1
|
Sun M, He L, Chen R, Lv M, Chen ZS, Fan Z, Zhou Y, Qin J, Du J. Rational design of peptides to overcome drug resistance by metabolic regulation. Drug Resist Updat 2025; 79:101208. [PMID: 39914188 DOI: 10.1016/j.drup.2025.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Chemotherapy is widely used clinically, however, its efficacy is often compromised by the development of drug resistance, which arises from prolonged administration of drugs or other stimuli. One of the driven causes of drug resistance in tumors or bacterial infections is metabolic reprogramming, which alters mitochondrial metabolism, disrupts metabolic pathways and causes ion imbalance. Bioactive peptide materials, due to their biocompatibility, diverse bioactivities, customizable sequences, and ease of modification, have shown promise in overcoming drug resistance. This review provides an in-depth analysis of metabolic reprogramming and associated microenvironmental changes that contribute to drug resistance in common tumors and bacterial infections, suggesting potential therapeutic targets. Additionally, we explore peptide-based materials for regulating metabolism and their potential synergic effect with other therapies, highlighting the mechanisms by which these peptides reverse drug resistance. Finally, we discuss future perspectives and the clinical challenges in peptide-based treatments, aiming to offer insights for overcoming drug-resistant diseases.
Collapse
Affiliation(s)
- Min Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le He
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhen Fan
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
2
|
Kim S, Lee Y, Seu MS, Sim Y, Ryu JH. Enzyme-instructed intramitochondrial polymerization for enhanced anticancer treatment without the development of drug-resistance. J Control Release 2024; 373:189-200. [PMID: 39002798 DOI: 10.1016/j.jconrel.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Intracellular polymerization in living cells motivated chemists to generate polymeric structures with a multitude of possibilities to interact with biomacromolecules. However, out-of-control of the intracellular chemical reactions would be an obstacle restricting its application, providing the toxicity of non-targeted cells. Here, we reported intracellular thioesterase-mediated polymerization for selectively occurring polymerization using disulfide bonds in cancer cells. The acetylated monomers did not form disulfide bonds even under an oxidative environment, but they could polymerize into the polymeric structure after cleavage of acetyl groups only when encountered activity of thioesterase enzyme. Furthermore, acetylated monomers could be self-assembled with doxorubicin, providing doxorubicin loaded micelles for efficient intracellular delivery of drug and monomers. Since thioesterase enzymes were overexpressed in cancer cells specifically, the micelles were disrupted under activity of the enzyme and the polymerization could occur selectively in the cancer mitochondria. The resulting polymeric structures disrupted the mitochondrial membrane, thus activating the cellular death of cancer cells with high selectivity. This strategy selectively targets diverse cancer cells involving drug-resistant cells over normal cells. Moreover, the mitochondria targeting strategy overcomes the development of drug resistance even with repeated treatment. This approach provides a way for selective intracellular polymerization with desirable anticancer treatment.
Collapse
Affiliation(s)
- Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeji Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Seok Seu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youjung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Luo F, Zhao J, Liu S, Xue Y, Tang D, Yang J, Mei Y, Li G, Xie Y. Ursolic acid augments the chemosensitivity of drug-resistant breast cancer cells to doxorubicin by AMPK-mediated mitochondrial dysfunction. Biochem Pharmacol 2022; 205:115278. [PMID: 36191625 DOI: 10.1016/j.bcp.2022.115278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
Abstract
Multidrug resistance remains the major obstacle to successful therapy for breast carcinoma. Ursolic acid (UA), a triterpenoid compound, has been regarded as a potential neoplasm chemopreventive drug in some preclinical studies since it exerts multiple biological activities. In this research, we investigated the role of UA in augmenting the chemosensitivity of drug-resistant breast carcinoma cells to doxorubicin (DOX), and we further explored the possible molecular mechanisms. Notably, we found that UA treatment led to inhibition of cellular proliferation and migration and cell cycle arrest in DOX-resistant breast cancers. Furthermore, combination treatment with UA and DOX showed a stronger inhibitory effect on cell viability, colony formation, and cell migration; induced more cell apoptosis in vitro; and generated a more potent inhibitory effect on the growth of the MCF-7/ADR xenograft tumor model than DOX alone. Mechanistically, UA effectively increased p-AMPK levels and concomitantly reduced p-mTOR and PGC-1α protein levels, resulting in impaired mitochondrial function, such as mitochondrial respiration inhibition, ATP depletion, and excessive reactive oxygen species (ROS) generation. In addition, UA induced a DNA damage response by increasing intracellular ROS production, thus causing cell cycle arrest at the G0/G1 phase. UA also suppressed aerobic glycolysis by prohibiting the expression and function of Glut1. Considered together, our data demonstrated that UA potentiated the susceptibility of DOX-resistant breast carcinoma cells to DOX by targeting energy metabolism through the AMPK/mTOR/PGC-1α signaling pathway, and it is a potential adjuvant chemotherapeutic candidate in MDR breast cancer.
Collapse
Affiliation(s)
- Fazhen Luo
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Juanjuan Zhao
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Shuo Liu
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Dongyun Tang
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Jun Yang
- Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guowen Li
- Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Yan Xie
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
de Sousa Cabral LG, Hesse H, Freire KA, de Oliveira CS, Pedron CN, Alves MG, Carlstron JP, Poyet JL, Oliveira VX, Maria DA. The BR2 peptide associated with 2-aminoethyl dihydrogen phosphate is a formulation with antiproliferative potential for a triple-negative breast cancer model. Biomed Pharmacother 2022; 153:113398. [DOI: 10.1016/j.biopha.2022.113398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
|
6
|
Mitochondria-targeted cancer therapy based on functional peptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Manrique-Moreno M, Santa-González G, Gallego V. Bioactive cationic peptides as potential agents for breast cancer treatment. Biosci Rep 2021; 41:BSR20211218C. [PMID: 34874400 PMCID: PMC8655503 DOI: 10.1042/bsr20211218c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer continues to affect millions of women worldwide, and the number of new cases dramatically increases every year. The physiological causes behind the disease are still not fully understood. One in every 100 cases can occur in men, and although the frequency is lower than among women, men tend to have a worse prognosis of the disease. Various therapeutic alternatives to combat the disease are available. These depend on the type and progress of the disease, and include chemotherapy, radiotherapy, surgery, and cancer immunotherapy. However, there are several well-reported side effects of these treatments that have a significant impact on life quality, and patients either relapse or are refractory to treatment. This makes it necessary to develop new therapeutic strategies. One promising initiative are bioactive peptides, which have emerged in recent years as a family of compounds with an enormous number of clinical applications due to their broad spectrum of activity. They are widely distributed in several organisms as part of their immune system. The antitumoral activity of these peptides lies in a nonspecific mechanism of action associated with their interaction with cancer cell membranes, inducing, through several routes, bilayer destabilization and cell death. This review provides an overview of the literature on the evaluation of cationic peptides as potential agents against breast cancer under different study phases. First, physicochemical characteristics such as the primary structure and charge are presented. Secondly, information about dosage, the experimental model used, and the mechanism of action proposed for the peptides are discussed.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| | - Gloria A. Santa-González
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnólogico Metropolitano, A.A. 54959, Medellin, Colombia
| | - Vanessa Gallego
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| |
Collapse
|
8
|
Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100054. [PMID: 34909680 PMCID: PMC8663938 DOI: 10.1016/j.crphar.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The high probability (13%) of women developing breast cancer in their lifetimes in America is exacerbated by the emergence of multidrug resistance after exposure to first-line chemotherapeutic agents. Permeation glycoprotein (P-gp)-mediated drug efflux is widely recognized as the major driver of this resistance. Initial in vitro and in vivo investigations of the co-delivery of chemotherapeutic agents and P-gp inhibitors have yielded satisfactory results; however, these results have not translated to clinical settings. The systemic delivery of multiple agents causes adverse effects and drug-drug interactions, and diminishes patient compliance. Nanocarrier-based site-specific delivery has recently gained substantial attention among researchers for its promise in circumventing the pitfalls associated with conventional therapy. In this review article, we focus on nanocarrier-based co-delivery approaches encompassing a wide range of P-gp inhibitors along with chemotherapeutic agents. We discuss the contributions of active targeting and stimuli responsive systems in imparting site-specific cytotoxicity and reducing both the dose and adverse effects.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Biswajit Dey
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
9
|
Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Sci Rep 2021; 11:3017. [PMID: 33542286 PMCID: PMC7862624 DOI: 10.1038/s41598-021-82513-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
As anticancer peptides (ACPs) have attracted great interest for cancer treatment, several approaches based on machine learning have been proposed for ACP identification. Although existing methods have afforded high prediction accuracies, however such models are using a large number of descriptors together with complex ensemble approaches that consequently leads to low interpretability and thus poses a challenge for biologists and biochemists. Therefore, it is desirable to develop a simple, interpretable and efficient predictor for accurate ACP identification as well as providing the means for the rational design of new anticancer peptides with promising potential for clinical application. Herein, we propose a novel flexible scoring card method (FSCM) making use of propensity scores of local and global sequential information for the development of a sequence-based ACP predictor (named iACP-FSCM) for improving the prediction accuracy and model interpretability. To the best of our knowledge, iACP-FSCM represents the first sequence-based ACP predictor for rationalizing an in-depth understanding into the molecular basis for the enhancement of anticancer activities of peptides via the use of FSCM-derived propensity scores. The independent testing results showed that the iACP-FSCM provided accuracies of 0.825 and 0.910 as evaluated on the main and alternative datasets, respectively. Results from comparative benchmarking demonstrated that iACP-FSCM could outperform seven other existing ACP predictors with marked improvements of 7% and 17% for accuracy and MCC, respectively, on the main dataset. Furthermore, the iACP-FSCM (0.910) achieved very comparable results to that of the state-of-the-art ensemble model AntiCP2.0 (0.920) as evaluated on the alternative dataset. Comparative results demonstrated that iACP-FSCM was the most suitable choice for ACP identification and characterization considering its simplicity, interpretability and generalizability. It is highly anticipated that the iACP-FSCM may be a robust tool for the rapid screening and identification of promising ACPs for clinical use.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Centre of Theoretical and Computational Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
10
|
Mao J, Qiu L, Ge L, Zhou J, Ji Q, Yang Y, Long M, Wang D, Teng L, Chen J. Overcoming multidrug resistance by intracellular drug release and inhibiting p-glycoprotein efflux in breast cancer. Biomed Pharmacother 2021; 134:111108. [PMID: 33341670 DOI: 10.1016/j.biopha.2020.111108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (DOX) is limited to use in clinical practice because of poor targeting, serious side effects and multidrug resistance (MDR). Vitamin E and its derivatives are currently considered as hydrophobic material that can reverse tumor MDR by suppressing the action of p-glycoprotein (p-gp). Therefore, reduction-sensitive amphiphilic heparosan polysaccharide-cystamine-vitamin E succinate (KSV) copolymers were designed to reverse breast cancer MDR cells. The spherical micelles (DOX/KSV) micelles which had suitable particle size presented redox-sensitive release character. Simultaneously, DOX-loaded reduction insensitive heparosan-adipic dihydrazide-vitamin E succinate (KV) micellar system was designed as a control. DOX/KSV and DOX/KV micelles had the higher capability to overcome tumor MDR than that free DOX. However, DOX/KSV had the highest amount of cellular uptake which might be caused by the synergistic intracellular drug release and inhibition of p-gp expression. The mechanism experiments revealed that DOX/KSV could be fast disassembled to release DOX after internalization into tumor cells. Moreover, DOX/KSV produced more ROS than free DOX and DOX/KV resulting in enhanced anticancer effect. In vivo tumor-bearing mice study suggested that DOX/KSV micelles could efficiently enhance antitumor effect by overcoming tumor MDR and reduce toxicity of DOX. The DOX/KSV micelles could synergistically increase the therapeutic effect of chemotherapeutic drug on tumor MDR cells.
Collapse
Affiliation(s)
- Jing Mao
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Lipeng Qiu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China; Sunhover Industry Group Company Limited, Linyi, 276000, Shandong, China
| | - Lu Ge
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Juan Zhou
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qian Ji
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yang Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Miaomiao Long
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, 214028, Jiangsu, China.
| | - Danhui Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Liping Teng
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
11
|
Singh A, Malhotra S, Bimal D, Bouchet LM, Wedepohl S, Calderón M, Prasad AK. Synthesis, Self-Assembly, and Biological Activities of Pyrimidine-Based Cationic Amphiphiles. ACS OMEGA 2021; 6:103-112. [PMID: 33458463 PMCID: PMC7807463 DOI: 10.1021/acsomega.0c03623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/12/2020] [Indexed: 05/08/2023]
Abstract
Pyrimidine-based cationic amphiphiles (PCAms), i.e., di-trifluoroacetic acid salts of N1-[1'-(1″,3″-diglycinatoxy-propane-2″-yl)-1',2',3'-triazole-4'-yl]methyl-N3-alkylpyrimidines have been synthesized utilizing naturally occurring biocompatible precursors, like glycerol, glycine, and uracil/ thymine in good yields. Synthesized PCAms consist of a hydrophilic head group comprising TFA salt of glyceryl 1,3-diglycinate and hydrophobic tail comprising of C-7 and C-12 N3-alkylated uracil or thymine conjugated via a 4-methylene-1,2,3-triazolyl linker. The physicochemical properties of all PCAms, such as critical aggregation concentration, hydrodynamic diameter, shape, and zeta potential (surface charge) were analyzed. These PCAms were also evaluated for their anti-proliferative and anti-tubercular activities. One of the synthesized PCAm exhibited 4- to 75-fold more activity than first-line anti-tubercular drugs streptomycin and isoniazid, respectively, against the multidrug resistant clinical isolate 591 of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ankita Singh
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Shashwat Malhotra
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
- Kirori
Mal College, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Devla Bimal
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Lydia M. Bouchet
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Berlin 14195, Germany
| | - Stefanie Wedepohl
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Berlin 14195, Germany
| | - Marcelo Calderón
- POLYMAT
and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48013, Spain
| | - Ashok K Prasad
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
- . Tel. +91-11-27662486
| |
Collapse
|
12
|
de Mascena Costa LA, Debnath D, Harmon AC, de Sousa Araújo S, da Silva Souza HD, de Athayde Filho PF, Wischral A, Adrião Gomes Filho M, Mathis JM. Mechanistic studies of cytotoxic activity of the mesoionic compound MIH 2.4Bl in MCF-7 breast cancer cells. Oncol Lett 2020; 20:2291-2301. [PMID: 32782546 PMCID: PMC7399858 DOI: 10.3892/ol.2020.11763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
In the present study, the cytotoxic effects of a 1,3-thiazolium-5-thiolate derivative of a mesoionic compound, MIH 2.4Bl, were assessed in the MCF-7 breast cancer cell line. The cytotoxic effects of MIH 2.4Bl were determined using a crystal violet assay. Using a dose-response curve, the IC50 value of MIH 2.4Bl was determined to be 45.8±0.8 µM. Additionally, the effects of MIH 2.4Bl on mitochondrial respiration were characterized using oxygen consumption rate analysis. Treating MCF-7 cells with increasing concentrations of MIH 2.4Bl resulted in a significant reduction in all mitochondrial respiratory parameters compared with the control cells, indicative of an overall decrease in mitochondrial membrane potential. The induction of autophagy by MIH 2.4Bl was also examined by measuring changes in the expression of protein markers of autophagy. As shown by western blot analysis, treatment of MCF-7 cells with MIH 2.4Bl resulted in increased protein expression levels of Beclin-1 and ATG5, as well as an increase in the microtubule-associated protein 1A/1B light chain 3B (LC3B)-II to LC3B-I ratio compared with the control cells. Microarray analysis of changes in gene expression following MIH 2.4Bl treatment demonstrated 3,659 genes exhibited a fold-change ≥2. Among these genes, 779 were up-regulated, and 2,880 were down-regulated in cells treated with MIH 2.4Bl compared with the control cells. Based on the identity of the transcripts and fold-change of expression, six genes were selected for verification by reverse transcription-quantitative (RT-q)PCR; activating transcription factor 3, acidic repeat-containing protein, heparin-binding EGF-like growth factor, regulator of G-protein signaling 2, Dickkopf WNT signaling pathway inhibitor 1 and adhesion molecule with Ig like domain 2. The results of RT-qPCR analysis of RNA isolated from control and MIH 2.4Bl treated cells were consistent with the expression changes identified by microarray analysis. Together, these results suggest that MIH 2.4Bl may be a promising candidate for treating breast cancer and warrants further in vitro and in vivo investigation.
Collapse
Affiliation(s)
- Luciana Amaral de Mascena Costa
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, PE 52171-900, Brazil.,Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Dipti Debnath
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Silvany de Sousa Araújo
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, PE 52171-900, Brazil
| | | | | | - Aurea Wischral
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE 52171-900, Brazil
| | - Manoel Adrião Gomes Filho
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, PE 52171-900, Brazil
| | - J Michael Mathis
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
13
|
Nanoparticle delivery of a pH-sensitive prodrug of doxorubicin and a mitochondrial targeting VES-H 8R 8 synergistically kill multi-drug resistant breast cancer cells. Sci Rep 2020; 10:8726. [PMID: 32457422 PMCID: PMC7251113 DOI: 10.1038/s41598-020-65450-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Multi-drug resistance (MDR) remains a major obstacle in cancer treatment while being heavily dependent on mitochondrial activity and drug efflux. We previously demonstrated that cationic lipids, such as the vitamin E succinate modified octahistidine-octaarginine (VES-H8R8) conjugate, target mitochondria, resulting in depolarized mitochondria and inhibited drug efflux in MDR breast cancer cells. We hypothesized that the effective cell uptake, efflux inhibition, and mitochondrial depolarization properties of VES-H8R8 would synergistically enhance the toxicity of a pH-sensitive prodrug of doxorubicin (pDox) when co-encapsulated in nanoparticles (NPs). pDox was successfully synthesized and validated for pH-sensitive release from NPs under lysosome-mimicking, acidic conditions. The synergistic effect of VES-H8R8 and pDox was confirmed against MDR breast cancer cells in vitro. Importantly, synergism was only observed when VES-H8R8 and pDox were co-encapsulated in a single nanoparticulate system. The synergistic mechanism was investigated, confirming superior pDox uptake and retention, Pgp efflux inhibition, mitochondrial depolarization, and enhanced induction of ROS, and apoptosis. This work demonstrates the translational potential of doubly-loaded NPs co-encapsulating pDox with VES-H8R8 to synergistically kill MDR breast cancer cells.
Collapse
|
14
|
Liu X, Zhang W, Wang Y, Chen Y, Xie J, Su J, Huang C. One-step treatment of periodontitis based on a core-shell micelle-in-nanofiber membrane with time-programmed drug release. J Control Release 2020; 320:201-213. [PMID: 31982437 DOI: 10.1016/j.jconrel.2020.01.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
As a chronic inflammatory disease, periodontitis is responsible for irreversible soft tissue damage and severe alveolar bone resorption. However, curative effects of current therapies are largely confined by the difficulty to simultaneously achieve anti-inflammation and bone regeneration. Also, the dynamic environment in oral cavity easily causes the drugs swallowed or rinsed away by saliva. We report here a one-step treatment based on a core-shell nanofiber membrane fabricated by coaxial electrospinning. Polymeric micelles containing SP600125 were distributed in the shell, while BMP-2 was incorporated in the core. After crosslinking, the nanofiber membrane displayed a prolonged degradation and release period up to 4 weeks. The release of SP600125 was detected at beginning, whereas BMP-2 was not released until day 12. Such a time-programmed release behavior was proved desirable for suppressing the expression of pro-inflammatory factors and enhancing the osteogenic induction in vitro. Further in vivo investigation confirmed that, by simply covering the periodontitis site with our nanofiber membrane, alveolar destruction was largely avoided and bone defects recovered within 2 month. Taken together, we believe that the use of our membrane with sequential release of SP600125 and BMP-2 may become a convenient and highly comprehensive therapy for periodontitis.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai 200072, China
| | - Wenxin Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yabing Wang
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai 200072, China
| | - Yunong Chen
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai 200072, China
| | - Jian Xie
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai 200072, China
| | - Jiansheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai 200072, China.
| | - Chen Huang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
15
|
Shen L, Zhao K, Li H, Ning B, Wang W, Liu R, Zhang Y, Zhang A. Downregulation of UBE2T can enhance the radiosensitivity of osteosarcoma in vitro and in vivo. Epigenomics 2019; 11:1283-1305. [PMID: 31355678 DOI: 10.2217/epi-2019-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To investigate the effect of UBE2T gene on radiotherapy for osteosarcoma. Materials & methods: Gene Expression Omnibus database, RT-qPCR and immunohistochemical analysis were performed. Cell proliferation and cell cycle experiments were conducted after knockdown of UBE2T. Cell scratch, reactive oxygen species production and apoptosis experiments were conducted after the combination of radiotherapy and UBE2T silencing. Then the xenograft mode was further conducted. Results: UBE2T was highly expressed in human osteosarcoma. Suppression of UBE2T inhibited osteosarcoma cell proliferation and induced cell cycle arrest at the G2/M phase. Downregulation of UBE2T combined with radiation can substantially inhibit clonal formation and migration, and promote apoptosis of osteosarcoma cells in vitro and in vivo. Conclusion: UBE2T downregulation can enhance the radiosensitivity of osteosarcoma in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Shen
- Department of Orthopaedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Kai Zhao
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Han Li
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Bin Ning
- Department of Orthopaedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 105, Jiefang Road, Jinan, Shandong 250013, China.,Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Wenzhao Wang
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China.,Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Ronghan Liu
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Yining Zhang
- Department of Orthopaedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|