptake. Substructural damage and obvious mitochondria membrane potential depolarization are caused subsequently with the combined action of numerously reactive oxygen species production, ultimately initiating the apoptotic process through the translocation of cytochrome c to the cytoplasm and activating apoptotic markers including caspase-9 and -3. Thus, the combination of nanosecond electric field with carbon nanotubes can actually promote HCT116 cell death via mitochondrial signaling pathway-mediated cell apoptosis. These results may provide a new and highly efficient strategy for cancer therapy.
Collapse
Affiliation(s)
- Zheng Mao
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Nan Lu
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Shun Cheng
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Ronghan Hong
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Qing Huo Liu
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
7
|
Zhang Y, Mao Z, Wang B, Zhang J, Lu N, Hong R, Dong S, Yao C, Liu QH. Enhanced Antitumor Efficacy Achieved Through Combination of nsPEFs and Low-Dosage Paclitaxel. IEEE Trans Biomed Eng 2019; 66:3129-3135. [PMID: 30794505 DOI: 10.1109/tbme.2019.2900720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Looking for a safe and effective cancer therapy for patients is becoming an important and promising research direction. Nanosecond pulsed electric field (nsPEF) has been found to be a potential non-thermal therapeutic technique with few side effects in pre-clinical studies. On the other hand, paclitaxel (PTX), as a common chemotherapeutic agent, shows full anti-tumor activities and is used to treat a wide variety of cancers. However, the delivery of PTX is challenging due to its poor aqueous solubility. Hence, high dosages of PTX have been used to achieve effective treatment, which creates some side effects. In this study, nsPEF was combined with low-level PTX, in order to validate if this combined treatment could bring about enhanced efficacy and allow reduced doses of PTX in clinical application. Cell proliferation, apoptosis, and cell cycle distribution were examined using MTT and flow cytometry assay, respectively. Results showed that combination treatments of nsPEF and PTX exhibited significant synergistic effects in vitro. The underlying mechanism might be that these two agents acted at different targets and coordinately enhanced MDA-MB-231 cell death.
Collapse
|
8
|
Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2018; 119:1666-1762. [DOI: 10.1021/acs.chemrev.8b00401] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Laboratory of Fiber Materials and Modern Textiles, Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Di Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Sulheim E, Kim J, van Wamel A, Kim E, Snipstad S, Vidic I, Grimstad IH, Widerøe M, Torp SH, Lundgren S, Waxman DJ, de Lange Davies C. Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models. J Control Release 2018; 279:292-305. [PMID: 29684498 PMCID: PMC5972071 DOI: 10.1016/j.jconrel.2018.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Preclinical research has demonstrated that nanoparticles and macromolecules can accumulate in solid tumors due to the enhanced permeability and retention effect. However, drug loaded nanoparticles often fail to show increased efficacy in clinical trials. A better understanding of how tumor heterogeneity affects nanoparticle accumulation could help elucidate this discrepancy and help in patient selection for nanomedicine therapy. Here we studied five human tumor models with varying morphology and evaluated the accumulation of 100 nm polystyrene nanoparticles. Each tumor model was characterized in vivo using micro-computed tomography, contrast-enhanced ultrasound and diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging. Ex vivo, the tumors were sectioned for both fluorescence microscopy and histology. Nanoparticle uptake and distribution in the tumors were generally heterogeneous. Density of functional blood vessels measured by fluorescence microscopy correlated significantly (p = 0.0056) with nanoparticle accumulation and interestingly, inflow of microbubbles measured with ultrasound also showed a moderate but significant (p = 0.041) correlation with nanoparticle accumulation indicating that both amount of vessels and vessel morphology and perfusion predict nanoparticle accumulation. This indicates that blood vessel characterization using contrast-enhanced ultrasound imaging or other methods could be valuable for patient stratification for treatment with nanomedicines.
Collapse
Affiliation(s)
- Einar Sulheim
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway.
| | - Jana Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Annemieke van Wamel
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eugene Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Igor Vidic
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingeborg Hovde Grimstad
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Sverre H Torp
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Trondheim, Norway; Department of Pathology, St. Olav's University Hospital, Trondheim, Norway
| | - Steinar Lundgren
- Department of Oncology, St. Olav's University Hospital, Trondheim, Norway; Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Trondheim, Norway
| | - David J Waxman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Catharina de Lange Davies
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
10
|
Intracellular trafficking and therapeutic outcome of multiwalled carbon nanotubes modified with cyclodextrins and polyethylenimine. Colloids Surf B Biointerfaces 2018; 163:55-63. [DOI: 10.1016/j.colsurfb.2017.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/23/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
11
|
Guillet J, Flahaut E, Golzio M. A Hydrogel/Carbon‐Nanotube Needle‐Free Device for Electrostimulated Skin Drug Delivery. Chemphyschem 2017; 18:2715-2723. [DOI: 10.1002/cphc.201700517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jean‐François Guillet
- CIRIMATUniversité de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT 118 route de Narbonne 31062 Toulouse cedex 9 France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UPS, CNRS, UMR 5089; BP 82164 205 route de Narbonne 31077 Toulouse cedex 4 France
| | - Emmanuel Flahaut
- CIRIMATUniversité de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT 118 route de Narbonne 31062 Toulouse cedex 9 France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UPS, CNRS, UMR 5089; BP 82164 205 route de Narbonne 31077 Toulouse cedex 4 France
| |
Collapse
|
12
|
Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1603524. [PMID: 28824357 PMCID: PMC5560626 DOI: 10.1002/adfm.201603524] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i.e. theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers and targeted delivery of therapeutic drugs. Here, we discuss some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The needs for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research in the near future.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| |
Collapse
|
13
|
Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017; 5:901-952. [DOI: 10.1039/c7bm00008a] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review deals with four different types of carbon allotrope based nanosystems and summarizes the results of recent studies that are likely to have applications in cancer theranostics. We discuss the applications of these nanosystems for cancer imaging, drug delivery, hyperthermia, and PDT/TA/PA.
Collapse
Affiliation(s)
- Shine Augustine
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Jay Singh
- Department of Applied Chemistry & Polymer Technology
- Delhi Technological University
- Delhi 110042
- India
| | - Manish Srivastava
- Department of Physics & Astrophysics
- University of Delhi
- Delhi 110007
- India
| | - Monica Sharma
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Asmita Das
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Bansi D. Malhotra
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| |
Collapse
|
14
|
Lee PC, Lin CY, Peng CL, Shieh MJ. Development of a controlled-release drug delivery system by encapsulating oxaliplatin into SPIO/MWNT nanoparticles for effective colon cancer therapy and magnetic resonance imaging. Biomater Sci 2016; 4:1742-1753. [DOI: 10.1039/c6bm00444j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The development of a controlled-release drug delivery system has been an important objective for cancer therapy.
Collapse
Affiliation(s)
- Pei-Chi Lee
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei 100
- China
| | - Chien-Yu Lin
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei 100
- China
| | - Cheng-Liang Peng
- Isotope Application Division
- Institute of Nuclear Energy Research
- Taoyuan 325
- China
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei 100
- China
| |
Collapse
|