1
|
Jia C, Li LY, Duan QY, Liu X, Zhu XY, Xu KF, Li C, Wang ZX, Wu FG. A Self-Assembled Nanoreactor for Realizing Antibacterial Photodynamic/Gas Therapy and Promoting Wound Healing. Adv Healthc Mater 2025:e2500487. [PMID: 40289403 DOI: 10.1002/adhm.202500487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Indexed: 04/30/2025]
Abstract
Among various treatments employed to solve the global problem of bacterial infection, photodynamic therapy (PDT) is recognized as a method with great potential to inactivate a wide range of bacteria without the development of drug resistance. However, many commonly used photosensitizers (PSs) have the disadvantages of poor water-solubility and potential toxicity, which limits their clinical application. Additionally, nitric oxide (NO) has unique advantages in antibacterial treatments due to its small molecular weight. Herein, protoporphyrin IX (PpIX), L-arginine (L-Arg), and glycol chitosan (GC) are used to construct a self-assembled cationic Arg-GC-PpIX nanoreactor for efficient bacterial inactivation under white light illumination. The Arg-GC-PpIX nanoreactor with excellent water dispersity and stability can rapidly bind to bacteria through electrostatic interaction and produce local singlet oxygen (1O2)/NO under light irradiation, leading to a high antibacterial efficiency toward both Gram-negative and Gram-positive bacteria. Besides, these NPs also possess a desirable antibiofilm ability. Finally, Arg-GC-PpIX@Gel which is obtained through loading Arg-GC-PpIX into the sodium alginate (SA)/Ca2+ hydrogel shows a satisfactory ability to promote infected wound healing when combined with white light irradiation. Therefore, the rationally designed Arg-GC-PpIX nanoreactor with light-triggered 1O2/NO release is a promising antibacterial agent for achieving effective PDT/NO gas therapy.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ling-Yi Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
2
|
Chen T, Liang K, Wang J, Li J, Xue X, Hao Y, Liang H, Ren H, Xiao H, Ge J, Tang B. An Aged Tree with a New Bloom: A Simple Spatiotemporal Programming Strategy Enables Carbon Dot Photosensitizers to Regulate Cell Pyroptosis for Enhanced Tumor Photodynamic-Immunotherapy. NANO LETTERS 2024; 24:14709-14719. [PMID: 39504147 DOI: 10.1021/acs.nanolett.4c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Pyroptosis induced by photodynamic therapy (PDT) is a promising field in both PDT and immunotherapy for tumors. However, effectively inducing tumor cell pyroptosis while triggering a strong immune response using current photosensitizers remains challenging. Herein, the developed positively charged carbon dots (PCDs) nanoPSs were utilized to modulate tumor cell pyroptosis for the first time through a simple spatiotemporal programming strategy. Briefly, PCDs enabled precisely time-dependent targeting of the cell membrane or lysosome. Upon light irradiation, in vitro studies revealed that lysosome-targeted PDT primarily induced apoptosis, while membrane-targeted PDT triggered pyroptosis, resulting in enhanced PDT efficacy and robust activation of the immune response. Conclusively, in vivo studies demonstrated that PCDs could serve as a novel pyroptosis nanotuner for enhanced photodynamic-immunotherapy, thereby simultaneously eliminating primary tumors and inhibiting distant tumor growth and metastases. This spatiotemporal programming strategy unprecedentedly offers a rejuvenation of aged PSs and expands the biomedical use of CDs in immunotherapy.
Collapse
Affiliation(s)
- Tiejin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaokuang Xue
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongliang Hao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huanyi Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| |
Collapse
|
3
|
Wu X, Hu JJ, Yoon J. Cell Membrane as A Promising Therapeutic Target: From Materials Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202400249. [PMID: 38372669 DOI: 10.1002/anie.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/20/2024]
Abstract
The cell membrane is a crucial component of cells, protecting their integrity and stability while facilitating signal transduction and information exchange. Therefore, disrupting its structure or impairing its functions can potentially cause irreversible cell damage. Presently, the tumor cell membrane is recognized as a promising therapeutic target for various treatment methods. Given the extensive research focused on cell membranes, it is both necessary and timely to discuss these developments, from materials design to specific biomedical applications. This review covers treatments based on functional materials targeting the cell membrane, ranging from well-known membrane-anchoring photodynamic therapy to recent lysosome-targeting chimaeras for protein degradation. The diverse therapeutic mechanisms are introduced in the following sections: membrane-anchoring phototherapy, self-assembly on the membrane, in situ biosynthesis on the membrane, and degradation of cell membrane proteins by chimeras. In each section, we outline the conceptual design or general structure derived from numerous studies, emphasizing representative examples to understand advancements and draw inspiration. Finally, we discuss some challenges and future directions in membrane-targeted therapy from our perspective. This review aims to engage multidisciplinary readers and encourage researchers in related fields to advance the fundamental theories and practical applications of membrane-targeting therapeutic agents.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| |
Collapse
|
4
|
Raza F, Zafar H, Jiang L, Su J, Yuan W, Qiu M, Paiva-Santos AC. Progress of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. Biomater Sci 2023; 12:57-91. [PMID: 37902579 DOI: 10.1039/d3bm01170d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In recent years, considerable attention has been given to phototherapy, including photothermal and photodynamic therapy to kill tumor cells by producing heat or reactive oxygen species (ROS). It has the high merits of noninvasiveness and limited drug resistance. To fully utilize this therapy, an extraordinary nanovehicle is required to target phototherapeutic agents in the tumor cells. Nanovesicles embody an ideal strategy for drug delivery applications. Cell membrane-derived biomimetic nanovesicles represent a developing type of nanocarrier. Combining this technique with cancer phototherapy could enable a novel strategy. Herein, efforts are made to describe a comprehensive overview of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. The description in this review is mainly based on representative examples of exosome-derived biomimetic nanomedicine research, ranging from their comparison with traditional nanocarriers to extensive applications in cancer phototherapy. Additionally, the challenges and future prospectives for translating these for clinical application are discussed.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Liangdi Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Weien Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Xu X, Zhou T, Wei X, Jiang X, Cao J. Application of mPEG-CS-cRGD/ Bmi-1RNAi-PTX nanoparticles in suppression of laryngeal cancer by targeting cancer stem cells. Drug Deliv 2023; 30:2180112. [PMID: 38095348 PMCID: PMC9946312 DOI: 10.1080/10717544.2023.2180112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Although surgery-based comprehensive therapy is becoming the main approach to treat laryngeal cancer, recurrence, metastasis, radiotherapy resistance and chemotherapy tolerance are still the main causes of death in patients. Targeted inhibition of laryngeal cancer stem cells has been considered as the consensus to cure laryngeal cancer. Our previous study has confirmed proto-oncogene Bmi-1 as a key regulator for self-renewal of laryngeal cancer stem cells. Targeted knockdown of Bmi-1 gene effectively inhibited the self-renewal and differentiation of laryngeal cancer stem cells, leading to the promoted sensitivity to chemotherapy including paclitaxel. However, due to off-target effects and quick degradation of the naked Bmi-1-RNAi small RNA oligo by nuclease in body fluids, it is urgently needed to develop a tumor-targeted delivery system with a protective shell. In this study, we designed and synthesized cRGD peptide-modified chitosan-polyethylene glycol slow-release nanoparticles (mPEG-CS-cRGD/Bmi-1RNAi-PTX) containing Bmi-1RNAi siRNA oligo and paclitaxel, which showed spherical in shape, 200 nm diameter in size, low cytotoxicity, strong DNA wrapping, resistance to nuclease degradation and high transfection efficiency to cells. Functional analysis indicated significant suppression of cell proliferation and migration and induction of apoptosis by the nanocomplex in laryngeal cancer cells in vitro. By application to the mouse model with laryngeal cancer, the nanocomplex inhibited tumor growth significantly in vivo. In addition, cRGD peptide, paclitaxel and Bmi-1 siRNA in the nanoparticles showed synergistic effects to suppress laryngeal cancer stem cells. In conclusion, this study not only developed a laryngeal tumor-targeted chemotherapeutic system, but also demonstrated a Bmi-1 RNAi-based chemotherapeutic strategy to inhibit cancer stem cells, having strong potential to treat laryngeal cancer patients suffering therapy resistance and/or tumor recurrence.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, P.R. China
| | - Tianhao Zhou
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, P.R. China
| | - Xudong Wei
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, P.R. China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, P.R. China
| | - Xuelian Jiang
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, P.R. China
| | - Jiyan Cao
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, P.R. China
| |
Collapse
|
6
|
Wang J, He Y, Wang B, Yin R, Chen B, Wang H. Muscle-targeted nanoparticles strengthen the effects of small-molecule inhibitors in ameliorating sarcopenia. Nanomedicine (Lond) 2023; 18:1635-1649. [PMID: 37909281 DOI: 10.2217/nnm-2023-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Background: Sarcopenia is an aging-related degeneration of muscle mass and strength. Small-molecule inhibitor SW033291 has been shown to attenuate muscle atrophy. Targeted nanodrug-delivery systems can improve the efficacy of small-molecule inhibitors. Methods: The skeletal muscle cell-targeted nanoparticle was called AP@SW033291, which consisted of SW033291, modular peptide ASSLNIAGGRRRRRG and PEG-DSPE. Nanoparticles were featured with particle size, fluorescence emission spectra and targeting ability. We also investigated their effects on muscle mass and function. Results: The size of AP@SW033291 was 125.7 nm and it demonstrated targeting effects on skeletal muscle; thus, it could improve muscle mass and muscle function. Conclusion: Nanoparticle AP@SW033291 could become a potential strategy to strengthen the treatment effects of small-molecule inhibitors in sarcopenia.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yikang He
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Baoyue Wang
- Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Ruian Yin
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Biao Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, PR China
| | - Hongxing Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
7
|
Cheng F, Jiang Y, Kong B, Lin H, Shuai X, Hu P, Gao P, Zhan L, Huang C, Li C. Multi-Catcher Polymers Regulate the Nucleolin Cluster on the Cell Surface for Cancer Therapy. Adv Healthc Mater 2023; 12:e2300102. [PMID: 36988195 DOI: 10.1002/adhm.202300102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Cell signal transduction mediated by cell surface ligand-receptor is crucial for regulating cell behavior. The oligomerization or hetero-aggregation of the membrane receptor driven by the ligand realizes the rearrangement of apoptotic signals, providing a new ideal tool for tumor therapy. However, the construction of a stable model of cytomembrane receptor aggregation and the development of a universal anti-tumor therapy model on the cellular surface remain challenging. This work describes the construction of a "multi-catcher" flexible structure GC-chol-apt-cDNA with a suitable integration of the oligonucleotide aptamer (apt) and cholesterol (chol) on a polymer skeleton glycol chitosan (GC), for the regulation of the nucleolin cluster through strong polyvalent binding and hydrophobic membrane anchoring on the cell surface. This oligonucleotide aptamer shows nearly 100-fold higher affinity than that of the monovalent aptamer and achieves stable anchoring to the plasma membrane for up to 6 h. Moreover, it exerts a high tumor inhibition both in vitro and in vivo by activating endogenous mitochondrial apoptosis pathway through the cluster of nucleolins on the cell membrane. This multi-catcher nano-platform combines the spatial location regulation of cytomembrane receptors with the intracellular apoptotic signaling cascade and represents a promising strategy for antitumor therapy.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yongjian Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Bo Kong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Huarong Lin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Xinjia Shuai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Pengfei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Lei Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
8
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Biswas A, Ganesan R, Renu K, Dey A, Vellingiri B, El Allali A, Alsamman AM, Zayed H, George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed Pharmacother 2023; 163:114832. [PMID: 37150032 DOI: 10.1016/j.biopha.2023.114832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
9
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
10
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
11
|
Dual-Functionalized Nanoliposomes Achieve a Synergistic Chemo-Phototherapeutic Effect. Int J Mol Sci 2022; 23:ijms232112817. [PMID: 36361615 PMCID: PMC9653560 DOI: 10.3390/ijms232112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11lip), the photodynamic agent protoporphyrin IX (PpIXlip), or their combination (CPT11-PpIXlip). The effects of individual and bimodal (chemo-phototherapeutic) treatments on HeLa cells have been studied by a combination of biological and photophysical studies. Bimodal treatments show synergistic cytotoxic effects on HeLa cells at relatively low doses of PpIX/PDT and CPT11. Mechanistic cell inactivation studies revealed mitotic catastrophe, apoptosis, and senescence contributions. The enhanced anticancer activity is due to a sustained generation of reactive oxygen species, which increases the number of double-strand DNA breaks. Bimodal chemo-phototherapeutic liposomes may have a very promising future in oncological therapy, potentially allowing a reduction in the CPT11 concentration required to achieve a therapeutic effect and overcoming resistance to individual cancer treatments.
Collapse
|
12
|
Li X, Wang Y, Feng C, Chen H, Gao Y. Chemical Modification of Chitosan for Developing Cancer Nanotheranostics. Biomacromolecules 2022; 23:2197-2218. [PMID: 35522524 DOI: 10.1021/acs.biomac.2c00184] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a worldwide public health issue that has not been conquered. Theranostics, the combination of a therapeutic drug and imaging agent in one formulation using nanomaterials, has been developed to better cure cancer in recent years. Although diverse biomaterials have been applied in cancer theranostics, chitosan (CS), a natural polysaccharide bearing easy modification sites with excellent biocompatibility and biodegradability, shows great potential for developing cancer nanotheranostics. In this review, we seek to describe the chemical functionalities of CS used in cancer theranostics and their synthesis methods. We also present recent discoveries and research progresses on how the CS functionalization could improve the delivery efficiency of CS-based nanotheranostics. Finally, we report several case studies about the application of CS-based nanotheranostics. This paper focuses on the strategies to construct CS-based theranostics systems via chemical routes and highlights their applications in cancer treatment, which can provide useful references for further studies.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Yuran Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Chenyun Feng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
13
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
14
|
Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Pol T, Chonkaew W, Hocharoen L, Niamnont N, Butkhot N, Roshorm YM, Kiatkamjornwong S, Hoven VP, Pratumyot K. Amphiphilic Chitosan Bearing Double Palmitoyl Chains and Quaternary Ammonium Moieties as a Nanocarrier for Plasmid DNA. ACS OMEGA 2022; 7:10056-10068. [PMID: 35382269 PMCID: PMC8973028 DOI: 10.1021/acsomega.1c06101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Amphiphilic chitosan, bPalm-CS-HTAP, having N-(2-((2,3-bis(palmitoyloxy)propyl)amino)-2-oxoethyl) (bPalm) groups as double hydrophobic tails and O-[(2-hydroxyl-3-trimethylammonium)] propyl (HTAP) groups as hydrophilic heads was synthesized and evaluated for its self-assembly properties and potential as a gene carrier. The degree of bis-palmitoyl group substitution (DS bPalm) and the degree of quaternization (DQ) were approximately 2 and 56%, respectively. bPalm-CS-HTAP was found to assemble into nanosized spherical particles with a hydrodynamic diameter (D H) of 265.5 ± 7.40 nm (PDI = 0.5) and a surface charge potential of 40.1 ± 0.04 mV. bPalm-CS-HTAP condensed the plasmid pVAX1.CoV2RBDme completely at a bPalm-CS-HTAP:pDNA ratio of 2:1. The self-assembled bPalm-CS-HTAP/pDNA complexes could enter HEK 293A and CHO cells and enabled gene expression at negligible cytotoxicity compared to commercial PEI (20 kDa). These results suggested that bPalm-CS-HTAP can be used as a promising nonviral gene carrier.
Collapse
Affiliation(s)
- Thev Pol
- Organic
Synthesis, Electrochemistry & Natural Product Research Unit, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung
Khru, Bangkok 10140, Thailand
| | - Wunpen Chonkaew
- Sustainable
Polymer & Innovative Composite Materials Research Group, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Lalintip Hocharoen
- Bioprocess
Research and Innovation Centre (BRIC), National Biopharmaceutical
Facility (NBF), King Mongkut’s University
of Technology Thonburi (KMUTT), Bangkhuntian-Chai Thale Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Nakorn Niamnont
- Organic
Synthesis, Electrochemistry & Natural Product Research Unit, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung
Khru, Bangkok 10140, Thailand
| | - Namphueng Butkhot
- Division
of Biotechnology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkhuntian-Chai Thale Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Yaowaluck Maprang Roshorm
- Division
of Biotechnology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkhuntian-Chai Thale Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Suda Kiatkamjornwong
- FRST,
Academy of Science, Office of the Royal Society, Sanam Suea Pa, Khet Dusit, Bangkok 10300, Thailand
- Office of
Research Affairs, Chulalongkorn University, Phayathai Road,
Pathumwan, Bangkok 10330, Thailand
| | - Voravee P. Hoven
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Kornkanya Pratumyot
- Organic
Synthesis, Electrochemistry & Natural Product Research Unit, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung
Khru, Bangkok 10140, Thailand
| |
Collapse
|
16
|
Wang Z, Wu F. Emerging Single-Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Adv Healthc Mater 2022; 11:e2101682. [PMID: 34729955 DOI: 10.1002/adhm.202101682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Indexed: 12/29/2022]
Abstract
Single-atom catalysts (SACs) are a type of atomically dispersed nanozymes with the highest atom utilization, which employ low-coordinated single atoms as the catalytically active sites. SACs not only inherit the merits of traditional nanozymes, but also hold high catalytic activity and superb catalytic selectivity, which ensure their tremendous application potential in environmental remediation, energy storage and conversion, chemical industry, nanomedicine, etc. Nevertheless, undesired aggregation effect of single atoms during preactivation and reaction processes is significantly enhanced owing to the high surface free energy of single atoms. In this case, appropriate substrates are requisite to prevent the aggregation event through the powerful interactions between the single atoms and the substrates, thereby stabilizing the high catalytic activity of the catalysts. In this review, the synthetic methods and characterization approaches of SACs are first described. Then the application cases of SACs in nanomedicine are summarized. Finally, the current challenges and future opportunities of the SACs in nanomedicine are outlined. It is hoped that this review may have implications for furthering the development of new SACs with improved biophysicochemical properties and broadened biomedical applications.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) Ministry of Education 22 Shuangyong Road Nanning 530022 P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor 22 Shuangyong Road Nanning 530022 P. R. China
| |
Collapse
|
17
|
Gbetuwa M, Lu LS, Wang TJ, Chen YJ, Chiou JF, Su TY, Yang TS. Nucleus Near-Infrared (nNIR) Irradiation of Single A549 Cells Induces DNA Damage and Activates EGFR Leading to Mitochondrial Fission. Cells 2022; 11:cells11040624. [PMID: 35203275 PMCID: PMC8870661 DOI: 10.3390/cells11040624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
There has been great interest in identifying the biological substrate for light-cell interaction and their relations to cancer treatment. In this study, a near-infrared (NIR) laser is focused into the nucleus (nNIR) or cytoplasm (cNIR) of a single living cell by a high numerical aperture condenser to dissect the novel role of cell nucleus in mediating NIR effects on mitochondrial dynamics of A549 non-small cell lung cancer cells. Our analysis showed that nNIR, but not cNIR, triggered mitochondrial fission in 10 min. In contrast, the fission/fusion balance of mitochondria directly exposed to cNIR does not change. While the same phenomenon is also triggered by single molecular interactions between epidermal growth factor (EGF) and its receptor EGFR, pharmacological studies with cetuximab, PD153035, and caffeine suggest EGF signaling crosstalk to DNA damaging response to mediate rapid mitochondrial fission as a result of nNIR irradiation. These results suggest that nuclear DNA integrity is a novel biological target for cellular response to NIR.
Collapse
Affiliation(s)
- Momoh Gbetuwa
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- International PhD Program for Cell Therapy and Regeneration, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tai-Yuan Su
- Department of Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan;
| | - Tzu-Sen Yang
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 5206)
| |
Collapse
|
18
|
Cui Z, Zhang M, Geng S, Niu X, Wang X, Zhu Y, Ye F, Liu C. Antifungal Effect of Antimicrobial Photodynamic Therapy Mediated by Haematoporphyrin Monomethyl Ether and Aloe Emodin on Malassezia furfur. Front Microbiol 2021; 12:749106. [PMID: 34867868 PMCID: PMC8637056 DOI: 10.3389/fmicb.2021.749106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Infectious dermatological diseases caused by Malassezia furfur are often chronic, recurrent, and recalcitrant. Current therapeutic options are usually tedious, repetitive, and associated with adverse effects. Alternatives that broaden the treatment options and reduce side effects for patients are needed. Antimicrobial photodynamic therapy (aPDT) is an emerging approach that is quite suitable for superficial infections. The aim of this study is to investigate the antimicrobial efficacy and effect of aPDT mediated by haematoporphyrin monomethyl ether (HMME) and aloe emodin (AE) on clinical isolates of M. furfur in vitro. The photodynamic antimicrobial efficacy of HMME and AE against M. furfur was assessed by colony forming unit (CFU) assay. The uptake of HMME and AE by M. furfur cells was investigated by fluorescence microscopy. Reactive oxygen species (ROS) probe and flow cytometry were employed to evaluate the intracellular ROS level. The effect of HMME and AE-mediated aPDT on secreted protease and lipase activity of M. furfur was also investigated. The results showed that HMME and AE in the presence of light effectively inactivated M. furfur cells in a photosensitizer (PS) concentration and light energy dose-dependent manner. AE exhibited higher antimicrobial efficacy against M. furfur than HMME under the same irradiation condition. HMME and AE-mediated aPDT disturbed the fungal cell envelop, significantly increased the intracellular ROS level, and effectively inhibited the activity of secreted protease and lipase of M. furfur cells. The results suggest that HMME and AE have potential to serve as PSs in the photodynamic treatment of dermatological diseases caused by M. furfur, but further ex vivo or in vivo experiments are needed to verify that they can meet the requirements for clinical practice.
Collapse
Affiliation(s)
- Zixin Cui
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinwu Niu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Zhu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Ye
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
19
|
Abstract
Cancer is one of the major causes of death worldwide. Chemotherapeutic drugs have become a popular choice as anticancer agents. Despite the therapeutic benefits of chemotherapeutic drugs, patients often experience side effects and drug resistance. Biopolymers could be used to overcome some of the limitations of chemotherapeutic drugs, as well as be used either as anticancer agents or drug delivery vehicles. Chitosan is a biocompatible polymer derived from chitin. Chitosan, chitosan derivatives, or chitosan nanoparticles have shown their promise as an anticancer agent. Additionally, functionally modified chitosan can be used to deliver nucleic acids, chemotherapeutic drugs, and anticancer agents. More importantly, chitosan-based drug delivery systems improved the efficacy, potency, cytotoxicity, or biocompatibility of these anticancer agents. In this review, we will investigate the properties of chitosan and chemically tuned chitosan derivatives, and their application in cancer therapy.
Collapse
|
20
|
Xu Y, Yao Y, Wang L, Chen H, Tan N. Hyaluronic Acid Coated Liposomes Co-Delivery of Natural Cyclic Peptide RA-XII and Mitochondrial Targeted Photosensitizer for Highly Selective Precise Combined Treatment of Colon Cancer. Int J Nanomedicine 2021; 16:4929-4942. [PMID: 34326635 PMCID: PMC8314934 DOI: 10.2147/ijn.s311577] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023] Open
Abstract
Background Natural cyclopeptide RA-XII, isolated from Rubia yunnanensis, is a promising chemotherapeutic agent for colon cancer. The photosensitizer protoporphyrin-IX attached with triphenylphosphonium (TPP) could possess mitochondria targeting capacity and exert photodynamic therapy (PDT) by inducing oxidizing damage to the mitochondria and cell apoptosis eventually. In this work, pH-sensitive liposomes were constructed to simultaneously deliver RA-XII as a chemotherapeutic drug and modified porphyrin as a mitochondria-targeting photosensitizer to treat colon cancer, and verified its mechanism of action and antitumor therapeutic efficacy. Methods The colon cancer targeting liposome nanoparticle RA/TPPP-Lip was synthesized using thin film hydration. The therapeutic effect and targeting ability of RA/TPPP-Lip was investigated in vitro. And use HCT116 cell allogeneic subcutaneous transplantation tumor model to investigate the anti-tumor and targeting effects of RA/TPPP-Lip in vivo. Results RA/TPPP-Lip gained the targeting ability through surface-modified HA to increase the accumulation of RA-XII and TPPP in colon cancer cells. A series of in vitro experimental results showed that TPPP produced cytotoxic ROS under laser irradiation to directly damage cell mitochondria and played a combined role with RA-XII, making RA/TPPP-Lip the best colon cancer cell growth inhibitory effect. Furthermore, in vivo antitumor experiments showed that the RA/TPPP-Lip substantially accumulated at the tumor site and efficiently repressed tumor growth in nude mice. Conclusion We have successfully designed a new cancer-targeted nanomedicine platform (RA/TPPP-Lip) for the collaborative treatment of colon cancer, which can achieve the targeted continuous release of multiple therapeutic drugs. This work provides a new strategy for precise combination therapy, which may promote the further development of collaborative cancer treatment platforms.
Collapse
Affiliation(s)
- Yanqing Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yongrong Yao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Linxiao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huachao Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| |
Collapse
|
21
|
Huang L, Asghar S, Zhu T, Ye P, Hu Z, Chen Z, Xiao Y. Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opin Drug Deliv 2021; 18:1473-1500. [PMID: 34253129 DOI: 10.1080/17425247.2021.1950685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: The treatment of tumors is one of the most difficult problems in the medical field at present. Patients often use a comprehensive therapy that combines surgery, radiotherapy, and chemotherapy. Photodynamic therapy (PDT) has prominent potential for eradicating various cancers. Chlorin-based photosensitizers (PSs), as one of the most utilized photosensitizers, have many advantages over conventional photosensitizers; however, a successful chlorin-based PDT needs multi-functional nano-carriers for selective photosensitizer delivery. The number of researches about nanoparticles designed for improved chlorin-based PSs is increasing in the current era. In this article, we give a brief review focused on the recent research progress in design of chlorin-based nanoparticles for the treatment of malignant tumors with photodynamic therapy.Areas covered: This review focuses on the current nanoparticle platforms for PDT, and describes different strategies to achieve controllable PDT by chlorin-nano-delivery systems. The challenges and prospects of PDT in clinical applications are also discussed.Expert opinions: The requirement for PDT to eradicate cancers has increased exponentially in recent years. The major clinically used photosensitizers are hydrophobic. The main obstacles in effective delivery of PSs are associated with this intrinsic nature. The design of nano-delivery systems to load PSs is pivotal for PSs' widespread use.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ting Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Panting Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Ziyi Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Zhipeng Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China.,Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| |
Collapse
|
22
|
Xu W, Wang J, Jin L, Zhu Y, Yang X. A tumor acidity-driven transformable polymeric nanoassembly with deep tumor penetration and membrane-anchoring capability for targeted photodynamic therapy. Biomaterials 2021; 276:121024. [PMID: 34280825 DOI: 10.1016/j.biomaterials.2021.121024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
In recent years, directly damaging cell membrane therapeutic modalities have attracted great attention in the field of cancer therapy due to their critical role in guaranteeing essential cellular function. In this study, the transformable nanoassembly PEG-Ce6@PAEMA, consisting of the photosensitizer polyethylene glycol-chlorin-e6 (PEG-Ce6) and tumor pH-sensitive polymer poly(2-azepane ethyl methacrylate) (PAEMA), was developed for highly efficient membrane-targeted photodynamic therapy. The PAEMA core is rapidly protonated at the acidic tumor pH, resulting in the disassembly of PEG-Ce6@PAEMA and regeneration of PEG-Ce6. Subsequently, the resultant PEG-Ce6 with a very small size (~2.6 kDa) ensures deep penetration into tumor tissue and direct and rapid anchoring to the cancer cell membrane, eventually achieving superior tumor growth inhibition under light irradiation. Thus, this tumor acidity-driven transformable polymeric nanoassembly provides a simple but efficient strategy for membrane targeting cancer therapy.
Collapse
Affiliation(s)
- Weijia Xu
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China
| | - Junxia Wang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Liangjie Jin
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China
| | - Yueqiang Zhu
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China
| | - Xianzhu Yang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, PR China.
| |
Collapse
|
23
|
Mkhatshwa M, Moremi JM, Makgopa K, Manicum ALE. Nanoparticles Functionalised with Re(I) Tricarbonyl Complexes for Cancer Theranostics. Int J Mol Sci 2021; 22:6546. [PMID: 34207182 PMCID: PMC8235741 DOI: 10.3390/ijms22126546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, cancer is the second (to cardiovascular diseases) leading cause of death. Regardless of various efforts (i.e., finance, research, and workforce) to advance novel cancer theranostics (diagnosis and therapy), there have been few successful attempts towards ongoing clinical treatment options as a result of the complications posed by cancerous tumors. In recent years, the application of magnetic nanomedicine as theranostic devices has garnered enormous attention in cancer treatment research. Magnetic nanoparticles (MNPs) are capable of tuning the magnetic field in their environment, which positively impacts theranostic applications in nanomedicine significantly. MNPs are utilized as contrasting agents for cancer diagnosis, molecular imaging, hyperfusion region visualization, and T cell-based radiotherapy because of their interesting features of small size, high reactive surface area, target ability to cells, and functionalization capability. Radiolabelling of NPs is a powerful diagnostic approach in nuclear medicine imaging and therapy. The use of luminescent radioactive rhenium(I), 188/186Re, tricarbonyl complexes functionalised with magnetite Fe3O4 NPs in nanomedicine has improved the diagnosis and therapy of cancer tumors. This is because the combination of Re(I) with MNPs can improve low distribution and cell penetration into deeper tissues.
Collapse
Affiliation(s)
| | | | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| |
Collapse
|
24
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021; 9:691697. [PMID: 34178948 PMCID: PMC8223074 DOI: 10.3389/fchem.2021.691697] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
25
|
Yang Z, Zhang Z, Sun Y, Lei Z, Wang D, Ma H, Tang BZ. Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. Biomaterials 2021; 275:120934. [PMID: 34217019 DOI: 10.1016/j.biomaterials.2021.120934] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Intersystem crossing (ISC) is of great significance in photochemistry, and has a decisive influence on the properties of photosensitizers (PSs) for use in photodynamic therapy (PDT). However, the rationally design PSs with efficient ISC processes to implement superb reactive oxygen species (ROS) production is still a very challenging work. In this contribution, we described how a series of high-performance PSs were constructed through electron acceptor and donor engineering by integrating the smaller singlet-triplet energy gap (ΔEST) and larger spin-orbit coupling (SOC)-beneficial functional groups into the PS frameworks. Among the yielded various PSs, TaTIC was confirmed as the best candidate for application in PDT, which was due to its most outstanding ROS generation capability, bright near-infrared (NIR) fluorescence with peak over 840 nm, as well as desired aggregation-induced emission (AIE) features. Importantly, the ROS generation efficiency of TaTIC was even superior to that of some popularly used PSs, including the most reputable PS of Rose Bengal. In order to further extend therapeutic applications, TaTIC was encapsulated with biocompatible amphiphilic matrix and formulated into water-dispersed nanoparticles (NPs). More excitedly, the as-prepared TaTIC NPs gave wonderful PDT performance on tumor-bearing mouse model, actualizing complete tumor elimination outcomes. Coupled with excellent biosecurity, TaTIC NPs would be a promising theranostic agent for practical clinical application.
Collapse
Affiliation(s)
- Zengming Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuqing Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Hengchang Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
26
|
da Silva DB, da Silva CL, Davanzo NN, da Silva Souza R, Correa RJ, Tedesco AC, Riemma Pierre MB. Protoporphyrin IX (PpIX) loaded PLGA nanoparticles for topical Photodynamic Therapy of melanoma cells. Photodiagnosis Photodyn Ther 2021; 35:102317. [PMID: 33940210 DOI: 10.1016/j.pdpdt.2021.102317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Nanoparticles (Np) can increase drug efficacy and overcome problems associated with solubility and aggregation in a solution of PpIX. PURPOSE Evaluate if Np interferes in the photophysical and photobiological capacity of the PpIX comparing with free PpIX intended for topical PDT of melanoma. METHODS In vitro photophysical evaluation of Np-PpIX was carried out through singlet oxygen (1O2) quantum yield. In vitro cytotoxicity and phototoxicity assays have used murine melanoma cell culture. RESULTS The quantum yield of singlet oxygen has shown that Np did not influence the formation capacity of this reactive species. In the dark, all PpIX-Nps concentrations were less cytotoxic compared to free drugs. At a higher light dose (1500 mJ.cm2) 3.91 μg / mL PpIX had similar % viable cells for free and Np (∼34 %) meaning Nps did not interfere in the photodynamic effect of PpIX. However, at 7.91 μg / mL the phototoxicity increased for both (5.8 % viable cells for free versus 21.7 % for Nps). Despite the higher phototoxicity of free PpIX at this concentration, greater cytotoxicity in the dark was obtained (∼49 % viable cells for free versus ∼90.6 % Np) which means Nps protect the tumor tissue from the photodynamic action of PpIX. CONCLUSIONS Np is a potential delivery system for melanoma skin cancer, since it maintained the photophysical properties of PpIX and excellent in vitro phototoxicity effect against melanoma cells, reducing cell viability ∼80 % (7.91 μg / mL PpIX in Nps) and provides safe PDT (due to lower cytotoxicity in the dark).
Collapse
Affiliation(s)
- Darlan Barbosa da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| | - Carolina Loureiro da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| | - Nathalia Nossi Davanzo
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, University of São Paulo, Brazil
| | | | | | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, University of São Paulo, Brazil
| | - Maria Bernadete Riemma Pierre
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Yin T, Chu X, Cheng J, Liang J, Zhou J, Huo M. Hypoxia-Sensitive Zwitterionic Vehicle for Tumor-Specific Drug Delivery through Antifouling-Based Stable Biotransport Alongside PDT-Sensitized Controlled Release. Biomacromolecules 2021; 22:2233-2247. [PMID: 33900742 DOI: 10.1021/acs.biomac.1c00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A hypoxia-sensitive zwitterionic vehicle, DHigh-PEI-(A+P), with the ability for antifouling-mediated, stable biotransport and a photodynamic therapy (PDT)-sensitized hypoxic response for spatiotemporal controlled drug release, was developed for the tumor-specific delivery of chemotherapeutics and biomacromolecules. The amphiphilic DHigh-PEI-(A+P) was constructed from a betaine monomer (DMAAPS), a photosensitizer (PpIX), and an azobenzene-4,4'-dicarboxylic acid-modified polyethylenimine. Herein paclitaxel (PTX) was selected as a common model drug to verify the functions of the designed polymer. First, DHigh-PEI-(A+P) was demonstrated to spontaneously coassemble with PTX in aqueous solution with high drug loading (>35%). The desirable antifouling ability of DHigh-PEI-(A+P) was independently verified by efficient 4T1 endocytosis in serum alongside systemic tumor targeting. Furthermore, PpIX-mediated PDT was verified to aggravate and homogenize a hypoxic microenvironment at the cell and tissue levels for a sharp responsive disassembly of DHigh-PEI-(A+P) and thus a robust drug release in a well-controlled manner. As a result, DHigh-PEI-(A+P) amplified the therapeutic outcome of PTX on orthotopic 4T1 mouse models with minimal collateral damage. We proposed that DHigh-PEI-(A+P) may serve as a tailor-designed universal vehicle for the tumor-specific delivery of drugs with distinct physicochemical properties.
Collapse
Affiliation(s)
- Tingjie Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xuxin Chu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiejie Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jinlai Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Meirong Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
28
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
29
|
Wei R, Dong Y, Tu Y, Luo S, Pang X, Zhang W, Yao W, Tang W, Yang H, Wei X, Jiang X, Yuan Y, Yang R. Bioorthogonal Pretargeting Strategy for Anchoring Activatable Photosensitizers on Plasma Membranes for Effective Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14004-14014. [PMID: 33728894 DOI: 10.1021/acsami.1c01259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing novel activatable photosensitizers with excellent plasma membrane targeting ability is urgently needed for smart photodynamic therapy (PDT). Herein, a tumor acidity-activatable photosensitizer combined with a two-step bioorthogonal pretargeting strategy to anchor photosensitizers on the plasma membrane for effective PDT is developed. Briefly, artificial receptors are first anchored on the cell plasma membrane using cell-labeling agents (Az-NPs) via the enhanced permeability and retention effect to achieve the tumor cell labeling. Then, pH-sensitive nanoparticles (S-NPs) modified with dibenzocyclooctyne (DBCO) and chlorin e6 (Ce6) accumulate in tumor tissue and disassemble upon protonation of their tertiary amines in response to the acidic tumor environment, exposing the contained DBCO and Ce6. The selective, highly specific click reactions between DBCO and azide groups enable Ce6 to be anchored on the tumor cell surface. Upon laser irradiation, the cell membrane is severely damaged by the cytotoxic reactive oxygen species, resulting in remarkable cellular apoptosis. Taken together, the membrane-localized PDT by our bioorthogonal pretargeting strategy to anchor activatable photosensitizers on the plasma membrane provides a simple but effective method for enhancing the therapeutic efficacy of photosensitizers in anticancer therapy.
Collapse
Affiliation(s)
- Ruili Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yansong Dong
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yalan Tu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
| | - Shiwei Luo
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xinrui Pang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Wanli Zhang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Wang Yao
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Wenjie Tang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Youyong Yuan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, P.R. China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| |
Collapse
|
30
|
Sun L, Wang J, Yang B, Wang X, Yang G, Wang X, Jiang Y, Wang T, Jiang J. Assembled small organic molecules for photodynamic therapy and photothermal therapy. RSC Adv 2021; 11:10061-10074. [PMID: 35423511 PMCID: PMC8695661 DOI: 10.1039/d1ra00579k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 01/22/2023] Open
Abstract
As a worldwide major public health problem, cancer is one of the leading causes of death. Effective treatment of cancer is an important challenge. Therefore, photodynamic therapy (PDT) and photothermal therapy (PTT) have been widely applied as anti-tumour strategies due to their high-performance and limited side effects. Inspired by natural supramolecular architectures, such as cytochromes and photosystems, the hierarchical supramolecular assembly of small organic molecules has been developed for their use as photosensitizers or photothermal agents for PDT and PTT, respectively. In this manuscript, we will summarize the recent progress of PDT and PTT based on the assembly of small organic molecules.
Collapse
Affiliation(s)
- Lixin Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Jian Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Baochan Yang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Xinxin Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Gengxiang Yang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Xiqian Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Yuying Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
31
|
Hu Y, Wang X, Zhao P, Wang H, Gu W, Ye L. Nanozyme-catalyzed oxygen release from calcium peroxide nanoparticles for accelerated hypoxia relief and image-guided super-efficient photodynamic therapy. Biomater Sci 2021; 8:2931-2938. [PMID: 32314771 DOI: 10.1039/d0bm00187b] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia within solid tumors severely limits the efficacy of photodynamic therapy (PDT). Biocompatible calcium peroxide nanoparticles (CaO2 NPs) have superior oxygen generating capacity for hypoxia relief but the relatively slow release of O2 from CaO2 NPs hampers the PDT efficacy enhancement. Herein, manganese dioxide (MnO2) is applied as a nanozyme to facilitate O2 release from CaO2 NPs. It is disclosed that the accelerated O2 release ensures a rapid and efficient amplification of the O2 level for an increased cytotoxic singlet oxygen production with chlorin e6 and leads to a down-regulated hypoxia-responsive protein expression, which eventually translates to a super-efficient PDT as evidenced by the complete eradication of mice bearing subcutaneous 4T1 tumors. Meanwhile, MnO2 imparts an MR T1 imaging modality for tumor detection and treatment planning. These findings signify the essential role of accelerated and efficient hypoxia relief in PDT efficacy enhancement and provide an effective paradigm to overcome hypoxia-associated resistance for an enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Yuping Hu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Xuechun Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Peng Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Hao Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Wei Gu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Ling Ye
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| |
Collapse
|
32
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Akhter MH, Ahmad J, Javed MN, Haque R, Khalilullah H, Gupta M, Ali J. Porphyrin-Based Nanomaterials for Cancer Nanotheranostics. NANOTECHNOLOGY IN THE LIFE SCIENCES 2021:275-295. [DOI: 10.1007/978-3-030-74330-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
34
|
Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021; 16:24-46. [PMID: 33613728 PMCID: PMC7878458 DOI: 10.1016/j.ajps.2020.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
In the last decade, the use of nanotheranostics as emerging diagnostic and therapeutic tools for various diseases, especially cancer, is held great attention. Up to date, several approaches have been employed in order to develop smart nanotheranostics, which combine bioactive targeting on specific tissues as well as diagnostic properties. The nanotheranostics can deliver therapeutic agents by concomitantly monitor the therapy response in real-time. Consequently, the possibility of over- or under-dosing is decreased. Various non-invasive imaging techniques have been used to quantitatively monitor the drug delivery processes. Radiolabeling of nanomaterials is widely used as powerful diagnostic approach on nuclear medicine imaging. In fact, various radiolabeled nanomaterials have been designed and developed for imaging tumors and other lesions due to their efficient characteristics. Inorganic nanoparticles as gold, silver, silica based nanomaterials or organic nanoparticles as polymers, carbon based nanomaterials, liposomes have been reported as multifunctional nanotheranostics. In this review, the imaging modalities according to their use in various diseases are summarized, providing special details for radiolabeling. In further, the most current nanotheranostics categorized via the used nanomaterials are also summed up. To conclude, this review can be beneficial for medical and pharmaceutical society as well as material scientists who work in the field of nanotheranostics since they can use this research as guide for producing newer and more efficient nanotheranostics.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Neslihan Üstündağ Okur
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Istanbul, Turkey
| | - Ioannis D. Karantas
- 2nd Clinic of Internal Medicine, Hippokration General Hospital, Thessaloniki, Greece
| | - Mehmet Evren Okur
- Faculty of Pharmacy, Department of Pharmacology, University of Health Sciences, Istanbul, Turkey
| | | |
Collapse
|
35
|
Chong WM, Lim V, Abd Kadir E. Hydrophobically modified PEGylated glycol chitosan nanoparticles: synthesis, characterisation and anticancer properties. NEW J CHEM 2021; 45:11359-11370. [DOI: 10.1039/d1nj01710a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A novel palmitoylated glycol chitosan polymer grafted with PEG (PGC-PEG) was successfully developed to form amphiphilic micelles in aqueous solution.
Collapse
Affiliation(s)
- Wai Mun Chong
- Integrative Medicine Cluster
- Advanced Medical and Dental Institute
- Universiti Sains Malaysia
- 13200 Kepala Batas
- Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster
- Advanced Medical and Dental Institute
- Universiti Sains Malaysia
- 13200 Kepala Batas
- Malaysia
| | - Erazuliana Abd Kadir
- Integrative Medicine Cluster
- Advanced Medical and Dental Institute
- Universiti Sains Malaysia
- 13200 Kepala Batas
- Malaysia
| |
Collapse
|
36
|
Sayed SM, Jia HR, Jiang YW, Zhu YX, Ma L, Yin F, Hussain I, Khan A, Ma Q, Wu FG, Lu X. Photostable AIE probes for wash-free, ultrafast, and high-quality plasma membrane staining. J Mater Chem B 2021; 9:4303-4308. [PMID: 33908594 DOI: 10.1039/d1tb00049g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasma membrane (PM), a fundamental building component of a cell, is responsible for a variety of cell functions and biological processes. However, it is still challenging to acquire its morphology and morphological variation information via an effective approach. Herein, we report a PM imaging study regarding an aggregation-induced emission luminogen (AIEgen) called tetraphenylethylene-naphthalimide+ (TPE-NIM+), which is derived from our previously reported tetraphenylethylene-naphthalimide (TPE-NIM). The designed AIEgen (TPE-NIM+) shows significant characteristics of ultrafast staining, high photostability, wash-free property, and long retention time at the PM, which can structurally be correlated with its positively charged quaternary amine and hydrophobic moiety. TPE-NIM+ is further applied for staining of different cell lines, proving its universal PM imaging capability. Most importantly, we demonstrate that TPE-NIM+ can clearly delineate the contours of densely packed living cells with high cytocompatibility. Therefore, TPE-NIM+ as a PM imaging reagent superior to currently available commercial PM dyes shall find a number of applications in the biological/biomedical fields and even beyond.
Collapse
Affiliation(s)
- Sayed Mir Sayed
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Feifei Yin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Imtiaz Hussain
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Arshad Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Qian Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| |
Collapse
|
37
|
Tu Y, Dong Y, Wang K, Shen S, Yuan Y, Wang J. Intercellular delivery of bioorthogonal chemical receptors for enhanced tumor targeting and penetration. Biomaterials 2020; 259:120298. [DOI: 10.1016/j.biomaterials.2020.120298] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/25/2022]
|
38
|
Xu X, Huang B, Zeng Z, Chen J, Huang Z, Guan Z, Chen M, Huang Y, Zhao C. Broaden sources and reduce expenditure: Tumor-specific transformable oxidative stress nanoamplifier enabling economized photodynamic therapy for reinforced oxidation therapy. Theranostics 2020; 10:10513-10530. [PMID: 32929363 PMCID: PMC7482813 DOI: 10.7150/thno.49731] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer cells immersed in inherent oxidative stress are more vulnerable to exogenous oxidative damages than normal cells. Reactive oxygen species (ROS)-mediated oxidation therapy preferentially aggravating tumor oxidative stress to disrupt redox homeostasis, has emerged as an effective and specific anticancer treatment. Herein, following an ingenious strategy of “broaden sources and reduce expenditure”, we designed a versatile tumor-specific oxidative stress nanoamplifier enabling economized photodynamic therapy (PDT), to achieve synergistic oxidative stress explosion for superior oxidation therapy. Methods: Cinnamaldehyde (CA) as a therapeutic ROS generator was first conjugated to hyaluronic acid (HA) through acid-labile hydrazone bond to synthesize tailored amphiphilic HA@CA conjugates, which could surprisingly self-assemble into uniform nanofibers in aqueous media. Photosensitizer protoporphyrin (PpIX) was efficiently encapsulated into HA@CA nanofibers and transformed HA@CA nanofibers to final spherical HA@CAP. Results: With beneficial pH-responsiveness and morphology transformation, improved bioavailability and selective tumor accumulation, HA@CAP combining ROS-based dual chemo/photodynamic treatment modalities could induce cytotoxic ROS generation in a two-pronged approach to amplify tumor oxidative stress, termed “broaden sources”. Moreover, utilizing CA-induced H2O2 production and cascaded Fenton reaction in mitochondria to consume intracellular overloaded Fe(II), HA@CAP could skillfully block endogenic heme biosynthesis pathway on site to restrain undesired elimination of PpIX for economized PDT, termed “reduce expenditure”. Both in vitro and in vivo results demonstrated the superior antitumor performance of HA@CAP. Conclusion: This study offered an inspiring strategy of “broaden sources and reduce expenditure” to specifically boost tumor oxidative stress for reinforced oxidation therapy.
Collapse
|
39
|
Zhu YX, Jia HR, Duan QY, Liu X, Yang J, Liu Y, Wu FG. Photosensitizer-Doped and Plasma Membrane-Responsive Liposomes for Nuclear Drug Delivery and Multidrug Resistance Reversal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36882-36894. [PMID: 32666795 DOI: 10.1021/acsami.0c09110] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clinically approved doxorubicin (Dox)-loaded liposomes (e.g., Doxil) guarantee good biosafety, but their insufficient nuclear delivery of Dox (<0.4%) after cellular uptake significantly hampers their final anticancer efficacy. Here, we report that simply doping protoporphyrin IX (PpIX, a commonly used hydrophobic photosensitizer) into the lipid bilayers of Dox-loaded liposomes (the resultant product is termed PpIX/Dox liposomes) is a feasible way to promote the nuclear delivery of Dox. This facile strategy relies on a unique property of PpIX-it presents considerably higher affinity for the real plasma membrane over its liposomal carrier, which drives the doped PpIX molecules to detach from the liposomes when encountering cancer cells. We demonstrate that this process can trigger the efficient release of the loaded Dox molecules and allow them to enter the nuclei of MCF-7 breast cancer cells without being trapped by lysosomes. Regarding the drug-resistant MCF-7/ADR cells, the aberrant activation of the efflux pumps in the plasma membranes expels the internalized Dox. However, we strikingly find that the robust drug resistance can be reversed upon mild laser irradiation because the photodynamic effect of PpIX disrupts the drug efflux system (e.g., P-glycoprotein) and facilitates the nuclear entry of Dox. As a proof-of-concept, this PpIX doping strategy is also applicable for enhancing the effectiveness of cisplatin-loaded liposomes against both A549 and A549/DDP lung cancer cells. In vivo experimental results prove that a single injection of PpIX/Dox liposomes completely impedes the growth of MCF-7 tumors in nude mice within 2 weeks and, in combination with laser irradiation, can synergistically ablate MCF-7/ADR tumors. Biosafety assessments reveal no significant systemic toxicity caused by PpIX/Dox liposomes. This work exemplifies a facile method to modulate the subcellular fate of liposomal drugs and may inspire the optimization of nanopharmaceuticals in the near future.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Jing Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Yi Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
40
|
Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, Chen Y, Luo X, Zhang H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020; 237:119827. [PMID: 32036302 DOI: 10.1016/j.biomaterials.2020.119827] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT), as a non-invasive therapeutic modality that is alternative to radiotherapy and chemotherapy, is extensively investigated for cancer treatments. Although conventional organic photosensitizers (PSs) are still widely used and have achieved great progresses in PDT, the disadvantages such as hydrophobicity, poor stability within PDT environment and low cell/tissue specificity largely limit their clinical applications. Consequently, nano-agents with promising physicochemical and optical properties have emerged as an attractive alternative to overcome these drawbacks of traditional PSs. Herein, the up-to-date advances in the fabrication and fascinating applications of various nanomaterials in PDT have been summarized, including various types of nanoparticles, carbon-based nanomaterials, and two-dimensional nanomaterials, etc. In addition, the current challenges for the clinical use of PDT, and the corresponding strategies to address these issues, as well as future perspectives on further improvement of PDT have also been discussed.
Collapse
Affiliation(s)
- Jianming Chen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Zhongjian Xie
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Qiqiao Zeng
- Department of Ophthalmology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen City, Guangdong Province, 518020, PR China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Xiaoling Luo
- Department of Ophthalmology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen City, Guangdong Province, 518020, PR China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
41
|
Dai J, Xu M, Wang Q, Yang J, Zhang J, Cui P, Wang W, Lou X, Xia F, Wang S. Cooperation therapy between anti-growth by photodynamic-AIEgens and anti-metastasis by small molecule inhibitors in ovarian cancer. Am J Cancer Res 2020; 10:2385-2398. [PMID: 32104509 PMCID: PMC7019153 DOI: 10.7150/thno.41708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
Metastasis is one of the main causes of death and treatment failure in ovarian cancer. Some small molecule inhibitors can effectively inhibit the metastasis of primary tumors. However, they do not kill the primary tumor cells, which may lead to continuous proliferation. Herein, we have prepared a multifunctional nanoparticles named TPD@TB/KBU2046, which consisted of three functional moieties: (1) KBU2046 (small molecule inhibitor) that can inhibit the metastasis of the primary tumors, (2) TB (photodynamic-AIEgens) that may suppress the growth of the primary tumors, and (3) TPD, which contains TMTP1 (a targeting peptide, which specifically binds to highly metastatic tumor cells) that can enhance the TB/KBU2046 dosage in the tumor site. Methods: The TPD@TB/KBU2046 was prepared by nano-precipitation method. We linked the targeting peptide (TMTP1) to the nanoparticles via amidation reaction. TPD@TB/KBU2046 nanoparticles were characterized for encapsulation efficiency, particle size, absorption spectra, emission spectra and ROS production. The combinational efficacy in image-guided anti-metastasis and photodynamic therapy of TPD@TB/KBU2046 was explored both in vitro and in vivo. Results: The TPD@TB/KBU2046 showed an average hydrodynamic size of approximately 50 nm with good stability. In vitro, TPD@TB/KBU2046 not only inhibited the metastasis of the tumors, but also suppressed the growth of the tumors under AIEgens-mediated photodynamic therapy. In vivo, we confirmed that TPD@TB/KBU2046 has the therapeutic effects of anti-tumor growth and anti-metastasis through subcutaneous and orthotopic ovarian tumor models. Conclusion: Our findings provided an effective strategy to compensate for the congenital defects of some small molecule inhibitors and thus enhanced the therapeutic efficacy of ovarian cancer.
Collapse
|
42
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
43
|
Zheng Y, Li Z, Chen H, Gao Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur J Pharm Sci 2020; 144:105213. [PMID: 31926941 DOI: 10.1016/j.ejps.2020.105213] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
Compared with the traditional treatment, photodynamic therapy (PDT) in the treatment of malignant tumors has the advantages of less damage to normal tissues, quick therapeutic effect, and ability to repeat treatments to the same site. However, most of the traditional photosensitizers (PSs) have severe skin photosensitization, poor tumor targeting, and low therapeutic effect in hypoxic tumor environment, which limit the application of PDT. Nanoparticle-based drug delivery systems can improve the targeting of PSs and release drugs with controllable photoactivity at predetermined locations, so as to achieve desired therapeutic effects with minimal side-effects. The present review summarizes the current nanoparticle platforms for PDT, and offers the description of different strategies including tumor-targeted delivery, controlled-release of PSs and the triggered photoactivity to achieve controllable PDT by nanoparticle-based drug delivery systems. The challenges and prospects for further development of intelligent PSs for PDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China.
| |
Collapse
|
44
|
Chen Y, Gao P, Wu T, Pan W, Li N, Tang B. Organelle-localized radiosensitizers. Chem Commun (Camb) 2020; 56:10621-10630. [DOI: 10.1039/d0cc03245j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This feature article highlights the recent advances of organelle-localized radiosensitizers and discusses the current challenges and future directions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Peng Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Tong Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| |
Collapse
|
45
|
Cheng H, Fan GL, Fan JH, Yuan P, Deng FA, Qiu XZ, Yu XY, Li SY. Epigenetics-inspired photosensitizer modification for plasma membrane-targeted photodynamic tumor therapy. Biomaterials 2019; 224:119497. [DOI: 10.1016/j.biomaterials.2019.119497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
|
46
|
Lin F, Jia HR, Wu FG. Glycol Chitosan: A Water-Soluble Polymer for Cell Imaging and Drug Delivery. Molecules 2019; 24:E4371. [PMID: 31795385 PMCID: PMC6930495 DOI: 10.3390/molecules24234371] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Glycol chitosan (GC), a water-soluble chitosan derivative with hydrophilic ethylene glycol branches, has both hydrophobic segments for the encapsulation of various drugs and reactive functional groups for facile chemical modifications. Over the past two decades, a variety of molecules have been physically encapsulated within or chemically conjugated with GC and its derivatives to construct a wide range of functional biomaterials. This review summarizes the recent advances of GC-based materials in cell surface labeling, multimodal tumor imaging, and encapsulation and delivery of drugs (including chemotherapeutics, photosensitizers, nucleic acids, and antimicrobial agents) for combating cancers and microbial infections. Besides, different strategies for GC modifications are also highlighted with the aim to shed light on how to endow GC and its derivatives with desirable properties for therapeutic purposes. In addition, we discuss both the promises and challenges of the GC-derived biomaterials.
Collapse
Affiliation(s)
| | | | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (F.L.); (H.-R.J.)
| |
Collapse
|
47
|
Jaymand M. Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a de Novo Clinical Approach against Cancer? ACS Biomater Sci Eng 2019; 6:134-166. [DOI: 10.1021/acsbiomaterials.9b00802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
48
|
Zhang J, Fang F, Liu B, Tan JH, Chen WC, Zhu Z, Yuan Y, Wan Y, Cui X, Li S, Tong QX, Zhao J, Meng XM, Lee CS. Intrinsically Cancer-Mitochondria-Targeted Thermally Activated Delayed Fluorescence Nanoparticles for Two-Photon-Activated Fluorescence Imaging and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41051-41061. [PMID: 31602976 DOI: 10.1021/acsami.9b14552] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A recent breakthrough in the discovery of thermally activated delayed fluorescence (TADF) emitters characterized by small single-triplet energy offsets (ΔEST) offers a wealth of new opportunities to exploit high-performance metal-free photosensitizers. In this report, two intrinsically cancer-mitochondria-targeted TADF emitters-based nanoparticles (TADF NPs) have been developed for two-photon-activated photodynamic therapy (PDT) and fluorescence imaging. The as-prepared TADF NPs integrate the merits of (1) high 1O2 quantum yield of 52%, (2) sufficient near-infrared light penetration depth due to two-photon activation, and (3) excellent structure-inherent mitochondria-targeting capabilities without extra chemical or physical modifications, inducing remarkable endogenous mitochondria-specific reactive oxygen species production and excellent cancer-cell-killing ability at an ultralow light irradiance. We believe that the development of such intrinsically multifunctional TADF NPs stemming from a single molecule will provide new insights into exploration of novel PDT agents with strong photosensitizing ability for various biomedical applications.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences , Beijing Institute of Technology , Beijing 100811 , P. R. China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences , Beijing Institute of Technology , Beijing 100811 , P. R. China
| | - Bin Liu
- School of Science, Westlake Institute for Advanced Study , Westlake University , 18 Shilongshan Road , Hangzhou 310024 , P. R. China
- Department of Physics , Fudan University , Shanghai 200438 , P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province , Shantou University , 243 University Road , Shantou , Guangdong 515063 , P. R. China
| | - Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Wen-Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Zelin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Yi Yuan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province , Shantou University , 243 University Road , Shantou , Guangdong 515063 , P. R. China
| | - Junfang Zhao
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xiang-Min Meng
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| |
Collapse
|
49
|
Sun YD, Zhu YX, Zhang X, Jia HR, Xia Y, Wu FG. Role of Cholesterol Conjugation in the Antibacterial Photodynamic Therapy of Branched Polyethylenimine-Containing Nanoagents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14324-14331. [PMID: 31580079 DOI: 10.1021/acs.langmuir.9b02727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy is a promising approach for fighting bacterial infections because it can induce few side effects, develop no drug resistance, and realize precise treatment. However, most photosensitizers (PSs) have the disadvantages of poor water-solubility, severe self-quenching, and potential toxicity. Here, the cationic polymer polyethyleneimine (PEI) was used to prepare a cholesterol- and chlorin e6 (Ce6, a common PS)-conjugated compound via the carboxyl-amine reaction or the acyl chloride-amine reaction (abbreviated as Chol-PEI-Ce6). The as-prepared Chol-PEI-Ce6 molecules can self-assemble into close-to-spherical nanoparticles (NPs) with an average diameter of ∼15 nm and can bind to the bacterial surfaces via the synergistic hydrophobic insertion of the cholesterol moieties and electrostatic interaction between the cationic amine groups of PEI and the bacterial surfaces. Upon light irradiation, the NPs can effectively inactivate both Gram-positive and Gram-negative bacteria. Besides, the interaction between Chol-PEI-Ce6 NPs and bacteria markedly enhances the production of intracellular reactive oxygen species after light irradiation, which may account for the excellent antibacterial performance of the NPs. More importantly, the NPs possess negligible dark cytotoxicity and good hemocompatibility. Therefore, the present work may have strong implications for developing novel antibacterial agents to fight against bacterial infections.
Collapse
Affiliation(s)
- Yun-Dan Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , 136 HanZhong Road , Nanjing 210029 , P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| |
Collapse
|
50
|
Cheng H, Yuan P, Fan G, Zhao L, Zheng R, Yang B, Qiu X, Yu X, Li S, Zhang X. Chimeric peptide nanorods for plasma membrane and nuclear targeted photosensitizer delivery and enhanced photodynamic therapy. APPLIED MATERIALS TODAY 2019; 16:120-131. [DOI: 10.1016/j.apmt.2019.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|