1
|
Ding Y, Chen R, Zhou J, Bao Y, Meng N, Zheng X, Yang S, Lu J, Jiang Z, Liu Y, Xie C, Lu L, Lu W. All-stage targeted nanodiscs for glioma treatment by inducing cuproptosis and apoptosis of cancer cells and cancer stem cells. Asian J Pharm Sci 2025; 20:101010. [PMID: 40182135 PMCID: PMC11964743 DOI: 10.1016/j.ajps.2024.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 04/05/2025] Open
Abstract
There remain several intractable challenges for chemotherapy in glioma treatment, including the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), and tumor heterogeneity caused by cancer stem cells (CSCs), which are resistant to conventional chemotherapy. Here, we established a nano strategy to kill glioma cells and CSCs, combining carfilzomib and bis(diethyldithiocarbamate)copper. The synergistic drug combination disturbed cell protein metabolism at different stages and induced apoptosis and cuproptosis. The Y-shaped targeting ligand pHA-VAP-modified nanodiscs were designed to help the chemotherapeutic agents cross the BBB/BBTB and finally accumulate in tumor site. This all-stage targeting and all-stage treatment nanomedicine significantly prolonged the survival in glioma-bearing mice and might inspire the rational design of advanced drug delivery platforms.
Collapse
Affiliation(s)
- Yuan Ding
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Ruohan Chen
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jianfen Zhou
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yanning Bao
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Nana Meng
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Xudong Zheng
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Shengmin Yang
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jiasheng Lu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Zhixuan Jiang
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yu Liu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Cao Xie
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
2
|
Tang S, Han EL, Mitchell MJ. Peptide-functionalized nanoparticles for brain-targeted therapeutics. Drug Deliv Transl Res 2025:10.1007/s13346-025-01840-w. [PMID: 40164912 DOI: 10.1007/s13346-025-01840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Despite the rapid development of nanoparticle (NP)-based drug delivery systems, intravenous delivery of drugs to the brain remains a major challenge due to various biological barriers. To achieve therapeutic effects, NP-encapsulated drugs must avoid accumulation in off-target organs and selectively deliver to the brain, successfully cross the blood-brain barrier (BBB), and reach the target cells in the brain. Conjugating receptor-specific ligands to the surface of NPs is a promising technique for engineering NPs to overcome these barriers. Specifically, peptides as brain-targeting ligands have been of increasing interest given their ease of synthesis, low cytotoxicity, and strong affinity to target proteins. The success of peptides as targeting ligands is largely due to the diverse strategies of designing and modifying peptides with favorable properties, including membrane permeability and multi-receptor targeting. Here, we review the design and implementation of peptide-functionalized NP systems for neurological disease applications. We also explore advances in rational peptide design strategies for brain targeting, including using generative deep-learning models to computationally design new peptides.
Collapse
Affiliation(s)
- Sophia Tang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily L Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Prades R, Teixidó M, Oller-Salvia B. New Trends in Brain Shuttle Peptides. Mol Pharm 2025; 22:1100-1109. [PMID: 39899901 PMCID: PMC11881811 DOI: 10.1021/acs.molpharmaceut.4c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
The pharmacological treatment of central nervous system diseases faces significant challenges due to the presence of the blood-brain barrier (BBB). This barrier naturally protects the brain and prevents therapeutics from reaching their targets efficiently. However, the BBB allows the passage of nutrients and other molecules that guarantee brain homeostasis through selective transport mechanisms present at the BBB. These mechanisms provide an opportunity for delivering therapeutic agents into the central nervous system using brain shuttles. Here we review the progress of brain shuttle peptide development from 2015 until 2025. We highlight the most utilized peptides and describe trends in strategies to develop new shuttles and enhance their transport efficiency. Additionally, we compared them with other types of brain shuttles and emphasize the progress of peptide shuttles toward clinical translation.
Collapse
Affiliation(s)
- Roger Prades
- Accure
Therapeutics, Barcelona
Science Park 08028 Barcelona, Spain
| | | | - Benjamí Oller-Salvia
- Institut
Químic de Sarrià (IQS), Universitat
Ramon Llull, 08017 Barcelona, Spain
| |
Collapse
|
4
|
Li H, Xu D, Cai W, Liu J, Bing Z, Zhang Q. PEGylated Nanoliposomal Doxorubicin Conjugated with Specific TREM2 Peptides for Glioma-Targeting Therapy. Adv Healthc Mater 2025; 14:e2403096. [PMID: 39711286 DOI: 10.1002/adhm.202403096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/12/2024] [Indexed: 12/24/2024]
Abstract
PEGylated liposomes can deliver anti-cancer drugs to brain tumors, and achieve enhanced permeability and retention effects. Triggering receptor expressed on myeloid cells 2 (TREM2) is an excellent biomarker for precise therapy of glioma. The present study is aimed at designing PEGylated nanoliposomal doxorubicin (PLD) conjugated with peptides targeting TREM2 for glioma-targeting therapy. The specific peptides are designed with the Rosetta Peptiderive Protocol. Schrodinger's peptide-specific version of Glide is used for molecular docking. PLD modified with peptides (peptide-PLD) are engineered and prepared. Cell cycle, apoptosis, cell invasion and migration, cell viability, and colony-formation assays are performed to analyze glioma cell functions. The anti-tumor effects of peptide-PLD are validated in an intracranial U87-MG cells orthotopic glioma model. The targeting peptides HLRKLRKR and LRKLRLRL showed specific affinity for TREM2 and better cellular uptake in U87-MG cells. PLD with peptide modification demonstrated stable doxorubicin loading, small sizes (<60 nm), and enrichment in the mouse brain. Peptide-PLD treatment inhibited the Akt/GSK3β/β-catenin pathway, thereby inhibiting cell invasion and migration, and colony-forming ability in U87-MG cells. The peptide modification of PLD achieved better suppression of glioma development than PLD. Overall, TREM2-targeting peptides are successfully designed, and peptide-PLD served as a potent drug delivery carrier for glioma-targeting therapy.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Gansu Provincial Isotope Laboratory, Lanzhou, 730300, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Duling Xu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Weihua Cai
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiadi Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Zhitong Bing
- Department of Computational Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiyue Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Jing L, Du J, Dong Y, Li L, Tang Z, Liu X, Zhong Y, Yuan M. Targeted delivery strategy of indocyanine green-mitoxantrone loaded liposomes co-modified with BTP-7 and BR2 for the treatment of glioma. Pharm Dev Technol 2025; 30:90-100. [PMID: 39745268 DOI: 10.1080/10837450.2024.2448619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVE This study aims to develop a dual-ligand-modified targeted drug delivery system by integrating photosensitizers and chemotherapeutic drugs to enhance anti-glioma effects. The system is designed to overcome the blood-brain barrier (BBB) that hinders effective drug delivery, increase drug accumulation in glioma cells, and thereby enhance therapeutic efficacy. METHODS Liposomes were prepared using the film dispersion-ammonium sulfate gradient technique, co-loading the photosensitizer indocyanine green (ICG) and the chemotherapeutic drug mitoxantrone (MTO). The conjugation of BTP-7 and BR2 to the liposome surface was achieved using an organic phase reaction method. The stability, dispersibility, particle size, and potential of the modified liposomes were tested. Their ability to penetrate the BBB and accumulate in glioma was evaluated in BBB models and cellular uptake studies. Additionally, the anti-tumor activity of this combination approach was assessed. RESULTS The resulting liposomes demonstrated significant stability and dispersibility, with an average particle size of 142.3 ± 1.8 nm and a potential of -17.6 mV. BBB model and cellular uptake studies indicated that BTP-7/BR2-ICG/MTO-LP could not only penetrate the BBB but also accumulate in glioma, leading to glioma cell necrosis. The anti-tumor activity evaluation showed that this combination approach exhibited a strong tumor-suppressing effect. CONCLUSION The dual-ligand-modified liposomes developed in this study can penetrate the blood-brain barrier and achieve targeted drug delivery in glioma therapy. The combination of BTP-7 and BR2 not only enhances the carrier's penetration ability but also increases intracellular drug accumulation, thereby improving therapeutic efficacy. This novel therapeutic approach, which combines chemotherapy and photothermal response via dual-ligand-modified liposomes delivered to the tumor site, demonstrates the potential to reduce drug-related side effects and improve treatment outcomes.
Collapse
Affiliation(s)
- Lin Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Jingguo Du
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yichao Dong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Lili Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Zijun Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Xu Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yonglong Zhong
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Li R, Yuan H, Zhang C, Han D, Wang Y, Feng L. Induced Ferroptosis Pathway by Regulating Cellular Lipid Peroxidation With Peroxynitrite Generator for Reversing "Cold" Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404807. [PMID: 39279600 DOI: 10.1002/smll.202404807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Overcoming the resistance of tumor cells to apoptosis and immunosuppression is an important challenge to improve tumor immunotherapy. Non-apoptotic death mode of ferroptosis has been regarded as a new strategy to enhance tumor immunotherapy against drug-resistant cancers. The lethal accumulation of lipid peroxides (LPO) determines the progress of ferroptosis. The high susceptibleness of ferroptosis provides an opportunity for combating triple-negative breast cancer. Reactive nitrogen species (RNS) produced by nitric oxide (NO) and reactive oxygen species (ROS) is more lethal than ROS for tumor cells. Herein, an RNS-mediated immunotherapy strategy for inducing ferroptosis pathway is proposed by improving LPO accumulation, and constructed a multifunctional liposome (Lipo-MT-SNAP) comprised of peroxynitrite (ONOO-) generator, tumor targeted group, inhibiting glutathione peroxidase 4 (GPX4), and basic units (dipalmitoyl phosphatidylcholine and cholesterol). The significant enhancement of LPO resulted from the intense oxidative damage of ONOO- impaired synthesis of GPX4 by depleting glutathione, which further amplified ferroptosis and triggered immunogenic cell death. In vivo, RNS-mediated photoimmunotherapy can promote polarization of M2 to M1 macrophages and dendritic cells maturation, further infiltrate T cells, regulate the secretion of inflammatory factors, and reprogram the tumor microenvironment. The powerful RNS-mediated ferroptosis induces strong immunogenicity and effectively inhibit tumor proliferation.
Collapse
Affiliation(s)
- Ruipeng Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Haitao Yuan
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, 518020, P. R. China
| | - Chuangxin Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Dong Han
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan, 030012, China
| |
Collapse
|
7
|
Li L, Jing L, Tang Z, Du J, Zhong Y, Liu X, Yuan M. Dual-targeting liposomes modified with BTP-7 and pHA for combined delivery of TCPP and TMZ to enhance the anti-tumour effect in glioblastoma cells. J Microencapsul 2024; 41:419-433. [PMID: 38989705 DOI: 10.1080/02652048.2024.2376114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
AIM To construct a novel nano-carrier with dual ligands to achieve superior anti-tumour efficacy and lower toxic side effects. METHODS Liposomes were prepared by thin film hydration method. Ultraviolet, high performance liquid chromatography, nano-size analyser, ultrafiltration centrifugation, dialysis, transmission electron microscope, flow cytometry, Cell Counting Kit-8, confocal laser scanning microscopy, transwell, and tumorsphere assay were used to study the characterisations, cytotoxicity, and in vitro targeting of dg-Bcan targeting peptide (BTP-7)/pHA-temozolomide (TMZ)/tetra(4-carboxyphenyl)porphyrin (TCPP)-Lip. RESULTS BTP-7/pHA-TMZ/TCPP-Lip was a spheroid with a mean diameters of 143 ± 3.214 nm, a polydispersity index of 0.203 ± 0.025 and a surface charge of -22.8 ± 0.425 mV. The drug loadings (TMZ and TCPP) are 7.40 ± 0.23% and 2.05 ± 0.03% (mg/mg); and the encapsulation efficiencies are 81.43 ± 0.51% and 84.28 ± 1.64% (mg/mg). The results showed that BTP-7/pHA-TMZ/TCPP-Lip presented enhanced targeting and cytotoxicity. CONCLUSION BTP-7/pHA-TMZ/TCPP-Lip can specifically target the tumour cells to achieve efficient drug delivery, and improve the anti-tumour efficacy and reduces the systemic toxicity.
Collapse
Affiliation(s)
- Lili Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Lin Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Zijun Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Jingguo Du
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yonglong Zhong
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Xu Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Ding Y, Xu Q, Chai Z, Wu S, Xu W, Wang J, Zhou J, Luo Z, Liu Y, Xie C, Lu L, Lu W. All-stage targeted red blood cell membrane-coated docetaxel nanocrystals for glioma treatment. J Control Release 2024; 369:325-334. [PMID: 38565395 DOI: 10.1016/j.jconrel.2024.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Challenges for glioma treatment with nanomedicines include physio-anatomical barriers (the blood-brain barrier and blood-brain tumor barrier), low drug loading capacity, and limited circulation time. Here, a red blood cell membrane-coated docetaxel drug nanocrystal (pV-RBCm-NC(DTX)), modified with pHA-VAP (pV) for all-stage targeting of glioma, was designed. The NC(DTX) core exhibited a high drug loading capacity but low in vivo stability, and the RBCm coating significantly enhanced the stability and prolonged in vivo circulation. Moreover, the Y-shaped targeting ligand pV was modified by a mild avidin-biotin interaction, which endowed RBCm-NC(DTX) with superior barrier-crossing ability and therapeutic efficacy. The integration of nanocrystal technology, cell membrane coating, and the avidin-biotin insertion method into this active targeting biomimetic formulation represents a promising drug delivery strategy for glioma.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Zhilan Chai
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd., Shanghai, 201314, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd., Shanghai, 201314, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
9
|
Mondal S, Ghosh S. Liposome-Mediated Anti-Viral Drug Delivery Across Blood-Brain Barrier: Can Lipid Droplet Target Be Game Changers? Cell Mol Neurobiol 2023; 44:9. [PMID: 38123863 PMCID: PMC11407177 DOI: 10.1007/s10571-023-01443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.
Collapse
Affiliation(s)
- Sourav Mondal
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sourish Ghosh
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
10
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
11
|
Abstract
Primary brain cancer or brain cancer is the overgrowth of abnormal or malignant cells in the brain or its nearby tissues that form unwanted masses called brain tumors. People with malignant brain tumors suffer a lot, and the expected life span of the patients after diagnosis is often only around 14 months, even with the most vigorous therapies. The blood-brain barrier (BBB) is the main barrier in the body that restricts the entry of potential chemotherapeutic agents into the brain. The chances of treatment failure or low therapeutic effects are some significant drawbacks of conventional treatment methods. However, recent advancements in nanotechnology have generated hope in cancer treatment. Nanotechnology has shown a vital role starting from the early detection, diagnosis, and treatment of cancer. These tiny nanomaterials have great potential to deliver drugs across the BBB. Beyond just drug delivery, nanomaterials can be simulated to generate fluorescence to detect tumors. The current Review discusses in detail the challenges of brain cancer treatment and the application of nanotechnology to overcome those challenges. The success of chemotherapeutic treatment or the surgical removal of tumors requires proper imaging. Nanomaterials can provide imaging and therapeutic benefits for cancer. The application of nanomaterials in the diagnosis and treatment of brain cancer is discussed in detail by reviewing past studies.
Collapse
Affiliation(s)
- Yogita Ale
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
12
|
Wu Y, Qian Y, Peng W, Qi X. Functionalized nanoparticles crossing the brain-blood barrier to target glioma cells. PeerJ 2023; 11:e15571. [PMID: 37426416 PMCID: PMC10327649 DOI: 10.7717/peerj.15571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioma is the most common tumor of the central nervous system (CNS), with a 5-year survival rate of <35%. Drug therapy, such as chemotherapeutic and immunotherapeutic agents, remains one of the main treatment modalities for glioma, including temozolomide, doxorubicin, bortezomib, cabazitaxel, dihydroartemisinin, immune checkpoint inhibitors, as well as other approaches such as siRNA, ferroptosis induction, etc. However, the filter function of the blood-brain barrier (BBB) reduces the amount of drugs needed to effectively target CNS tumors, making it one of the main reasons for poor drug efficacies in glioma. Thus, finding a suitable drug delivery platform that can cross the BBB, increase drug aggregation and retainment in tumoral areas and avoid accumulation in non-targeted areas remains an unsolved challenge in glioma drug therapy. An ideal drug delivery system for glioma therapy should have the following features: (1) prolonged drug life in circulation and effective penetration through the BBB; (2) adequate accumulation within the tumor (3) controlled-drug release modulation; (4) good clearance from the body without significant toxicity and immunogenicity, etc. In this regard, due to their unique structural features, nanocarriers can effectively span the BBB and target glioma cells through surface functionalization, providing a new and effective strategy for drug delivery. In this article, we discuss the characteristics and pathways of different nanocarriers for crossing the BBB and targeting glioma by listing different materials for drug delivery platforms, including lipid materials, polymers, nanocrystals, inorganic nanomaterials, etc.
Collapse
Affiliation(s)
- Yongyan Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| | - Wei Peng
- Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Dissanayake R, Towner R, Ahmed M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers (Basel) 2023; 15:2906. [PMID: 37296869 PMCID: PMC10251990 DOI: 10.3390/cancers15112906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Metastases of breast cancer (BC) are often referred to as stage IV breast cancer due to their severity and high rate of mortality. The median survival time of patients with metastatic BC is reduced to 3 years. Currently, the treatment regimens for metastatic BC are similar to the primary cancer therapeutics and are limited to conventional chemotherapy, immunotherapy, radiotherapy, and surgery. However, metastatic BC shows organ-specific complex tumor cell heterogeneity, plasticity, and a distinct tumor microenvironment, leading to therapeutic failure. This issue can be successfully addressed by combining current cancer therapies with nanotechnology. The applications of nanotherapeutics for both primary and metastatic BC treatments are developing rapidly, and new ideas and technologies are being discovered. Several recent reviews covered the advancement of nanotherapeutics for primary BC, while also discussing certain aspects of treatments for metastatic BC. This review provides comprehensive details on the recent advancement and future prospects of nanotherapeutics designed for metastatic BC treatment, in the context of the pathological state of the disease. Furthermore, possible combinations of current treatment with nanotechnology are discussed, and their potential for future transitions in clinical settings is explored.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Rheal Towner
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
14
|
Miao YB, Zhao W, Renchi G, Gong Y, Shi Y. Customizing delivery nano-vehicles for precise brain tumor therapy. J Nanobiotechnology 2023; 21:32. [PMID: 36707835 PMCID: PMC9883977 DOI: 10.1186/s12951-023-01775-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023] Open
Abstract
Although some tumor has become a curable disease for many patients, involvement of the central nervous system (CNS) is still a major concern. The blood-brain barrier (BBB), a special structure in the CNS, protects the brain from bloodborne pathogens via its excellent barrier properties and hinders new drug development for brain tumor. Recent breakthroughs in nanotechnology have resulted in various nanovehicless (NPs) as drug carriers to cross the BBB by different strategys. Here, the complex compositions and special characteristics of causes of brain tumor formation and BBB are elucidated exhaustively. Additionally, versatile drug nanovehicles with their recent applications and their pathways on different drug delivery strategies to overcome the BBB obstacle for anti-brain tumor are briefly discussed. Customizing nanoparticles for brain tumor treatments is proposed to improve the efficacy of brain tumor treatments via drug delivery from the gut to the brain. This review provides a broad perspective on customizing delivery nano-vehicles characteristics facilitate drug distribution across the brain and pave the way for the creation of innovative nanotechnology-based nanomaterials for brain tumor treatments.
Collapse
Affiliation(s)
- Yang-Bao Miao
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Wang Zhao
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Gao Renchi
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Ying Gong
- grid.263901.f0000 0004 1791 7667School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China ,grid.9227.e0000000119573309Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, 610072 Sichuan China ,grid.410646.10000 0004 1808 0950Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| |
Collapse
|
15
|
Luo Z, Wu S, Zhou J, Xu W, Xu Q, Lu L, Xie C, Liu Y, Lu W. All-stage targeted therapy for the brain metastasis from triple-negative breast cancer. Acta Pharm Sin B 2023; 13:359-371. [PMID: 36815053 PMCID: PMC9939358 DOI: 10.1016/j.apsb.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/27/2022] Open
Abstract
Brain metastasis is a common and serious complication of breast cancer, which is commonly associated with poor survival and prognosis. In particular, the treatment of brain metastasis from triple-negative breast cancer (BM-TNBC) has to face the distinct therapeutic challenges from tumor heterogeneity, circulating tumor cells (CTCs), blood-brain barrier (BBB) and blood-tumor barrier (BTB), which is in unmet clinical needs. Herein, combining with the advantages of synthetic and natural targeting moieties, we develop a "Y-shaped" peptide pVAP-decorated platelet-hybrid liposome drug delivery system to address the all-stage targeted drug delivery for the whole progression of BM-TNBC. Inherited from the activated platelet, the hybrid liposomes still retain the native affinity toward CTCs. Further, the peptide-mediated targeting to breast cancer cells and transport across BBB/BTB are demonstrated in vitro and in vivo. The resultant delivery platform significantly improves the drug accumulation both in orthotopic breast tumors and brain metastatic lesions, and eventually exhibits an outperformance in the inhibition of BM-TNBC compared with the free drug. Overall, this work provides a promising prospect for the comprehensive treatment of BM-TNBC, which could be generalized to other cell types or used in imaging platforms in the future.
Collapse
Affiliation(s)
- Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China,Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China,Corresponding author.
| |
Collapse
|
16
|
Wu H, Liu Y, Chen L, Wang S, Liu C, Zhao H, Jin M, Chang S, Quan X, Cui M, Wan H, Gao Z, Huang W. Combined Biomimetic MOF-RVG15 Nanoformulation Efficient Over BBB for Effective Anti-Glioblastoma in Mice Model. Int J Nanomedicine 2022; 17:6377-6398. [PMID: 36545220 PMCID: PMC9762271 DOI: 10.2147/ijn.s387715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The blood-brain barrier (BBB) is a key obstacle to the delivery of drugs into the brain. Therefore, it is essential to develop an advanced drug delivery nanoplatform to solve this problem. We previously screened a small rabies virus glycoprotein 15 (RVG15) peptide with 15 amino acids and observed that most of the RVG15-modified nanoparticles entered the brain within 1 h of administration. The high BBB penetrability gives RVG15 great potential for brain-targeted drug delivery systems. Moreover, a multifunctional integrated nanoplatform with a high drug-loading capacity, tunable functionality, and controlled drug release is crucial for tumor treatment. Zeolitic imidazolate framework (ZIF-8) is a promising nanodrug delivery system. Methods Inspired by the biomimetic concept, we designed RVG15-coated biomimetic ZIF-8 nanoparticles (RVG15-PEG@DTX@ZIF-8) for docetaxel (DTX) delivery to achieve efficient glioblastoma elimination in mice. This bionic nanotherapeutic system was prepared by one-pot encapsulation, followed by coating with RVG15-PEG conjugates. The size, morphology, stability, drug-loading capacity, and release of RVG15-PEG@DTX@ZIF-8 were thoroughly investigated. Additionally, we performed in vitro evaluation, cell uptake capacity, BBB penetration, and anti-migratory ability. We also conducted an in vivo evaluation of the biodistribution and anti-glioma efficacy of this bionic nanotherapeutic system in a mouse mode. Results In vitro studies showed that, this bionic nanotherapeutic system exhibited excellent targeting efficiency and safety in HBMECs and C6 cells and high efficiency in crossing the BBB. Furthermore, the nanoparticles cause rapid DTX accumulation in the brain, allowing deeper penetration into glioma tumors. In vivo antitumor assay results indicated that RVG15-PEG@DTX@ZIF-8 significantly inhibited glioma growth and metastasis, thereby improving the survival of tumor-bearing mice. Conclusion Our study demonstrates that our bionic nanotherapeutic system using RVG15 peptides is a promising and powerful tool for crossing the BBB and treating glioblastoma.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, People’s Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, People’s Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Mingji Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, People’s Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Shuangyan Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Xiuquan Quan
- Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin Province, 133000, People’s Republic of China
| | - Minhu Cui
- Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin Province, 133000, People’s Republic of China
| | - Hongshuang Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin Province, 133000, People’s Republic of China
| | - Zhonggao Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, People’s Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| |
Collapse
|
17
|
Liu Y, Yao T, Ren L, Yuan B. Size effect of liposomes on centimeter-deep ultrasound-switchable fluorescence imaging and ultrasound-controlled release. J Mater Chem B 2022; 10:8970-8980. [PMID: 36285768 PMCID: PMC9670236 DOI: 10.1039/d2tb01343f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Liposomes have been widely used in both medical imaging and drug delivery fields due to their excellent biocompatibility and easy surface modification. Recently our lab reported for the first-time the implementation of temperature-sensitive and indocyanine green (ICG)-encapsulated liposome microparticles for in vivo ultrasound-switchable fluorescence (USF) imaging. A previous study showed that liposome microparticles achieved USF imaging in centimeter-deep tissue. This study aimed to control the size of liposomes at the nanoscale and study the size effect on the USF imaging depth. Also, we explored the feasibility of combining USF imaging with ultrasound-controlled release. Liposomes were synthesized via the hydration method and the size was controlled by an extruding process. Characterization parameters, including fluorescence profile, spectra, size, stability, encapsulation efficiency, and ultrasound-controlled release, were evaluated. USF imaging in blood serum was conducted successfully in a phantom model, and an imaging depth study was conducted at 1.0 cm and 2.5 cm and confirmed that nano-sized liposomes had a stronger USF signal than micron-sized liposomes. Additionally, releasing tests indicated that both ultrasound power and exposure time affected the release efficiency in that increasing the power and extending the exposure time led to higher release efficiency. Above all, this study shows the potential for using liposomes for USF imaging and ultrasound-controlled release.
Collapse
Affiliation(s)
- Yang Liu
- Department of Bioengineering, The University of Texas at Arlington, TX 76010, USA. Joint Biomedical Engineering Program, The University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Tingfeng Yao
- Department of Bioengineering, The University of Texas at Arlington, TX 76010, USA. Joint Biomedical Engineering Program, The University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Liqin Ren
- Department of Bioengineering, The University of Texas at Arlington, TX 76010, USA. Joint Biomedical Engineering Program, The University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Baohong Yuan
- Department of Bioengineering, The University of Texas at Arlington, TX 76010, USA. Joint Biomedical Engineering Program, The University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| |
Collapse
|
18
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
19
|
Veerabathiran R, Mohammed V, Kalarani IB. Nanomedicine in Neuroscience: An Application Towards the Treatment of Various Neurological Diseases. CURRENT NANOMEDICINE 2022; 12:84-92. [DOI: 10.2174/2468187312666220516144008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2023]
Abstract
Absatract:The effectiveness, cell viability, and selective delivery of medications and diagnostic substances to target organs, tissues, and organs are typical concerns in the care and prognosis of many illnesses. Neurological diseases pose complex challenges, as cerebral targeting represents a yet unresolved challenge in pharmacotherapy, owing to the blood-brain boundary, a densely com-pacted membrane of endothelial cells that prohibits undesired chemicals from reaching the brain. Engineered nanoparticles, with dimensions ranging from 1 to 100 nm, provide intriguing biomedi-cal techniques that may allow for resolving these issues, including the ability to cross the blood-brain barrier. It has substantially explored nanoparticles in the previous century, contributing to sub-stantial progress in biomedical studies and medical procedures. Using many synthesized nanoparti-cles on the molecular level has given many potential gains in various domains of regenerative medi-cine, such as illness detection, cascaded cell treatment, tissue regeneration, medication, and gene editing. This review will encapsulate the novel developments of nanostructured components used in neurological diseases with an emphasis on the most recent discoveries and forecasts for the future of varied biological nanoparticles for tissue repair, drug inventions, and the synthesizing of the deliv-ery mechanism.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| |
Collapse
|
20
|
Wu S, Lu L, Zhou J, Ran D, Wang S, Xu Q, Xu W, Wang J, Liu Y, Xie C, Luo Z, Lu W. All-stage targeted therapy for glioblastoma based on lipid membrane coated cabazitaxel nanocrystals. J Control Release 2022; 345:685-695. [PMID: 35346767 DOI: 10.1016/j.jconrel.2022.03.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor with poor prognosis and frequent recurrence. The blood-brain barrier (BBB), blood-brain tumor barrier (BBTB) hinder the entry of therapeutics into the glioma region. Vasculogenic mimicry (VM) formed by invasive glioma cells is also related to recurrence of GBM. VAP is a D-peptide ligand of GRP78 protein overexpressed on BBTB, VM, and glioma cells but not on normal tissues. Besides, p-hydroxybenzoic acid (pHA) can effectively traverse the BBB. Herein we developed an all-stage glioma-targeted cabazitaxel (CBZ) nanocrystal loaded liposome modified with a "Y" shaped targeting ligand composed of pHA and VAP (pV-Lip/cNC). The pure drug nanocrystal core provided high drug loading, while lipid membrane promoted the stability and circulation time. pV-Lip/cNC exhibited excellent glioma homing, barriers crossing, and tumor spheroid penetrating capability in vitro. Treatment of pV-Lip/cNC displayed enhanced CBZ accumulation in glioma and anti-glioma effect with a median survival time (53 days) significantly longer than that of cNC loaded liposomes modified with either single ligand (42 days for VAP and 45 days for pHA) in the murine orthotopic GBM model. These results indicated pV-Lip/cNC could traverse the BBB and BBTB, destruct VM, and finally kill glioma cells to realize all-stage glioma therapy.
Collapse
Affiliation(s)
- Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Linwei Lu
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Danni Ran
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Songli Wang
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China; Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
21
|
Farshbaf M, Mojarad-Jabali S, Hemmati S, Khosroushahi AY, Motasadizadeh H, Zarebkohan A, Valizadeh H. Enhanced BBB and BBTB penetration and improved anti-glioma behavior of Bortezomib through dual-targeting nanostructured lipid carriers. J Control Release 2022; 345:371-384. [PMID: 35301054 DOI: 10.1016/j.jconrel.2022.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 12/19/2022]
Abstract
The effective treatment of glioma through conventional chemotherapy is proved to be a great challenge in clinics. The main reason is due to the existence of two physiological and pathological barriers respectively including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) that prevent most of the chemotherapeutics from efficient delivery to the brain tumors. To address this challenge, an ideal drug delivery system would efficiently traverse the BBB and BBTB and deliver the therapeutics into the glioma cells with high selectivity. Herein, a targeted delivery system was developed based on nanostructured lipid carriers (NLCs) modified with two proteolytically stable D-peptides, D8 and RI-VAP (Dual NLCs). D8 possesses high affinity towards nicotine acetylcholine receptors (nAChRs), overexpressed on brain capillary endothelial cells (BCECs), and can penetrate through BBB with high efficiency. RI-VAP is a specific ligand of cell surface GRP78 (csGRP78), a specific angiogenesis and cancer cell-surface marker, capable of circumventing the BBTB with superior glioma-homing property. Dual NLCs could internalize into BCECs, tumor neovascular endothelial cells, and glioma cells with high specificity and could penetrate through in vitro BBB and BBTB models with excellent efficiency compared to non-targeted or mono-targeted NLCs. In vivo whole-animal imaging and ex vivo imaging further confirmed the superior targeting capability of Dual NLCs towards intracranial glioma. When loaded with Bortezomib (BTZ), Dual NLCs attained the highest therapeutic efficiency by means of in vitro cytotoxicity and apoptosis and prolonged survival rate and anti-glioma behavior in intracranial glioma bearing mice. Collectively, the designed targeting platform in this study could overcome multiple barriers and effectively deliver BTZ to glioma cells, which represent its potential for advanced brain cancer treatment with promising therapeutic outcomes.
Collapse
Affiliation(s)
- Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Mojarad-Jabali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Lakshmi BA, Kim YJ. Modernistic and Emerging Developments of Nanotechnology in Glioblastoma-Targeted Theranostic Applications. Int J Mol Sci 2022; 23:ijms23031641. [PMID: 35163563 PMCID: PMC8836088 DOI: 10.3390/ijms23031641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Brain tumors such as glioblastoma are typically associated with an unstoppable cell proliferation with aggressive infiltration behavior and a shortened life span. Though treatment options such as chemotherapy and radiotherapy are available in combating glioblastoma, satisfactory therapeutics are still not available due to the high impermeability of the blood–brain barrier. To address these concerns, recently, multifarious theranostics based on nanotechnology have been developed, which can deal with diagnosis and therapy together. The multifunctional nanomaterials find a strategic path against glioblastoma by adjoining novel thermal and magnetic therapy approaches. Their convenient combination of specific features such as real-time tracking, in-depth tissue penetration, drug-loading capacity, and contrasting performance is of great demand in the clinical investigation of glioblastoma. The potential benefits of nanomaterials including specificity, surface tunability, biodegradability, non-toxicity, ligand functionalization, and near-infrared (NIR) and photoacoustic (PA) imaging are sufficient in developing effective theranostics. This review discusses the recent developments in nanotechnology toward the diagnosis, drug delivery, and therapy regarding glioblastoma.
Collapse
|
23
|
Sheikh A, Alhakamy NA, Md S, Kesharwani P. Recent Progress of RGD Modified Liposomes as Multistage Rocket Against Cancer. Front Pharmacol 2022; 12:803304. [PMID: 35145405 PMCID: PMC8822168 DOI: 10.3389/fphar.2021.803304] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a life-threatening disease, contributing approximately 9.4 million deaths worldwide. To address this challenge, scientific researchers have investigated molecules that could act as speed-breakers for cancer. As an abiotic drug delivery system, liposomes can hold both hydrophilic and lipophilic drugs, which promote a controlled release, accumulate in the tumor microenvironment, and achieve elongated half-life with an enhanced safety profile. To further improve the safety and impair the off-target effect, the surface of liposomes could be modified in a way that is easily identified by cancer cells, promotes uptake, and facilitates angiogenesis. Integrins are overexpressed on cancer cells, which upon activation promote downstream cell signaling and eventually activate specific pathways, promoting cell growth, proliferation, and migration. RGD peptides are easily recognized by integrin over expressed cells. Just like a multistage rocket, ligand anchored liposomes can be selectively recognized by target cells, accumulate at the specific site, and finally, release the drug in a specific and desired way. This review highlights the role of integrin in cancer development, so gain more insights into the phenomenon of tumor initiation and survival. Since RGD is recognized by the integrin family, the fate of RGD has been demonstrated after its binding with the acceptor’s family. The role of RGD based liposomes in targeting various cancer cells is also highlighted in the paper.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- *Correspondence: Prashant Kesharwani,
| |
Collapse
|
24
|
Liu D, Gao S, Zhai Y, Yang X, Zhai G. Research progress of tumor targeted drug delivery based on PD-1/PD-L1. Int J Pharm 2022; 616:121527. [DOI: 10.1016/j.ijpharm.2022.121527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
25
|
Multiple targeted doxorubicin-lonidamine liposomes modified with p-hydroxybenzoic acid and triphenylphosphonium to synergistically treat glioma. Eur J Med Chem 2021; 230:114093. [PMID: 35007860 DOI: 10.1016/j.ejmech.2021.114093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/30/2022]
Abstract
A type of pH-sensitive multi-targeted brain tumor site-specific liposomes (Lip-CTPP) co-modified with p-hydroxybenzoic acid (p-HA) and triphenylphosphonium (TPP) were designed and prepared to co-load doxorubicin (DOX) and lonidamine (LND). Lip-CTPP are promising potential carriers to exert the anti-glioma effect of DOX and LND collaboratively given the following features: 1) Lip-CTPP have a good pharmacokinetic behavior; 2) Lip-CTPP can cross the blood-brain barrier (BBB) and recognize tumor cells through the affinity of p-HA and dopamine/sigma receptors; 3) Lip-CTPP are highly positive charged once the acid-sensitive amide bonds are cleaved in endo/lysosomes to expose TPP and protonate amine groups; 4) the positive charged Lip-CTPP escape from endo/lysosomes and accumulate in mitochondria through electrostatic adsorption; 5) DOX and LND are released and synergistically increase anti-tumor efficacy. Our in vitro and in vivo results confirmed that Lip-CTPP could greatly elevate the inhibition rate of tumor cell proliferation, migration and invasion, promote apoptosis and necrosis, and interfere with mitochondrial function. In addition, Lip-CTPP could significantly prolong the survival time of glioma bearing mice, narrow the tumor region and inhibit the infiltration and metastasis capability of glioma cells. Collectively, Lip-CTPP are promising nano formulations to enhance the synergistic effect of DOX and LND in glioma treatment.
Collapse
|
26
|
Zhang ZA, Xin X, Liu C, Liu YH, Duan HX, Qi LL, Zhang YY, Zhao HM, Chen LQ, Jin MJ, Gao ZG, Huang W. Novel brain-targeted nanomicelles for anti-glioma therapy mediated by the ApoE-enriched protein corona in vivo. J Nanobiotechnology 2021; 19:453. [PMID: 34963449 PMCID: PMC8715648 DOI: 10.1186/s12951-021-01097-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background The interactions between nanoparticles (NPs) and plasma proteins form a protein corona around NPs after entering the biological environment, which provides new biological properties to NPs and mediates their interactions with cells and biological barriers. Given the inevitable interactions, we regard nanoparticle‒protein interactions as a tool for designing protein corona-mediated drug delivery systems. Herein, we demonstrate the successful application of protein corona-mediated brain-targeted nanomicelles in the treatment of glioma, loading them with paclitaxel (PTX), and decorating them with amyloid β-protein (Aβ)-CN peptide (PTX/Aβ-CN-PMs). Aβ-CN peptide, like the Aβ1–42 peptide, specifically binds to the lipid-binding domain of apolipoprotein E (ApoE) in vivo to form the ApoE-enriched protein corona surrounding Aβ-CN-PMs (ApoE/PTX/Aβ-CN-PMs). The receptor-binding domain of the ApoE then combines with low-density lipoprotein receptor (LDLr) and LDLr-related protein 1 receptor (LRP1r) expressed in the blood–brain barrier and glioma, effectively mediating brain-targeted delivery. Methods PTX/Aβ-CN-PMs were prepared using a film hydration method with sonication, which was simple and feasible. The specific formation of the ApoE-enriched protein corona around nanoparticles was characterized by Western blotting analysis and LC–MS/MS. The in vitro physicochemical properties and in vivo anti-glioma effects of PTX/Aβ-CN-PMs were also well studied. Results The average size and zeta potential of PTX/Aβ-CN-PMs and ApoE/PTX/Aβ-CN-PMs were 103.1 nm, 172.3 nm, 7.23 mV, and 0.715 mV, respectively. PTX was efficiently loaded into PTX/Aβ-CN-PMs, and the PTX release from rhApoE/PTX/Aβ-CN-PMs exhibited a sustained-release pattern in vitro. The formation of the ApoE-enriched protein corona significantly improved the cellular uptake of Aβ-CN-PMs on C6 cells and human umbilical vein endothelial cells (HUVECs) and enhanced permeability to the blood–brain tumor barrier in vitro. Meanwhile, PTX/Aβ-CN-PMs with ApoE-enriched protein corona had a greater ability to inhibit cell proliferation and induce cell apoptosis than taxol. Importantly, PTX/Aβ-CN-PMs exhibited better anti-glioma effects and tissue distribution profile with rapid accumulation in glioma tissues in vivo and prolonged median survival of glioma-bearing mice compared to those associated with PMs without the ApoE protein corona. Conclusions The designed PTX/Aβ-CN-PMs exhibited significantly enhanced anti-glioma efficacy. Importantly, this study provided a strategy for the rational design of a protein corona-based brain-targeted drug delivery system. More crucially, we utilized the unfavorable side of the protein corona and converted it into an advantage to achieve brain-targeted drug delivery. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01097-8.
Collapse
Affiliation(s)
- Zhe-Ao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan-Hong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Xia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Ling Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying-Ying Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - He-Ming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li-Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ming-Ji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhong-Gao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China. .,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China. .,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
27
|
Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug Delivery Systems and Strategies to Overcome the Barriers of Brain. Curr Pharm Des 2021; 28:619-641. [PMID: 34951356 DOI: 10.2174/1381612828666211222163025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| |
Collapse
|
28
|
Xie HJ, Zhan-Dui N, Zhao J, Er-Bu AGA, Zhen P, ZhuoMa D, Sang T. Evaluation of nanoscaled dual targeting drug-loaded liposomes on inhibiting vasculogenic mimicry channels of brain glioma. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:596-605. [PMID: 34514904 DOI: 10.1080/21691401.2020.1814314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/24/2020] [Indexed: 10/20/2022]
Abstract
Brain glioma is the most common primary tumour of the central nervous system. Complete surgical removal of the brain glioma is virtually impossible. Chemotherapy is still an important treatment for brain glioma. However, blood-brain barrier (BBB) and vasculogenic mimicry (VM) channels remain two hindrances in regular treatments. Herein, we developed a novel nanoscaled dual targeting daunorubicin plus rofecoxib liposomes which could transport across the BBB, and eliminate brain glioma cells along with the VM channels. The liposomes were modified with two functional materials, and showed round in shape with a diameter about 120 nm. Evaluations were performed on human brain glioma U87MG cells in vitro and on intracranial brain glioma-bearing nude mice. The dual targeting liposomes demonstrated a long circulatory effect in the blood system, were able to transport across the BBB, and were accumulated into the brain. The results indicated that the dual targeting daunorubicin plus rofecoxib liposomes could inhibit the brain glioma VM channels and exhibited a significant efficacy in the treatment of intracranial glioma-bearing nude mice. The mechanisms are related to down regulations MMP-2, MMP-9, FAK and HIF-α. Hence, the established dual targeting liposomes could be a potential formulation to treat the brain glioma along with eliminating VM channels.
Collapse
Affiliation(s)
- Hong-Jun Xie
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medicine College of Tibet University, Lhasa, China
| | - NorBu Zhan-Dui
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medicine College of Tibet University, Lhasa, China
| | - Jing Zhao
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medicine College of Tibet University, Lhasa, China
| | - A G A Er-Bu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medicine College of Tibet University, Lhasa, China
| | - Pu Zhen
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medicine College of Tibet University, Lhasa, China
| | - DongZhi ZhuoMa
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medicine College of Tibet University, Lhasa, China
| | - Tre Sang
- University of Tibetan Medicine, Lhasa, China
| |
Collapse
|
29
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
30
|
Construction and characterization of a novel Tenofovir-loaded PEGylated niosome conjugated with TAT peptide for evaluation of its cytotoxicity and anti-HIV effects. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Li D, Gao J, Yang C, Li B, Sun J, Yu M, Wang Y, Wang H, Lu Y. cRGDyK-modified procaine liposome inhibits the proliferation and motility of glioma cells via the ERK/p38MAPK pathway. Exp Ther Med 2021; 22:859. [PMID: 34178132 PMCID: PMC8220655 DOI: 10.3892/etm.2021.10291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma is a common type of primary tumor in the central nervous system. Glioma has been increasing in incidence yearly and is a serious threat to human life and health. The aim of the present study was to prepare liposomes for enhanced penetration of the blood-brain barrier and targeting of glioma. A procaine-loaded liposome modified with the cyclic pentapeptide cRGDyK (Pro/cRGDyK-L) was designed and developed. The particle size, ζ potential, encapsulation efficiency, release profile, stability and hemolysis of Pro/cRGDyK-L were characterized in vitro. The targeting and antitumor effects of Pro/cRGDyK-L were also investigated in vitro and in vivo. The results suggested that the cRGDyK peptide significantly facilitated the ability of liposomes to transfer procaine across the BBB and improved the cellular uptake of procaine by C6 glioma cells. The results further demonstrated that Pro/cRGDyK-L strongly suppressed cell motility, stimulated apoptosis and induced cell cycle arrest. The findings further confirmed that Pro/cRGDyK-L exhibited superior antitumor effects by targeting the ERK/p38MAPK pathway and thereby suppressed tumor growth in mice. In conclusion, the present study indicated the potential of Pro/cRGDyK-L as a means to provide improved therapeutic effects on glioma through the ERK/p38MAPK pathway.
Collapse
Affiliation(s)
- Dedong Li
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jie Gao
- Department of Anesthesiology, Tianjin Haihe Hospital, Tianjin 300350, P.R. China
| | - Chenyi Yang
- Department of Anesthesiology, Tianjin Third Central Hospital, Tianjin 300052, P.R. China
| | - Bo Li
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jian Sun
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Mingdong Yu
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ying Wang
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Third Central Hospital, Tianjin 300052, P.R. China
| | - Yuechun Lu
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
32
|
Tran K, Brice R, Yao L. Bioscaffold-based study of glioblastoma cell behavior and drug delivery for tumor therapy. Neurochem Int 2021; 147:105049. [PMID: 33945833 DOI: 10.1016/j.neuint.2021.105049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is a severe form of brain cancer with an average five-year survival rate of 6.7%. Current treatment strategies include surgical resection of the tumor area and lining the lesion site with therapeutics, which offer only a moderate impact on increasing survival rates. Drug-testing models based on the monolayer cell culture method may partially explain the lack of advancement in effective GBM treatment, because this model is limited in its ability to show heterogeneous cell-cell and cell-environment interactions as tumor cells in the in vivo state. The development of bioscaffold-based culture models is an important improvement in GBM research, preclinical trials, and targeted drug testing, through better mimicking of the heterogeneity of tumor environmental conditions. A major hurdle towards better GBM outcomes is in delivering medication across the blood-brain barrier (BBB), which normally prevents the crossing of materials into the treatment site. The delivery of therapeutics using bioscaffolds is a potential means of overcoming the BBB and could potentially facilitate long-lasting drug release. A number of natural and synthetic materials have been studied for their biodegradability, toxicity, distribution, and pharmaceutical stability, which are needed to determine the overall effectiveness and safety of glioblastoma treatment. This review summarizes advancements in the research of bioscaffold-based GBM cell growth systems and the potential of using bioscaffolds as a carrier for drug delivery.
Collapse
Affiliation(s)
- Kimmy Tran
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA.
| |
Collapse
|
33
|
Mary YS, Mary YS, Krátký M, Vinsova J, Baraldi C, Cristina Gamberini M. Concentration dependent SERS, DFT and molecular docking studies of a ureido derivative with antitubercular properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119329. [PMID: 33360209 DOI: 10.1016/j.saa.2020.119329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Spectroscopic analysis, density functional theory (DFT) studies and surface enhanced Raman scattering (SERS) of antimycobactetial 4-[3-(4-acetylphenyl)ureido]-2-hydroxybenzoic acid (AUHB) have been studied on different silver sols. For Raman and SERS wavenumbers, very large changes are observed. Observed variations in the modes of ring may be due to surface π-electron interactions and presence of this indicated that poly substituted ring is more inclined than para substituted phenyl ring and assumes a inclined position for concentration 10-3 M. Changes in orientation are seen in SERS spectra depending on concentration. In order to find electron-rich and poor sites of AUHB, molecular electrostatic potential was also constructed. The molecular docking results show that binding affinity and interactions with the receptor DprE1 may be supporting evidence for further studies in design further AUHB pharmaceutical applications. Based on antitubercular activity of 4-aminosalicylic acid (PAS) and urea derivatives we designed, synthesized and investigated mutual PAS-urea derivatives as potential antimycobacterial agents.
Collapse
Affiliation(s)
- Y Sheena Mary
- Researcher, Thushara, Neethinagar-64, Kollam, Kerala, India.
| | - Y Shyma Mary
- Researcher, Thushara, Neethinagar-64, Kollam, Kerala, India
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jarmila Vinsova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103 41125, Modena, Italy
| | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103 41125, Modena, Italy
| |
Collapse
|
34
|
Aronson MR, Medina SH, Mitchell MJ. Peptide functionalized liposomes for receptor targeted cancer therapy. APL Bioeng 2021; 5:011501. [PMID: 33532673 PMCID: PMC7837755 DOI: 10.1063/5.0029860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Most clinically approved cancer therapies are potent and toxic small molecules that are limited by severe off-target toxicities and poor tumor-specific localization. Over the past few decades, attempts have been made to load chemotherapies into liposomes, which act to deliver the therapeutic agent directly to the tumor. Although liposomal encapsulation has been shown to decrease toxicity in human patients, reliance on passive targeting via the enhanced permeability and retention (EPR) effect has left some of these issues unresolved. Recently, investigations into modifying the surface of liposomes via covalent and/or electrostatic functionalization have offered mechanisms for tumor homing and subsequently controlled chemotherapeutic delivery. A wide variety of biomolecules can be utilized to functionalize liposomes such as proteins, carbohydrates, and nucleic acids, which enable multiple directions for cancer cell localization. Importantly, when nanoparticles are modified with such molecules, care must be taken as not to inactivate or denature the ligand. Peptides, which are small proteins with <30 amino acids, have demonstrated the exceptional ability to act as ligands for transmembrane protein receptors overexpressed in many tumor phenotypes. Exploring this strategy offers a method in tumor targeting for cancers such as glioblastoma multiforme, pancreatic, lung, and breast based on the manifold of receptors overexpressed on various tumor cell populations. In this review, we offer a comprehensive summary of peptide-functionalized liposomes for receptor-targeted cancer therapy.
Collapse
|
35
|
Glioblastoma Break-in; Try Something New. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Glioblastoma is the most invasive brain tumor with a poor prognosis and rapid progression. The standard therapy (surgical resection, adjuvant chemotherapy, and radiotherapy) ensures survival only up to 18 months. In this article, we focus on innovative types of radiotherapy, various combinations of temozolomide with novel substances, and methods of their administration and vector delivery to tumor cells. Evidence Acquisition: For a detailed study of the various options for chemotherapy and radiotherapy, Elsevier, NCBI MedLine, Scopus, Google Scholar, Embase, Web of Science, The Cochrane Library, EMBASE, Global Health, CyberLeninka, and RSCI databases were analyzed. Results: The most available method is oral or intravenous administration of temozolomide. More efficient is the combined chemotherapy of temozolomide with innovative drugs and substances such as lomustine, histone deacetylase inhibitors, and chloroquine, as well as olaparib. These combinations improve patient survival and are effective in the treatment of resistant tumors. Compared to standard fractionated radiotherapy (60 Gy, 30 fractions, 6 weeks), hypofractionated is more effective for elderly patients due to lack of toxicity; brachytherapy reduces the risk of glioblastoma recurrence, while radiosurgery with bevacizumab is more effective against recurrent or inoperable tumors. Currently, the most effective treatment is considered to be the intranasal administration of anti-Ephrin A3 (anti-EPHA3)-modified containing temozolomide butyl ester-loaded (TBE-loaded) poly lactide-co-glycolide nanoparticles (P-NPs) coated with N-trimethylated chitosan (TMC) to overcome nasociliary clearance. Conclusions: New radiotherapeutic methods significantly increase the survival rates of glioblastoma patients. With some improvement, it may lead to the elimination of all tumor cells leaving the healthy alive. New chemotherapeutic drugs show impressive results with adjuvant temozolomide. Anti-EPHA3-modified TBE-loaded P-NPs coated with TMC have high absorption specificity and kill glioblastoma cells effectively. A new “step forward” may become a medicine of the future, which reduces the specific accumulation of nanoparticles in the lungs, but simultaneously does not affect specific absorption by tumor cells.
Collapse
|
36
|
Wu QL, Xu HL, Xiong C, Lan QH, Fang ML, Cai JH, Li H, Zhu ST, Xu JH, Tao FY, Lu CT, Zhao YZ, Chen B. c(RGDyk)-modified nanoparticles encapsulating quantum dots as a stable fluorescence probe for imaging-guided surgical resection of glioma under the auxiliary UTMD. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:143-158. [PMID: 32207347 DOI: 10.1080/21691401.2019.1699821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Surgical resection remains the preferred approach for some patients with glioblastoma (GBM), and eradication of the residual tumour niche after surgical resection is very helpful for prolonging patient survival. However, complete surgical resection of invasive GBM is difficult because of its ambiguous boundary. Herein, a novel targeting material, c(RGDyk)-poloxamer-188, was synthesized by modifying carboxyl-terminated poloxamer-188 with a glioma-targeting cyclopeptide, c(RGDyk). Quantum dots (QDs) as fluorescent probe were encapsulated into the self-assembled c(RGDyk)-poloxamer-188 polymer nanoparticles (NPs) to construct glioma-targeted QDs-c(RGDyk)NP for imaging-guided surgical resection of GBM. QDs-c(RGDyk)NP exhibited a moderate hydrodynamic diameter of 212.4 nm, a negative zeta potential of -10.1 mV and good stability. QDs-c(RGDyk)NP exhibited significantly lower toxicity against PC12 and C6 cells and HUVECs than free QDs. Moreover, in vitro cellular uptake experiments demonstrated that QDs-c(RGDyk)NP specifically targeted C6 cells, making them display strong fluorescence. Combined with ultrasound-targeted microbubble destruction (UTMD), QDs-c(RGDyk)NP specifically accumulated in glioma tissue in orthotropic tumour rats after intravenous administration, evidenced by ex vivo NIR fluorescence imaging of bulk brain and glioma tissue sections. Furthermore, fluorescence imaging with QDs-c(RGDyk)NP guided accurate surgical resection of glioma. Finally, the safety of QDs-c(RGDyk)NP was verified using pathological HE staining. In conclusion, QDs-c(RGDyk)NP may be a potential imaging probe for imaging-guided surgery.
Collapse
Affiliation(s)
- Qi-Long Wu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui Xiong
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qing-Hua Lan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ming-Ling Fang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Jin-Hua Cai
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Hui Li
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Shu-Ting Zhu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Jing-Hong Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Fang-Yi Tao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Bin Chen
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
37
|
SPION and doxorubicin-loaded polymeric nanocarriers for glioblastoma theranostics. Drug Deliv Transl Res 2021; 11:515-523. [PMID: 33405212 DOI: 10.1007/s13346-020-00880-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Glioma is a type of cancer with a very poor prognosis with a survival of around 15 months in the case of glioblastoma multiforme (GBM). In order to advance in personalized medicine, we developed polymeric nanoparticles (PNP) loaded with both SPION (superparamagnetic iron oxide nanoparticles) and doxorubicin (DOX). The former being used for its potential to accumulate the PNP in the tumor under a strong magnetic field and the later for its therapeutic potential. The emulsion solvent and evaporation method was selected to develop monodisperse PNP with high loading efficiency in both SPION and DOX. Once injected in mice, a significant accumulation of the PNP was observed within the tumoral tissue under static magnetic field as observed by MRI leading to a reduction of tumor growth rate.
Collapse
|
38
|
Li C, Li J, Xu Y, Zhan Y, Li Y, Song T, Zheng J, Yang H. Application of Phage-Displayed Peptides in Tumor Imaging Diagnosis and Targeting Therapy. Int J Pept Res Ther 2020; 27:587-595. [PMID: 32901205 PMCID: PMC7471523 DOI: 10.1007/s10989-020-10108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Phage display is an effective and powerful technique that provides a route to discovery unique peptides targeting to tumor cells. Specifically binding peptides are considered as the valuable target directing molecule fragments with potential efficiency to improve the current tumor clinic, and offer new approaches for tumor prevention, diagnosis and treatment. We focus on the recent advances in the isolation of tumor-targeting peptides by biopanning methods, with particular emphasis on molecular imaging, and pharmaceutical targeting therapy.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Zhan
- 518 Hospital of PLA, Xi'an, 710043 Shaanxi China
| | - Yu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Tingting Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| |
Collapse
|
39
|
Belhadj Z, He B, Deng H, Song S, Zhang H, Wang X, Dai W, Zhang Q. A combined "eat me/don't eat me" strategy based on extracellular vesicles for anticancer nanomedicine. J Extracell Vesicles 2020; 9:1806444. [PMID: 32944191 PMCID: PMC7480498 DOI: 10.1080/20013078.2020.1806444] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/07/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022] Open
Abstract
A long-term and huge challenge in nanomedicine is the substantial uptake and rapid clearance mediated by the mononuclear phagocyte system (MPS), which enormously hinders the development of nanodrugs. Inspired by the natural merits of extracellular vesicles, we therefore developed a combined "eat me/don't eat me" strategy in an effort to achieve MPS escape and efficient drug delivery. Methodologically, cationized mannan-modified extracellular vesicles derived from DC2.4 cells were administered to saturate the MPS (eat me strategy). Then, nanocarriers fused to CD47-enriched exosomes originated from human serum were administered to evade phagocytosis by MPS (don't eat me strategy). The nanocarriers were also loaded with antitumor drugs and functionalized with a novel homing peptide to promote the tumour tissue accumulation and cancer cell uptake (eat me strategy). The concept was proven in vitro as evidenced by the reduced endocytosis of macrophages and enhanced uptake by tumour cells, whereas prolonged circulation time and increased tumour accumulation were demonstrated in vivo. Specially, the strategy induced a 123.53% increase in tumour distribution compared to conventional nanocarrier. The study both shed light on the challenge overcoming of phagocytic evasion and provided a strategy for significantly improving therapeutic outcomes, potentially permitting active drug delivery via targeted nanomedicines.
Collapse
Affiliation(s)
- Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Siyang Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
40
|
Wang Z, Sun M, Li W, Fan L, Zhou Y, Hu Z. A Novel CD133- and EpCAM-Targeted Liposome With Redox-Responsive Properties Capable of Synergistically Eliminating Liver Cancer Stem Cells. Front Chem 2020; 8:649. [PMID: 32850663 PMCID: PMC7431664 DOI: 10.3389/fchem.2020.00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells that sit atop the hierarchical ladder in many cancer types. Liver CSCs have been associated with high chemoresistance and recurrence rates in hepatocellular carcinoma (HCC). However, as of yet, no satisfactorily effective liver CSC-targeted treatment is available, which drove us to design and investigate the efficacy of a liposome-based delivery system. Here, we introduce a redox-triggered dual-targeted liposome, CEP-LP@S/D, capable of co-delivering doxorubicin (Dox) and salinomycin (Sal) for the synergistic treatment of liver cancer. This system is based on the association of CD133- and EpCAM-targeted peptides to form Y-shaped CEP ligands that were anchored to the surface of the liposome and allowed the selective targeting of CD133+ EpCAM+ liver CSCs. After arriving to the CSCs, the CEP-LP@S/D liposome undergoes endocytosis to the cytoplasm, where a high concentration of glutathione (GSH) breaks its disulfide bonds, thereby degrading the liposome. This then induces a rapid release of Dox and Sal to synergistically inhibit tumor growth. Notably, this effect occurs through Dox-induced apoptosis and concurrent lysosomal iron sequestration by Sal. Interestingly, both in vitro and in vivo studies indicated that our GSH-responsive co-delivery system not only effectively enhanced CSC targeting but also eliminated the non-CSC faction, thereby exhibiting high antitumor efficacy. We believe that the smart liposome nanocarrier-based co-delivery system is a promising strategy to combat liver cancer, which may also lay the groundwork for more enhanced approaches to target other cancer types as well.
Collapse
Affiliation(s)
- Zihua Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengqi Sun
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Wang Li
- Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Linyang Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Ying Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiyuan Hu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Taghavi S, Abnous K, Babaei M, Taghdisi SM, Ramezani M, Alibolandi M. Synthesis of chimeric polymersomes based on PLA-b-PHPMA and PCL-b-PHPMA for nucleoline guided delivery of SN38. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102227. [DOI: 10.1016/j.nano.2020.102227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/02/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
|
42
|
Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2020; 37:112-125. [PMID: 33093794 PMCID: PMC7575138 DOI: 10.1016/j.mattod.2020.02.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Blood-Brain Barrier (BBB), a unique structure in the central nervous system (CNS), protects the brain from bloodborne pathogens by its excellent barrier properties. Nevertheless, this barrier limits therapeutic efficacy and becomes one of the biggest challenges in new drug development for neurodegenerative disease and brain cancer. Recent breakthroughs in nanotechnology have resulted in various nanoparticles (NPs) as drug carriers to cross the BBB by different methods. This review presents the current understanding of advanced NP-mediated non-invasive drug delivery for the treatment of neurological disorders. Herein, the complex compositions and special characteristics of BBB are elucidated exhaustively. Moreover, versatile drug nanocarriers with their recent applications and their pathways on different drug delivery strategies to overcome the formidable BBB obstacle are briefly discussed. In terms of significance, this paper provides a general understanding of how various properties of nanoparticles aid in drug delivery through BBB and usher the development of novel nanotechnology-based nanomaterials for cerebral disease therapies.
Collapse
Affiliation(s)
| | | | - Xiaoli Cai
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Yang Song
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| |
Collapse
|
43
|
Kuo YC, Rajesh R. Biomaterial-based drug delivery systems used to improve chemotherapeutic activity of pharmaceuticals and to target inhibitors of apoptosis proteins. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Xi L, Li C, Wang Y, Gong Y, Su F, Li S. Novel Thermosensitive Polymer-Modified Liposomes as Nano-Carrier of Hydrophobic Antitumor Drugs. J Pharm Sci 2020; 109:2544-2552. [PMID: 32446661 DOI: 10.1016/j.xphs.2020.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Thermo-sensitive polymer-modified liposomes are able to achieve site-specific delivery of drugs. In this work, thermo-sensitive polymers were synthesized by atomic transfer radical polymerization of N-isopropyl acrylamide (NIPAAm) and N,N-dimethyl acrylamide (DMAAm) using bromoisobutyryl distearoyl phosphoethanolamine (DSPE-Br) as initiator. The resulting PNIPAAm-DSPE and P(NIPAAm-DMAAm)-DSPE polymers were characterized using proton nuclear magnetic resonance, Fourier transform infrared, and ultraviolet-visible spectroscopy. PNIPAAm-DSPE and P(NIPAAm-DMAAm)-DSPE exhibit a lower critical solution temperature of 34.0 and 46.9°C in water, and 29.8 and 38.8°C in phosphate buffered saline, respectively. Paclitaxel-loaded thermo-sensitive liposomes were prepared using film hydration method, followed by post-insertion of P(NIPAAm-DMAAm)-DSPE into the liposome bilayer. Drug release of traditional and thermosensitive liposomes was comparatively studied at 37 and 40°C. The total release and release rate of thermosensitive liposomes at 40°C were much higher than those at 37°C. And drug release is higher for thermosensitive liposomes than for traditional liposomes because insertion of thermo-sensitive polymer chains affects the system's stability. MTT assay showed that thermo-sensitive liposomes present no cytotoxicity to L929 cells at the tested concentrations, and paclitaxel-loaded liposomes have significant cytotoxicity against A549 cancer cells. Therefore, it is concluded that P(NIPAAm-DMAAm)-DSPE modified thermo-sensitive liposomes could be promising as nano-carrier of antitumor drugs.
Collapse
Affiliation(s)
- Laishun Xi
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenglong Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuandou Wang
- Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yanling Gong
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Feng Su
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Suming Li
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
45
|
Bryukhovetskiy I, Pak O, Khotimchenko Y, Bryukhovetskiy A, Sharma A, Sharma HS. Personalized therapy and stem cell transplantation for pro-inflammatory modulation of cancer stem cells microenvironment in glioblastoma: Review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:67-98. [PMID: 32448615 DOI: 10.1016/bs.irn.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive types of brain tumor in humans. The prognosis for patients with GBM is unfavorable and treatment is largely ineffective, where modern treatment regimens typically increase survival by 15 months. GBM relapse and progression are associated with cancer stem cells (CSCs). The present review provides a critical analysis of the primary reasons underlying the lack of effectiveness of modern CSC management methods. An emphasis is placed on the role of the blood-brain barrier in the development of treatment resistance. The existing methods for increasing the efficiency of antitumor genotoxic therapy are also described, and a strategy for personalized regulation of CSC based on post-genome technologies is suggested. The hypothesis that GBM cells employ a special mechanism for DNA repair based on their interactions with normal stem cells, is presented and the function of the tumor microenvironment in fulfilling the antitumor potential of normal stem cells is explained. Additionally, the mechanisms by which cancer stem cells regulate glioblastoma progression and recurrence are described based on novel biomedical technologies.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| | - Oleg Pak
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Yuri Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| |
Collapse
|
46
|
Guo H, Wang R, Wang D, Wang S, Zhou J, Chai Z, Yao S, Li J, Lu L, Liu Y, Xie C, Lu W. Deliver anti-PD-L1 into brain by p-hydroxybenzoic acid to enhance immunotherapeutic effect for glioblastoma. J Control Release 2020; 320:63-72. [DOI: 10.1016/j.jconrel.2020.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
|
47
|
Ran D, Zhou J, Chai Z, Li J, Xie C, Mao J, Lu L, Zhang Y, Wu S, Zhan C, Lu W. All-stage precisional glioma targeted therapy enabled by a well-designed D-peptide. Theranostics 2020; 10:4073-4087. [PMID: 32226540 PMCID: PMC7086363 DOI: 10.7150/thno.41382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Uncontrollable cell proliferation and irreversible neurological damage make glioma one of the most deadly diseases in clinic. Besides the multiple biological barriers, glioma stem cells (GSCs) that are responsible for the maintenance and recurrence of tumor tissues also hinder the therapeutic efficacy of chemotherapy. Therefore, all-stage precisional glioma targeted therapy regimens that could efficiently deliver drugs to glioma cells and GSCs after overcoming multiple barriers have received increasing scrutiny. Methods: A polymeric micelle-based drug delivery system was developed by modifying a "Y-shaped" well-designed ligand of both GRP78 protein and quorum sensing receptor to achieve all-stage precisional glioma targeting, then we evaluated the targeting ability and barrier penetration ability both in vitro and in vivo. In order to achieve all-stage precisional therapy, we need kill both GSCs and glioma related cells. Parthenolide (PTL) has been investigated for its selective toxicity to glioma stem cells while Paclitaxel (PTX) and Temozolomide (TMZ) are widely used in experimental and clinical therapy of glioma respectively. So the in vivo anti-glioma effect of combination therapy was evaluated by Kaplan-Meier survival analysis and immunohistochemical (IHC) examination of tumor tissues. Results: The "Y-shaped" well-designed peptide, termed DWVAP, exhibited excellent glioma (and GSCs) homing and barrier penetration ability. When modified on micelle surface, DWVAP peptide significantly enhanced accumulation of micelles in brain and glioma. In addition, DWVAP micelles showed no immunogenicity and cytotoxicity, which could guarantee their safety when used in vivo. Treatment of glioma-bearing mice with PTL loaded DWVAP modified PEG-PLA micelles plus PTX loaded DWVAP modified PEG-PLA micelles or PTL loaded DWVAP modified PEG-PLA micelles plus TMZ showed improved anti-tumor efficacy in comparison to PTL and PTX loaded unmodified micelles or PTL loaded unmodified micelles plus TMZ. Conclusion: Combination of all-stage targeting strategy and concomitant use of chemotherapeutics and stem cell inhibitors could achieve precise targeted therapy for glioma.
Collapse
|
48
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|
49
|
Ding F, Yang S, Gao Z, Guo J, Zhang P, Qiu X, Li Q, Dong M, Hao J, Yu Q, Cui J. Antifouling and pH-Responsive Poly(Carboxybetaine)-Based Nanoparticles for Tumor Cell Targeting. Front Chem 2019; 7:770. [PMID: 31824916 PMCID: PMC6883901 DOI: 10.3389/fchem.2019.00770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Nanocarriers with responsibility and surface functionality of targeting molecules have been widely used to improve therapeutic efficiency. Hence, we report the assembly of pH-responsive and targeted polymer nanoparticles (NPs) composed of poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) as the core and poly(carboxybetaine methacrylate) (PCBMA) as the shell, functionalized with cyclic peptides containing Arginine-Glycine-Aspartic acid-D-Phenylalanine-Lysine (RGD). The resulting polymer NPs (PDPA@PCBMA-RGD NPs) can maintain the pH-responsivity of PDPA (pKa ~6.5) and low-fouling property of PCBMA that significantly resist non-specific interactions with RAW 264.7 and HeLa cells. Meanwhile, PDPA@PCBMA-RGD NPs could specifically target αvβ3 integrin-expressed human glioblastoma (U87) cells. The pH-responsiveness and low-fouling properties of PDPA@PCBMA NPs are comparable to PDPA@poly(ethylene glycol) (PDPA@PEG) NPs, which indicates that PCBMA is an alternative to PEG for low-fouling coatings. The advantage of PDPA@PCBMA NPs lies in the presence of carboxyl groups on their surfaces for further modification (e.g., RGD functionalization for cell targeting). The reported polymer NPs represent a new carrier that have the potential for targeted therapeutic delivery.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Shuang Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jianman Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Mingdong Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
50
|
Non-immunogenic, low-toxicity and effective glioma targeting MTI-31 liposomes. J Control Release 2019; 316:381-392. [PMID: 31730912 DOI: 10.1016/j.jconrel.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
Liposomes with peptide motifs have been successfully used in glioma-targeted delivery of various general chemotherapy agents. However, their use for the encapsulation of low-toxicity molecularly targeted anticancer agents has been limited. In the present study, we aimed to assess the efficacy and safety of a novel low-toxicity mTORC1/mTORC2 inhibitor (MTI-31) as a treatment for glioma when encapsulated in appropriate liposomes. Since some of the peptide-modified liposomes have been determined to be immunogenic and may have life-threatening consequences in mice, an immunogenicity-based investigation with candidate liposomal carriers was conducted. Following this study, DVAP (DPDADVDRDTDNDS) modified liposomes (DVAP-liposomes) were identified as an immunologically safe carrier and therefore utilized for MTI-31 encapsulation. DVAP is a tumor homing peptide exhibiting high binding affinity to glucose regulated protein 78 (GRP78) overexpressed in glioma, glioma stem cells, vasculogenic mimicry and neovasculature. Modification of liposomes with DVAP imparts a glioma-directing property. In vitro, the developed DVAP-liposomes/MTI-31 were efficiently internalized by U87 cells and consequently showed a potent antiproliferation effect. In vivo, the safety and anti-glioma efficiency of DVAP-liposomes/MTI-31 were validated in intracranial glioma bearing BALB/c nude mice. While showing both systemic and immunological safety, DVAP-liposome/MTI-31 treatment resulted in a significant improvement in the median survival time (24.5 days for saline, 26 days for free MTI-31, 25 days for liposomes/MTI-31 and 36 days for DVAP-liposome/MTI-31). The results highlight MTI-31 as an effective anti-glioma agent when encapsulated in non-immunogenic glioma-targeted liposomes, which may contribute to the development of better anti-glioma treatment.
Collapse
|