1
|
Cai H, Xing X, Su Y, Yang C. Innovative applications and future perspectives of chromatography-mass spectrometry in drug research. Front Pharmacol 2025; 16:1529468. [PMID: 40206083 PMCID: PMC11979114 DOI: 10.3389/fphar.2025.1529468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Chromatography coupled with mass spectrometry (MS) has emerged as a cornerstone analytical technique in drug research. Over the years, advancements in chromatography-MS have significantly enhanced its capabilities, leading to improved sensitivity, specificity, and throughput. This review explores the innovative applications of chromatography-MS in drug research, particularly focusing on its role in drug absorption, distribution, metabolism, excretion (ADME), toxicity evaluation, and personalized medicine. It also addresses the future perspectives of this powerful technique, including challenges and potential solutions, and highlights how emerging trends such as high spatial resolution imaging and multimodal integration could revolutionize drug discovery and development. Through these innovations, chromatography-MS promises to contribute substantially to the development of more effective, safer, and personalized therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Ying Su
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chunhui Yang
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Gong Y, Hopefl R, Li T, Hooker AC, Silva DA, Alam K, Ducharme M, Moody R, Saha P, Babiskin A. Leveraging Model Master Files for Long-Acting Injectables. Pharm Res 2025:10.1007/s11095-025-03824-4. [PMID: 39875758 DOI: 10.1007/s11095-025-03824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
The U.S. Food and Drug Administration (FDA) and the Center for Research on Complex Generics (CRCG) hosted a public workshop on May 2-3, 2024, titled "Considerations and Potential Regulatory Applications for a Model Master File". The workshop aimed to discuss the application of the Model Master File (MMF) concept in regulatory submissions that contain model integrated evidence (MIE), improving model sharing, model standardization, regulatory consistency, and regulatory efficiency. On Day 1, there was a session dedicated to MMF applications for long-acting injectables (LAIs). This perspective summarizes presentations, panel discussion, and small group discussion for the potential applications of MMFs in LAI product development, including case studies and potential situations in which MMFs can support regulatory submissions. The scientific presentations discussed the application of MMFs in mechanistic physiologically based pharmacokinetic (PBPK), multiphysics simulation, and population pharmacokinetics (popPK) models, as well as the potential utility of a model-integrated bioequivalence (MI-BE) framework. Additionally, challenges and considerations of implementing MMFs for LAIs were discussed in the panel and small groups. The anticipated benefits of MMFs are recognized among model developers, industries, and regulators.
Collapse
Affiliation(s)
- Yuqing Gong
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, , MD, 20993, USA
| | - Robert Hopefl
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, , MD, 20993, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | | | | | - Khondoker Alam
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, , MD, 20993, USA
| | | | - Rebecca Moody
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, , MD, 20993, USA.
| |
Collapse
|
3
|
Bettonte S, Berton M, Battegay M, Stader F, Marzolini C. Development of a physiologically-based pharmacokinetic model to simulate the pharmacokinetics of intramuscular antiretroviral drugs. CPT Pharmacometrics Syst Pharmacol 2024; 13:781-794. [PMID: 38429889 PMCID: PMC11098154 DOI: 10.1002/psp4.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
There is growing interest in the use of long-acting (LA) injectable drugs to improve treatment adherence. However, their long elimination half-life complicates the conduct of clinical trials. Physiologically-based pharmacokinetic (PBPK) modeling is a mathematical tool that allows to simulate unknown clinical scenarios for LA formulations. Thus, this work aimed to develop and verify a mechanistic intramuscular PBPK model. The framework describing the release of a LA drug from the depot was developed by including both the physiology of the injection site and the physicochemical properties of the drug. The framework was coded in Matlab® 2020a and implemented in our existing PBPK model for the verification step using clinical data for LA cabotegravir, rilpivirine, and paliperidone. The model was considered verified when the simulations were within twofold of observed data. Furthermore, a local sensitivity analysis was conducted to assess the impact of various factors relevant for the drug release from the depot on pharmacokinetics. The PBPK model was successfully verified since all predictions were within twofold of observed clinical data. Peak concentration, area under the concentration-time curve, and trough concentration were sensitive to media viscosity, drug solubility, drug density, and diffusion layer thickness. Additionally, inflammation was shown to impact the drug release from the depot. The developed framework correctly described the release and the drug disposition of LA formulations upon intramuscular administration. It can be implemented in PBPK models to address pharmacological questions related to the use of LA formulations.
Collapse
Affiliation(s)
- Sara Bettonte
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical ResearchUniversity Hospital BaselBaselSwitzerland
- Faculty of MedicineUniversity of BaselBaselSwitzerland
| | - Mattia Berton
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical ResearchUniversity Hospital BaselBaselSwitzerland
- Faculty of MedicineUniversity of BaselBaselSwitzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical ResearchUniversity Hospital BaselBaselSwitzerland
- Faculty of MedicineUniversity of BaselBaselSwitzerland
| | | | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical ResearchUniversity Hospital BaselBaselSwitzerland
- Faculty of MedicineUniversity of BaselBaselSwitzerland
- Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and PathologyUniversity Hospital Lausanne and University of LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Amaral Silva D, Le Merdy M, Alam KD, Wang Y, Bao Q, Malavia N, Burgess D, Lukacova V. Development of Mechanistic In Vitro-In Vivo Extrapolation to Support Bioequivalence Assessment of Long-Acting Injectables. Pharmaceutics 2024; 16:552. [PMID: 38675213 PMCID: PMC11054330 DOI: 10.3390/pharmaceutics16040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Long-acting injectable (LAI) formulations provide sustained drug release over an extended period ranging from weeks to several months to improve efficacy, safety, and compliance. Nevertheless, many challenges arise in the development and regulatory assessment of LAI drug products due to a limited understanding of the tissue response to injected particles (e.g., inflammation) impacting in vivo performance. Mechanism-based in silico methods may support the understanding of LAI-physiology interactions. The objectives of this study were as follows: (1) to use a mechanistic modeling approach to delineate the in vivo performance of DepoSubQ Provera® and formulation variants in preclinical species; (2) to predict human exposure based on the knowledge gained from the animal model. The PBPK model evaluated different elements involved in LAI administration and showed that (1) the effective in vivo particle size is potentially larger than the measured in vitro particle size, which could be due to particle aggregation at the injection site, and (2) local inflammation is a key process at the injection site that results in a transient increase in depot volume. This work highlights how a mechanistic modeling approach can identify critical physiological events and product attributes that may affect the in vivo performance of LAIs.
Collapse
Affiliation(s)
- Daniela Amaral Silva
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, CA 93534, USA; (M.L.M.); (V.L.)
| | - Maxime Le Merdy
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, CA 93534, USA; (M.L.M.); (V.L.)
| | - Khondoker Dedarul Alam
- Division of Quantitative Methods and Modeling, Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (K.D.A.); (Y.W.)
| | - Yan Wang
- Division of Quantitative Methods and Modeling, Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (K.D.A.); (Y.W.)
| | - Quanying Bao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; (Q.B.); (N.M.); (D.B.)
| | - Nilesh Malavia
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; (Q.B.); (N.M.); (D.B.)
| | - Diane Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; (Q.B.); (N.M.); (D.B.)
| | - Viera Lukacova
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, CA 93534, USA; (M.L.M.); (V.L.)
| |
Collapse
|
5
|
Siemons M, Schroyen B, Darville N, Goyal N. Role of Modeling and Simulation in Preclinical and Clinical Long-Acting Injectable Drug Development. AAPS J 2023; 25:99. [PMID: 37848754 DOI: 10.1208/s12248-023-00864-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Innovations in the field of long-acting injectable drug development are increasingly being reported. More advanced in vitro and in vivo characterization can improve our understanding of the injection space and aid in describing the long-acting injectable (LAI) drug's behavior at the injection site more mechanistically. These innovations may enable unlocking the potential of employing a model-based framework in the LAI preclinical and clinical space. This review provides a brief overview of the LAI development process before delving deeper into the current status of modeling and simulation approaches in characterizing the preclinical and clinical LAI pharmacokinetics, focused on aqueous crystalline suspensions. A closer look is provided on in vitro release methods, available biopharmaceutical models and reported in vitro/in vivo correlations (IVIVCs) that may advance LAI drug development. The overview allows identifying the opportunities for use of model-informed drug development approaches and potential gaps where further research may be most warranted. Continued investment in improving our understanding of LAI PK across species through translational approaches may facilitate the future development of LAI drug products.
Collapse
Affiliation(s)
- Maxime Siemons
- Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, Beerse, Belgium.
| | - Bram Schroyen
- Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, Beerse, Belgium
| | - Nicolas Darville
- Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, Beerse, Belgium
| | - Navin Goyal
- Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, Beerse, Belgium
| |
Collapse
|
6
|
Moffatt K, Tekko IA, Vora L, Volpe-Zanutto F, Hutton ARJ, Mistilis J, Jarrahian C, Akhavein N, Weber AD, McCarthy HO, Donnelly RF. Development and Evaluation of Dissolving Microarray Patches for Co-administered and Repeated Intradermal Delivery of Long-acting Rilpivirine and Cabotegravir Nanosuspensions for Paediatric HIV Antiretroviral Therapy. Pharm Res 2023; 40:1673-1696. [PMID: 36224503 PMCID: PMC10421828 DOI: 10.1007/s11095-022-03408-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Whilst significant progress has been made to defeat HIV infection, the efficacy of antiretroviral (ARV) therapy in the paediatric population is often hindered by poor adherence. Currently, two long-acting (LA) intramuscular injectable nanosuspensions of rilpivirine (RPV) and cabotegravir (CAB) are in clinical development for paediatric populations. However, administration requires access to healthcare resources, is painful, and can result in needle-stick injuries to the end user. To overcome these barriers, this proof-of-concept study was developed to evaluate the intradermal delivery of RPV LA and CAB LA via self-disabling dissolving microarray patches (MAPs). METHODS Dissolving MAPs of two conformations, a conventional pyramidal and a bilayer design, were formulated, with various nanosuspensions of RPV and CAB incorporated within the respective MAP matrix. MAPs were mechanically robust and were capable of penetrating ex vivo skin with intradermal ARV deposition. RESULTS In a single-dose in vivo study in rats, all ARV MAPs demonstrated sustained release profiles, with therapeutically relevant plasma concentrations of RPV and CAB detected to at least 63 and 28 d, respectively. In a multi-dose in vivo study, repeated MAP applications at 14-d intervals maintained therapeutically relevant plasma concentrations throughout the duration of the study. CONCLUSIONS These results illustrate the potential of the platform to repeatedly maintain plasma concentrations for RPV and CAB. As such, these MAPs could represent a viable option to improve adherence in the paediatric population, one that is capable of being painlessly administered in the comfort of the patient's own home on a biweekly or less frequent basis.
Collapse
Affiliation(s)
- Kurtis Moffatt
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | | | - Nima Akhavein
- ViiV Healthcare, 1250 South Collegeville Rd, Collegeville, PA, 19426, USA
| | - Andrew D Weber
- ViiV Healthcare, 410 Blackwell Street, Durham, 27701, NC, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
7
|
Bauer A, Berben P, Chakravarthi SS, Chattorraj S, Garg A, Gourdon B, Heimbach T, Huang Y, Morrison C, Mundhra D, Palaparthy R, Saha P, Siemons M, Shaik NA, Shi Y, Shum S, Thakral NK, Urva S, Vargo R, Koganti VR, Barrett SE. Current State and Opportunities with Long-acting Injectables: Industry Perspectives from the Innovation and Quality Consortium "Long-Acting Injectables" Working Group. Pharm Res 2023; 40:1601-1631. [PMID: 36811809 DOI: 10.1007/s11095-022-03391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/06/2022] [Indexed: 02/24/2023]
Abstract
Long-acting injectable (LAI) formulations can provide several advantages over the more traditional oral formulation as drug product opportunities. LAI formulations can achieve sustained drug release for extended periods of time, which results in less frequent dosing requirements leading to higher patient adherence and more optimal therapeutic outcomes. This review article will provide an industry perspective on the development and associated challenges of long-acting injectable formulations. The LAIs described herein include polymer-based formulations, oil-based formulations, and crystalline drug suspensions. The review discusses manufacturing processes, including quality controls, considerations of the Active Pharmaceutical Ingredient (API), biopharmaceutical properties and clinical requirements pertaining to LAI technology selection, and characterization of LAIs through in vitro, in vivo and in silico approaches. Lastly, the article includes a discussion around the current lack of suitable compendial and biorelevant in vitro models for the evaluation of LAIs and its subsequent impact on LAI product development and approval.
Collapse
Affiliation(s)
- Andrea Bauer
- Sunovion Pharmaceuticals, Marlborough, MA, 01752, USA
| | | | | | | | - Ashish Garg
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Ye Huang
- AbbVie Inc., North Chicago, IL, 60064, USA
| | | | | | | | - Pratik Saha
- GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Maxime Siemons
- Janssen R&D, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Yi Shi
- AbbVie Inc., North Chicago, IL, 60064, USA
| | - Sara Shum
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | | | - Shweta Urva
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Ryan Vargo
- Merck & Co., Inc., Rahway, NJ, 07065, USA
| | | | | |
Collapse
|
8
|
Holm R, Lee RW, Glassco J, DiFranco N, Bao Q, Burgess DJ, Lukacova V, Alidori S. Long-Acting Injectable Aqueous Suspensions-Summary From an AAPS Workshop. AAPS J 2023; 25:49. [PMID: 37118621 DOI: 10.1208/s12248-023-00811-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Through many years of clinical application of long-acting injectables, there is clear proof that this type of formulation does not just provide the patient with convenience, but more importantly a more effective treatment of the medication provided. The formulation approach therefore contains huge untapped potential to improve the quality of life of many patients with a variety of different diseases. This review provides a summary of some of the central talks provided at the workshop with focus on aqueous suspensions and their use as a long-acting injectable. Elements as formulation, manufacturing, in vitro dissolution methods, in vitro and in vivo correlation, in silico modelling provide an insight into some of the current understandings, learnings, and not least gaps in the field.
Collapse
Affiliation(s)
- René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Robert W Lee
- Lubrizol Life Science, Health, CDMO Division, 3894 Courtney St., Bethlehem, Pennsylvania, 18017, USA
| | - Joey Glassco
- Lubrizol Life Science, Health: 9911 Brecksville Road, Cleveland, Ohio, 44141, USA
| | - Nicholas DiFranco
- Lubrizol Life Science, Health: 9911 Brecksville Road, Cleveland, Ohio, 44141, USA
| | - Quanying Bao
- School of Pharmacy, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Viera Lukacova
- Simulations Plus, Inc., 42505 10Th Street, Lancaster, California, 93534, USA
| | - Simone Alidori
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, Pennsylvania, 19426-2990, USA
| |
Collapse
|
9
|
Madi S, Xie F, Farhangi K, Hsu CY, Cheng SH, Aweda T, Radaram B, Slania S, Lambert T, Rambo M, Skedzielewski T, Cole A, Sherina V, McKearnan S, Tran H, Alsaid H, Doan M, Stokes AH, O’Hagan DT, Maruggi G, Bertholet S, Temmerman ST, Johnson R, Jucker BM. MRI/PET multimodal imaging of the innate immune response in skeletal muscle and draining lymph node post vaccination in rats. Front Immunol 2023; 13:1081156. [PMID: 36713458 PMCID: PMC9874296 DOI: 10.3389/fimmu.2022.1081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The goal of this study was to utilize a multimodal magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging approach to assess the local innate immune response in skeletal muscle and draining lymph node following vaccination in rats using two different vaccine platforms (AS01 adjuvanted protein and lipid nanoparticle (LNP) encapsulated Self-Amplifying mRNA (SAM)). MRI and 18FDG PET imaging were performed temporally at baseline, 4, 24, 48, and 72 hr post Prime and Prime-Boost vaccination in hindlimb with Cytomegalovirus (CMV) gB and pentamer proteins formulated with AS01, LNP encapsulated CMV gB protein-encoding SAM (CMV SAM), AS01 or with LNP carrier controls. Both CMV AS01 and CMV SAM resulted in a rapid MRI and PET signal enhancement in hindlimb muscles and draining popliteal lymph node reflecting innate and possibly adaptive immune response. MRI signal enhancement and total 18FDG uptake observed in the hindlimb was greater in the CMV SAM vs CMV AS01 group (↑2.3 - 4.3-fold in AUC) and the MRI signal enhancement peak and duration were temporally shifted right in the CMV SAM group following both Prime and Prime-Boost administration. While cytokine profiles were similar among groups, there was good temporal correlation only between IL-6, IL-13, and MRI/PET endpoints. Imaging mass cytometry was performed on lymph node sections at 72 hr post Prime and Prime-Boost vaccination to characterize the innate and adaptive immune cell signatures. Cell proximity analysis indicated that each follicular dendritic cell interacted with more follicular B cells in the CMV AS01 than in the CMV SAM group, supporting the stronger humoral immune response observed in the CMV AS01 group. A strong correlation between lymph node MRI T2 value and nearest-neighbor analysis of follicular dendritic cell and follicular B cells was observed (r=0.808, P<0.01). These data suggest that spatiotemporal imaging data together with AI/ML approaches may help establish whether in vivo imaging biomarkers can predict local and systemic immune responses following vaccination.
Collapse
Affiliation(s)
| | - Fang Xie
- Bioimaging, GSK, Collegeville, PA, United States
| | | | | | | | | | | | | | - Tammy Lambert
- Non Clinical Safety, GSK, Collegeville, PA, United States
| | - Mary Rambo
- Bioimaging, GSK, Collegeville, PA, United States
| | | | - Austin Cole
- Research Statistics, GSK, Collegeville, PA, United States
| | | | | | - Hoang Tran
- Research Statistics, GSK, Collegeville, PA, United States
| | - Hasan Alsaid
- Bioimaging, GSK, Collegeville, PA, United States
| | - Minh Doan
- Bioimaging, GSK, Collegeville, PA, United States
| | - Alan H. Stokes
- Non Clinical Safety, GSK, Collegeville, PA, United States
| | - Derek T. O’Hagan
- Vaccines Research & Development, GSK, Rockville, MD, United States
| | | | - Sylvie Bertholet
- Vaccines Research & Development, GSK, Rockville, MD, United States
| | | | - Russell Johnson
- Vaccines Research & Development, GSK, Rockville, MD, United States
| | - Beat M. Jucker
- Clinical Imaging, GSK, Collegeville, PA, United States,*Correspondence: Beat M. Jucker,
| |
Collapse
|
10
|
Nguyen VTT, Darville N, Vermeulen A. Pharmacokinetics of Long-Acting Aqueous Nano-/Microsuspensions After Intramuscular Administration in Different Animal Species and Humans-a Review. AAPS J 2022; 25:4. [PMID: 36456852 DOI: 10.1208/s12248-022-00771-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
Formulating aqueous suspensions is an attractive strategy to incorporate poorly water-soluble drugs, where the drug release can be tailored to maintain desired release profiles of several weeks to months after parenteral (i.e., intramuscular or subcutaneous) administration. A sustained drug release can be desirable to combat chronic diseases by overcoming pill fatigue of a daily oral intake, hence, improving patient compliance. Although the marketed aqueous suspensions for intramuscular injection efficiently relieve the daily pill burden in chronic diseases, the exact drug release mechanisms remain to be fully unraveled. The in vivo drug release and subsequent absorption to the systemic circulation are influenced by a plethora of variables, resulting in a complex in vivo behavior of aqueous suspensions after intramuscular administration. A better understanding of the factors influencing the in vivo performance of aqueous suspensions could advance their drug development. An overview of the potential influential variables on the drug release after intramuscular injection of aqueous suspensions is provided with, where possible, available pharmacokinetic parameters in humans or other species derived from literature, patents, and clinical trials. These variables can be categorized into drug substance and formulation properties, administration site properties, and the host response towards drug particles. Based on the findings, the most critical factors are particle size, dose level, stabilizing excipient, drug lipophilicity, gender, body mass index, and host response.
Collapse
Affiliation(s)
- Vy Thi Thanh Nguyen
- Ghent University, Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| | - Nicolas Darville
- Pharmaceutical Product Development & Supply, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Antwerp, Belgium
| | - An Vermeulen
- Ghent University, Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| |
Collapse
|
11
|
Multimodal imaging distribution assessment of a liposomal antibiotic in an infectious disease model. J Control Release 2022; 352:199-210. [PMID: 36084816 DOI: 10.1016/j.jconrel.2022.08.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022]
Abstract
Liposomes are promising targeted drug delivery systems with the potential to improve the efficacy and safety profile of certain classes of drugs. Though attractive, there are unique analytical challenges associated with the development of liposomal drugs including human dose prediction given these are multi-component drug delivery systems. In this study, we developed a multimodal imaging approach to provide a comprehensive distribution assessment for an antibacterial drug, GSK2485680, delivered as a liposomal formulation (Lipo680) in a mouse thigh model of bacterial infection to support human dose prediction. Positron emission tomography (PET) imaging was used to track the in vivo biodistribution of Lipo680 over 48 h post-injection providing a clear assessment of the uptake in various tissues and, importantly, the selective accumulation at the site of infection. In addition, a pharmacokinetic model was created to evaluate the kinetics of Lipo680 in different tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was then used to quantify the distribution of GSK2485680 and to qualitatively assess the distribution of a liposomal lipid throughout sections of infected and non-infected hindlimb tissues at high spatial resolution. Through the combination of both PET and MALDI IMS, we observed excellent correlation between the Lipo680-radionuclide signal detected by PET with the GSK2485680 and lipid component signals detected by MALDI IMS. This multimodal translational method can reduce drug attrition by generating comprehensive biodistribution profiles of drug delivery systems to provide mechanistic insight and elucidate safety concerns. Liposomal formulations have potential to deliver therapeutics across a broad array of different indications, and this work serves as a template to aid in delivering future liposomal drugs to the clinic.
Collapse
|
12
|
Use of long-acting injectable antiretroviral agents for human immunodeficiency Virus: A review. J Clin Virol 2021; 146:105032. [PMID: 34883407 DOI: 10.1016/j.jcv.2021.105032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/06/2021] [Accepted: 11/21/2021] [Indexed: 12/31/2022]
Abstract
The development of potent antiretroviral drugs has significantly reduced morbidity and mortality associated with human immunodeficiency virus infection, however, the effectiveness of these medications depends upon consistent daily oral intake. Non-adherence can lead to the emergence of resistance, treatment failure and disease progression. This has necessitated the development of long-acting antiretroviral formulations administrable via an infrequent dosing regimen. Long-acting injectable forms of cabotegravir and rilpivirine have reached various stages in clinical trials both for the treatment and prevention of HIV. Other long-acting agents are at various stages of development. This review evaluates the current research on the development of long-acting injectable antiretroviral agents for the treatment and prevention of HIV.
Collapse
|
13
|
Cobb DA, Smith N, Deodhar S, Bade AN, Gautam N, Shetty BLD, McMillan J, Alnouti Y, Cohen SM, Gendelman HE, Edagwa B. Transformation of tenofovir into stable ProTide nanocrystals with long-acting pharmacokinetic profiles. Nat Commun 2021; 12:5458. [PMID: 34531390 PMCID: PMC8445934 DOI: 10.1038/s41467-021-25690-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Treatment and prevention of human immunodeficiency virus type one (HIV-1) infection was transformed through widespread use of antiretroviral therapy (ART). However, ART has limitations in requiring life-long daily adherence. Such limitations have led to the creation of long-acting (LA) ART. While nucleoside reverse transcriptase inhibitors (NRTI) remain the ART backbone, to the best of our knowledge, none have been converted into LA agents. To these ends, we transformed tenofovir (TFV) into LA surfactant stabilized aqueous prodrug nanocrystals (referred to as NM1TFV and NM2TFV), enhancing intracellular drug uptake and retention. A single intramuscular injection of NM1TFV, NM2TFV, or a nanoformulated tenofovir alafenamide (NTAF) at 75 mg/kg TFV equivalents to Sprague Dawley rats sustains active TFV-diphosphate (TFV-DP) levels ≥ four times the 90% effective dose for two months. NM1TFV, NM2TFV and NTAF elicit TFV-DP levels of 11,276, 1,651, and 397 fmol/g in rectal tissue, respectively. These results are a significant step towards a LA TFV ProTide.
Collapse
Affiliation(s)
- Denise A Cobb
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nathan Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
14
|
Castellino S, Lareau NM, Groseclose MR. The emergence of imaging mass spectrometry in drug discovery and development: Making a difference by driving decision making. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4717. [PMID: 33724654 PMCID: PMC8365693 DOI: 10.1002/jms.4717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 05/10/2023]
Abstract
The pharmaceutical industry is a dynamic, science-driven business constantly under pressure to innovate and morph into a higher performing organization. Innovations can include the implementation of new technologies, adopting new scientific methods, changing the decision-making process, compressing timelines, or making changes to the organizational structure. The drivers for the constant focus on performance improvement are the high cost of R&D as well as the lengthy timelines required to deliver new medicines for unmet needs. Successful innovations are measured against both the quality and quantity of potential new medicines in the pipeline and the delivery to patients. In this special feature article, we share our collective experience implementing matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) technology as an innovative approach to better understand the tissue biodistribution of drugs in the early phases of drug discovery to establish pharmacokinetic-pharmacodynamic (PK-PD) relationships, as well as in the development phase to understand pharmacology, toxicology, and disease pathogenesis. In our experience, successful implementation of MALDI IMS in support of therapeutic programs can be measured by the impact IMS studies have on driving decision making in pipeline progression. This provides a direct quantifiable measurement of the return to the organization for the investment in IMS. We have included discussion not only on the technical merits of IMS study conduct but also the key elements of setting study objectives, building collaborations, data integration into the medicine progression milestones, and potential pitfalls when trying to establish IMS in the pharmaceutical arena. We categorized IMS study types into five groups that parallel pipeline progression from the earliest phases of discovery to late stages of preclinical development. We conclude the article with some perspectives on how we see MALDI IMS maintaining relevance and becoming further embedded as an essential tool in the constantly changing environment of the pharmaceutical industry.
Collapse
Affiliation(s)
- Stephen Castellino
- GlaxoSmithKline BioimagingCollegevillePennsylvania19426USA
- Xenovista LLCChapel HillNorth Carolina27516USA
| | | | | |
Collapse
|
15
|
Jucker BM, Fuchs EJ, Lee S, Damian V, Galette P, Janiczek R, Macura KJ, Jacobs MA, Weld ED, Solaiyappan M, D'Amico R, Shaik JS, Bakshi K, Han K, Ford S, Margolis D, Spreen W, Gupta MK, Hendrix CW, Patel P. Multiparametric magnetic resonance imaging to characterize cabotegravir long-acting formulation depot kinetics in healthy adult volunteers. Br J Clin Pharmacol 2021; 88:1655-1666. [PMID: 34240449 PMCID: PMC9290983 DOI: 10.1111/bcp.14977] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 12/26/2022] Open
Abstract
AIM Cabotegravir long-acting (LA) intramuscular (IM) injection is being investigated for HIV preexposure prophylaxis due to its potent antiretroviral activity and infrequent dosing requirement. A subset of healthy adult volunteers participating in a Phase I study assessing cabotegravir tissue pharmacokinetics underwent serial magnetic resonance imaging (MRI) to assess drug depot localization and kinetics following a single cabotegravir LA IM targeted injection. METHODS Eight participants (four men, four women) were administered cabotegravir LA 600 mg under ultrasonographic-guided injection targeting the gluteal muscles. MRI was performed to determine injection-site location in gluteal muscle (IM), subcutaneous (SC) adipose tissue and combined IM/SC compartments, and to quantify drug depot characteristics, including volume and surface area, on Days 1 (≤2 hours postinjection), 3 and 8. Linear regression analysis examined correlations between MRI-derived parameters and plasma cabotegravir exposure metrics, including maximum observed concentration (Cmax ) and partial area under the concentration-time curve (AUC) through Weeks 4 and 8. RESULTS Cabotegravir LA depot locations varied by participant and were identified in the IM compartment (n = 2), combined IM/SC compartments (n = 4), SC compartment (n = 1) and retroperitoneal cavity (n = 1). Although several MRI parameter and exposure metric correlations were determined, total depot surface area on Day 1 strongly correlated with plasma cabotegravir concentration at Days 3 and 8, Cmax and partial AUC through Weeks 4 and 8. CONCLUSION MRI clearly delineated cabotegravir LA injection-site location and depot kinetics in healthy adults. Although injection-site variability was observed, drug depot surface area correlated with both plasma Cmax and partial AUC independently of anatomical distribution.
Collapse
Affiliation(s)
| | - Edward J Fuchs
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Katarzyna J Macura
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael A Jacobs
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ethel D Weld
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Meiyappan Solaiyappan
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Susan Ford
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | | | | | - Craig W Hendrix
- Departments of Internal Medicine and Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Parul Patel
- ViiV Healthcare, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Paredes AJ, Ramöller IK, McKenna PE, Abbate MT, Volpe-Zanutto F, Vora LK, Kilbourne-Brook M, Jarrahian C, Moffatt K, Zhang C, Tekko IA, Donnelly RF. Microarray patches: Breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv Drug Deliv Rev 2021; 173:331-348. [PMID: 33831475 DOI: 10.1016/j.addr.2021.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.
Collapse
|
17
|
Robinson E, Giffen P, Hassall D, Ball D, Reid H, Coe D, Teague S, Terry R, Earl M, Marchand J, Farrer B, Havelund R, Gilmore IS, Marshall PS. Multimodal imaging of drug and excipients in rat lungs following an inhaled administration of controlled-release drug laden PLGA microparticles. Analyst 2021; 146:3378-3390. [PMID: 33876155 DOI: 10.1039/d0an02333g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Controlled-release formulations, in the form of micro- or nanoparticles, are increasingly attractive to the pharmaceutical industry for drug delivery. For respiratory illnesses, controlled-release microparticle formulations provide an opportunity to deliver a higher percentage of an inhaled medicament dose to the lung, thus potentially reducing the therapeutic dose, frequency of dosing, and minimising side-effects. We describe the use of a multimodal approach consisting of MALDI MS imaging, 3D depth profiling TOF-SIMS analysis, and histopathology to monitor the distribution of drug and excipients in sections taken from excised rat lungs following an inhaled administration of drug-laden microparticles. Following a single dose, the administered drug was detected in the lung via both MALDI MS and TOF-SIMS over a range of time points. Both imaging techniques enabled the characterisation of the distribution and retention of drug particles and identified differences in the capabilities of both imaging modalities. Histochemical staining of consecutive sections was used to provide biological context to the findings and will also be discussed in this presentation. We demonstrate how this multimodal approach could be used to help increase our understanding of the use of controlled release microparticles.
Collapse
Affiliation(s)
- Eve Robinson
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Canetti D, Spagnuolo V. An evaluation of cabotegravir for HIV treatment and prevention. Expert Opin Pharmacother 2020; 22:403-414. [PMID: 33112699 DOI: 10.1080/14656566.2020.1843635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: Oral pre-exposure prophylaxis (PrEP) and antiretroviral therapy (ART) represent the cornerstones of HIV infection prevention and treatment. However, despite their high efficacy, the need to take daily oral pill(s) negatively impacts long-term patient adherence. In some cases, it can also be associated with drug-drug interactions and adverse gastrointestinal effects, as well as being a constant reminder to individuals of their HIV status. The availability of long-acting non-orally administered antiretroviral drugs could, therefore, be extremely useful. Cabotegravir (CAB) is a second-generation integrase strand transfer inhibitor, characterized by a relatively high genetic barrier and good antiretroviral potency, which is administrable as a long-acting injectable suspension (LAI CAB).Areas covered: The authors present and discuss the efficacy and available safety data of LAI CAB, either when co-administered with rilpivirine (RPV; LAI CAB + RPV) for the treatment of HIV infection, or when used as single agent for PrEP.Expert opinion: Cabotegravir has the potential to play a primary role in the treatment and prevention of HIV infection. The future availability of LAI CAB + RPV and LAI CAB may mark the beginning of an era of LAI ART and PrEP, respectively.
Collapse
Affiliation(s)
- Diana Canetti
- Division of Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vincenzo Spagnuolo
- Division of Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
19
|
Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev 2020; 28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.
Collapse
Affiliation(s)
- Edyta Brzoska
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Kalkowski
- 2Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Kowalski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel Michalski
- 3Spine Surgery Department, Institute of Mother and Child, Warsaw, Poland
| | - Pawel Kowalczyk
- 4Department of Neurosurgery, Children's Memorial Health Institute, Warsaw, Poland
| | - Bartosz Mierzejewski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Ciemerych
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Miroslaw Janowski
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs. J Control Release 2020; 324:379-404. [PMID: 32461114 DOI: 10.1016/j.jconrel.2020.05.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
In spite of introduction of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) infection; inaccessibility and poor adherence to oral cART costs 10 in 100,000 death worldwide. Failure in adherence leads to viral rebound, emergence of drug resistance and anticipated HIV infection in high risk individuals. Various Long-acting antiretroviral (LA ARV) nanoformulations including nano-prodrug, solid drug nanoparticles (SDN), nanocrystals, aspherical nanoparticles, polymeric and lipidic nanoparticles have shown plasma/tissue drug concentration in the therapeutic range for several weeks during pre-clinical evaluation. LA ARV nanoformulations therefore have replaced cART as better alternative for the treatment of HIV infection. Cabenuva™ is recently approved by Health Canada containing LA cabotegravir+LA rilpivirine nanocrystals (ViiV healthcare) for once monthly administration by intramuscular route. The LA nanoformulation due to its nanosize insist on better stability, delivery to lymphatic, slow release into systemic circulation via lymphatic-circulatory system conjoint and secondary drug depot within infiltered immune cells at site of administration and systemic circulation in contrast to conventional drugs. However, the pharmacokinetic, biodistribution and efficacy of LA nanoformulations hinge onto physicochemical properties of the drugs and route of administration. Therefore, current review emphasizes on these contradistinctive factors that affects the reproducibility, safety, efficacy and toxicity of LA anti-HIV nanoformulations. Moreover, it expatiates on application of profuse nanoformulations for long-acting effect with promising preclinical discoveries and two clinical leads. To add on, utilization of physiology-based and mechanism-based pharmacokinetic modelling and in vivo animal models which could lead to enhanced safety and efficacy of LA ARV nanoformulations in humans have been included.
Collapse
|
21
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxonl CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Peptide based drug delivery systems to the brain. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab9008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Maynard J, Hart P. The Opportunities and Use of Imaging to Measure Target Engagement. SLAS DISCOVERY 2019; 25:127-136. [PMID: 31885303 DOI: 10.1177/2472555219897270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lack of efficacy and poor safety outcomes are deemed to be the greatest causes of clinical failure of novel therapeutics. The use of biomarkers that give accurate information on target engagement, providing confidence that pharmacological activity in the target organ is being achieved, is key in optimizing clinical success. Without a measurement of target engagement, it can be very difficult to discern the basis for any lack of efficacy of a drug molecule within the pharmaceutical industry. Target engagement can be measured in both an in vitro and in vivo setting, and in recent years imaging measurements have been used frequently in drug discovery and development to assess target engagement and receptor occupancy in both human and animal models. From this perspective, we assess and look at the advancements in both in vivo and ex vivo imaging to demonstrate the enormous potential that imaging has as an application to provide a greater understanding of target engagement with a correlative therapeutic impact.
Collapse
Affiliation(s)
| | - Philippa Hart
- Medicines Discovery Catapult, Alderley Park, Cheshire, UK
| |
Collapse
|
23
|
Cattaneo D, Gervasoni C. Pharmacokinetics and Pharmacodynamics of Cabotegravir, a Long-Acting HIV Integrase Strand Transfer Inhibitor. Eur J Drug Metab Pharmacokinet 2019; 44:319-327. [PMID: 30387005 DOI: 10.1007/s13318-018-0526-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Available antiretroviral drugs have demonstrated effectiveness in both pre-exposure prophylaxis and treatment of HIV infection. However, some concerns still persist regarding these therapies, mainly related to patient adherence, drug toxicity and dosing convenience. Cabotegravir is a potent integrase strand transfer inhibitor with a chemical structure similar to dolutegravir that is under clinical evaluation both as oral and long-acting injectable (LAI) formulations for both the prevention or treatment of HIV infection. Indeed, preclinical and clinical studies have consistently shown that LAI cabotegravir is readily absorbed following intramuscular and subcutaneous administration, with an elimination half-life of approximately 40 days, permitting infrequent dosing, possibly once every 1 or 2 months (eventually combined with rilpivirine). Here, we reviewed the existing literature on the preclinical and clinical pharmacokinetics and pharmacodynamics of LAI cabotegravir, with emphasis on the actual pharmacokinetic challenges of this novel formulation, as well as its potential to act as a victim or perpetrator of drug-drug interactions.
Collapse
Affiliation(s)
- Dario Cattaneo
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, via GB Grassi 74, 20157, Milan, Italy.
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy.
| | - Cristina Gervasoni
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, via GB Grassi 74, 20157, Milan, Italy
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| |
Collapse
|
24
|
Tatham LM, Savage AC, Dwyer A, Siccardi M, Scott T, Vourvahis M, Clark A, Rannard SP, Owen A. Towards a Maraviroc long-acting injectable nanoformulation. Eur J Pharm Biopharm 2019; 138:92-98. [DOI: 10.1016/j.ejpb.2018.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
25
|
Gao Y, Kraft JC, Yu D, Ho RJY. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur J Pharm Biopharm 2018; 138:75-91. [PMID: 29678735 DOI: 10.1016/j.ejpb.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapy (cART) given orally has transformed HIV from a terminal illness to a manageable chronic disease. Yet despite the recent development of newer and more potent drugs for cART and suppression of virus in blood to undetectable levels, residual virus remains in tissues. Upon stopping cART, virus rebounds and progresses to AIDS. Current oral cART regimens have several drawbacks including (1) challenges in patient adherence due to pill fatigue or side-effects, (2) the requirement of life-long daily drug intake, and (3) limited penetration and retention in cells within lymph nodes. Appropriately designed injectable nano-drug combinations that are long-acting and retained in HIV susceptible cells within lymph nodes may address these challenges. While a number of nanomaterials have been investigated for delivery of HIV drugs and drug combinations, key challenges involve developing and scaling delivery systems that provide a drug combination targeted to HIV host cells and tissues where residual virus persists. With validation of the drug-insufficiency hypothesis in lymph nodes, progress has been made in the development of drug combination nanoparticles that are long-acting and targeted to lymph nodes and cells. Unique drug combination nanoparticles (DcNPs) composed of three HIV drugs-lopinavir, ritonavir, and tenofovir-have been shown to provide enhanced drug levels in lymph nodes; and elevated drug-combination levels in HIV-host cells in the blood and plasma for two weeks. This review summarizes the progress in the development of nanoparticle-based drug delivery systems for HIV therapy. It discusses how injectable nanocarriers may be designed to enable delivery of drug combinations that are long-lasting and target-selective in physiological contexts (in vivo) to provide safe and effective use. Consistent drug combination exposure in the sites of residual HIV in tissues and cells may overcome drug insufficiency observed in patients on oral cART.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
26
|
Charkoftaki G, Rattray NJW, Andrén PE, Caprioli RM, Castellino S, Duncan MW, Goodwin RJA, Schey KL, Shahidi-Latham SK, Veselkov KA, Johnson CH, Vasiliou V. Yale School of Public Health Symposium on tissue imaging mass spectrometry: illuminating phenotypic heterogeneity and drug disposition at the molecular level. Hum Genomics 2018; 12:10. [PMID: 29482659 PMCID: PMC5828306 DOI: 10.1186/s40246-018-0142-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/18/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Nicholas J. W. Rattray
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Per E. Andrén
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Richard M. Caprioli
- Departments of Biochemistry and the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Steve Castellino
- Department of Bio-Imaging, Platform Science and Technology, GSK, King of Prussia, USA
| | | | - Richard J. A. Goodwin
- Pathology, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Kevin L. Schey
- Departments of Biochemistry and Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, USA
| | | | - Kirill A. Veselkov
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, USA
- Department of Ophthalmology and Visual Science, Yale School of Medicine, Yale University, New Haven, USA
| |
Collapse
|