1
|
Ye L, Bei Z, Yang T, Xu Y, Pan M, Deng H, Li X, Liu L, Qian Z. A dissolving microneedle patch enables minimally invasive riboflavin delivery and enhances corneal crosslinking in keratoconus therapy. J Mater Chem B 2025. [PMID: 40227070 DOI: 10.1039/d5tb00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Corneal collagen cross-linking (CXL) is an effective surgical approach to halt the progression of keratoconus. A key challenge lies in maintaining epithelial integrity while achieving sufficient stromal riboflavin (RF) concentration to ensure CXL efficacy. Additionally, the efficacy of CXL under RF-mediated cross-linking still has room for improvement. In this study, we developed a silk fibroin methacryloyl (SFMA)-based dissolvable microneedle (MN) system (termed RF/SFMA MNs). In vitro and ex vivo experiments showed that RF/SFMA MNs exhibited excellent mechanical strength, dissolution profile, drug release profile and biocompatibility. In vivo, RF/SFMA MNs were characterized by suitable corneal penetration capability through a minimally invasive approach. MNs with different RF concentrations (0-2%) and tip lengths (330-800 µm) were tested. RF/SFMA MNs with a 1% RF concentration and a tip length of 550 µm achieved sufficient RF permeation and delivery depth within the corneal stroma. Furthermore, integrating SFMA into the CXL procedure allowed RF to mediate multiple crosslinking events between SFMA and collagen, resulting in an enhanced increase in corneal biomechanical strength compared to conventional Epi-on and Epi-off CXL strategies. Over a two-week observation period, MN-based CXL enhanced corneal biomechanics more effectively than Epi-off and Epi-on CXL, while maintaining collagen arrangement without adverse effects on the epithelium or endothelium. Therefore, RF/SFMA MNs, designed for minimally invasive RF delivery and enhanced CXL efficacy, present a promising and innovative approach to optimize CXL in the treatment of keratoconus.
Collapse
Affiliation(s)
- Lin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tingyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yang Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hanzhi Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xicheng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Coskun A, Senturk F, Turan E. Enhanced Transepithelial Riboflavin Delivery Across the Cornea Using Magnetic Nanocarriers. J Ocul Pharmacol Ther 2025; 41:131-140. [PMID: 39883041 DOI: 10.1089/jop.2024.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Purpose: Keratoconus is a progressive corneal ectasia characterized by irregular astigmatism, leading to corneal scarring and decreased vision. Corneal cross-linking (CXL) is the standard treatment to halt disease progression, but its effectiveness in transepithelial (epithelium-on, epi-on) approaches is limited by the low permeability of the corneal epithelium to riboflavin (Rb). This study aimed to enhance transepithelial Rb penetration in ex vivo bovine corneas using Rb-modified tannic acid-coated superparamagnetic iron oxide nanoparticles (Rb-TA-SPIONs) under an external magnetic field. Methods: SPIONs were synthesized via co-precipitation, modified with TA and Rb, and characterized by physicochemical techniques. The average size of the Rb-TA-SPIONs was 46 ± 5.3 nm, with a saturation magnetization of 55.9 emu/g. Ex vivo experiments involved the application of 0.1% Rb to bovine corneas, and penetration was evaluated under epi-on conditions with iontophoresis (1-5 mA, 5 min). In addition, a 0.1% Rb-containing nanocarrier solution was tested under magnetic fields of 1-300 Gauss. Results: Results showed increased Rb penetration with rising electric current density and Rb-TA-SPION penetration with stronger magnetic fields, compared with epi-on control groups. Specifically, Rb penetration increased from 0.036% (P ≤ 0.01) at 1 mA to 0.059% (P ≤ 0.001) at 5 mA in the iontophoresis group and from 0.035% (P ≤ 0.001) at 1 G to 0.054% (P ≤ 0.001) at 300 G in the magnetic group. Conclusion: These findings indicate that magnetic nanoparticle-assisted Rb delivery, guided by an external magnetic field, could improve potential CXL efficacy by enhancing Rb penetration and corneal permeability.
Collapse
Affiliation(s)
- Alaaddin Coskun
- Department of Biophysics, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Fatih Senturk
- Department of Biophysics, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Eylem Turan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
3
|
Velasco S, Gallego I, Olivares-González L, Puras G, Castro MC, Salom D, Pedraz JL, Rodrigo R. Noninvasive ocular delivery of adalimumab-loaded nanostructured lipid carriers for targeted retinitis pigmentosa therapy. Biomed Pharmacother 2025; 185:117962. [PMID: 40073744 DOI: 10.1016/j.biopha.2025.117962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Retinitis pigmentosa is a genetically heterogeneous retinal degeneration process. There is hardly any treatment available. It is associated with extensive chronic inflammation and the release of proinflammatory cytokines such as TNFα. The blockade of TNFα through systemic or intraocular routes slows retinal degeneration. They are invasive routes with possible side effects. Herein, we propose a noninvasive approach to address the inflammatory component of retinitis pigmentosa. This approach is based on the development of eye drops of nanostructured lipid carriers (NLCs) loaded with the monoclonal antibody against TNFα, adalimumab (ADA). We physicochemically characterized NLC-ADA. We evaluated retinal and corneal toxicity; corneal permeation; diffusion to the retina; and effects on retinal dysfunction, degeneration and inflammation. These results prove that NLC-ADA eye drops exhibit excellent corneal permeation, no toxicity and high retinal distribution in mice. These compounds improve retinal function, reduce retinal degeneration and ameliorate the inflammatory process. In particular, NLC-ADA eye drops reduce M1 microglial activation, macrophage infiltration and the levels of some components of the NLRP3 inflammasome in rd10 mice, a model of retinitis pigmentosa. This strategy offers a noninvasive route that circumvents the bloodretinal barrier in a safe and efficient manner. Hence, this approach could offer a promising therapeutic option for treating retinitis pigmentosa regardless of genetic defects. This approach could be useful for other inflammation-related retinal diseases.
Collapse
Affiliation(s)
- Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Ma Carmen Castro
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - David Salom
- Service of Ophthalmology, Manises Hospital, Generalitat Valenciana, 50, Manises, Valencia 46940, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| |
Collapse
|
4
|
Hu X, Kong B, Wang Y, Zhao Y, Li M, Zhou X. Responsive porous microneedles with riboflavin ocular microinjection capability for facilitating corneal crosslinking. J Nanobiotechnology 2024; 22:588. [PMID: 39342257 PMCID: PMC11438091 DOI: 10.1186/s12951-024-02851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Riboflavin-5-phosphate (riboflavin) is the most commonly used photosensitizer in corneal crosslinking (CXL); while its efficient delivery into the stroma through the corneal epithelial barrier is challenging. In this paper, we presented novel responsive porous microneedles with ocular microinjection capability to deliver riboflavin controllably inside the cornea to facilitate CXL. The microneedle patch was composed of Poly (N-isopropyl acrylamide) (PNIPAM), graphene oxide (GO), and riboflavin-loaded gelatin. After penetrating the cornea by the stiff and porous gelatin needle tip, the photothermal-responsive characteristic of the PNIPAM/GO hydrogel middle layer could realize the contraction of the gel under the stimulation of near-infrared light, which subsequently could control the release of riboflavin from the backing layer into the cornea stromal site both in vitro and in vivo. Based on the microneedles system, we have demonstrated that this microinjection technique exhibited superior riboflavin delivery capacity and treatment efficacy to the conventional epithelial-on protocol in a rabbit keratoconus model, with benefits including minimal invasiveness and precise administering. Thus, we believe the responsive porous microneedles with riboflavin ocular microinjection capability are promising for clinical corneal crosslinking without epithelial debridement.
Collapse
Affiliation(s)
- Xiaojun Hu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Bin Kong
- Department of Rheumatology and Immunology, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Nanjing Drum Tower Hospital, Southeast University, Nanjing, 210096, China
| | - Yunzhe Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yuanjin Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Department of Rheumatology and Immunology, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Nanjing Drum Tower Hospital, Southeast University, Nanjing, 210096, China.
| | - Meiyan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
5
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
6
|
Yamagata Y, Ide T. A Novel Riboflavin Formulation for Corneal Delivery Without Damaging Epithelial Cells. Transl Vis Sci Technol 2023; 12:10. [PMID: 37930667 PMCID: PMC10629540 DOI: 10.1167/tvst.12.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose This study aimed to evaluate the trans-epithelial permeability enhancement and cell damage caused by a novel riboflavin composition for corneal delivery. Methods We developed a trans-epithelial formulation of riboflavin for corneal delivery using 1,2-dioleoyl-3-dimethylammonium-propane (DODAP) and isostearic acid (ISA). The permeation enhancement was evaluated using an in vitro corneal epithelial cell culture system by measuring the amount of transferred riboflavin with high-performance liquid chromatography. Riboflavin permeation of MedioCROSS TE, a commercially available riboflavin formulation containing benzalkonium chloride, was also evaluated and compared to that of the DODAP/ISA formulation by changing the riboflavin concentration. The trans-epithelial electrical resistance (TEER) was measured after exposure to the samples in an in vitro corneal epithelial cell culture system to assess cytotoxicity. Results The DODAP/ISA formulation demonstrated greater permeation when used together than when each component was used individually. The permeation enhancement effect of the DODAP/ISA formulation was almost the same as that of MedioCROSS TE. However, when a 10-fold higher riboflavin concentration was used in the DODAP/ISA formulation, the permeation enhancement effect surpassed that of MedioCROSS TE. After 24 hours of exposure, the TEER of the DODAP/ISA formulation was higher than that of MedioCROSS TE, indicating that the DODAP/ISA formulation was less cytotoxic than MedioCROSS TE. Conclusions This study indicated that the DODAP/ISA formulation could serve as a less cytotoxic alternative to MedioCROSS TE. Further studies are required to determine the clinical efficacy and safety of the DODAP/ISA formulation in vivo. Translational Relevance This study may provide alternative procedures for corneal collagen crosslinking with less of a cytotoxic effect on corneal epithelial cells.
Collapse
Affiliation(s)
- Yutaka Yamagata
- Analytical Research Laboratory, MEDRx Co. Ltd., Kagawa, Japan
| | - Takeshi Ide
- Tokyo Vision Eye Clinic Asagaya, Tokyo, Japan
| |
Collapse
|
7
|
Qin D, Han Y, Wang L, Yin H. Recent advances in medicinal compounds related to corneal crosslinking. Front Pharmacol 2023; 14:1232591. [PMID: 37841929 PMCID: PMC10570464 DOI: 10.3389/fphar.2023.1232591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Corneal crosslinking (CXL) is the recognized technique to strengthen corneal collagen fibers through photodynamic reaction, aiming to halt progressive and irregular changes in corneal shape. CXL has greatly changed the treatment for keratoconus (KCN) since it was introduced in the late 1990's. Numerous improvements of CXL have been made during its developing course of more than 20 years. CXL involves quite a lot of materials, including crosslinking agents, enhancers, and supplements. A general summary of existing common crosslinking agents, enhancers, and supplements helps give a more comprehensive picture of CXL. Either innovative use of existing materials or research and development of new materials will further improve the safety, effectiveness, stability, and general applicability of CXL, and finally benefit the patients.
Collapse
Affiliation(s)
- Danyi Qin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yi Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Polat HK, Ünal S, Aytekin E, Karakuyu NF, Pezik E, Haydar MK, Kurt N, Doğan O, Mokhtare B. Formulation development of Lornoxicam loaded heat triggered ocular in-situ gel using factorial design. Drug Dev Ind Pharm 2023; 49:601-615. [PMID: 37788164 DOI: 10.1080/03639045.2023.2264932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE In the current research, lornoxicam-loaded in situ gels were developed, and their potential usage in ocular inflammation was evaluated. SIGNIFICANCE Lornoxicam cyclodextrin complex prepared with hydroxypropyl methylcellulose and poloxamer P407 because of the low viscosity of in situ gels to provide easy application. However, washing and removing it from the ocular surface becomes difficult due to the gelation formation with heat. METHODS A three-level factorial experimental design was used to evaluate the effects of poloxamer 407 concentration, polymer type, and polymer concentration on viscosity, pH, gelation capacity, gelation time, and gelation temperature, which were considered the optimal indicators of lornoxicam-containing formulations. RESULTS As a result of the three-level factorial experimental design, the optimized formulation contained 15 (%w/v) poloxamer 407 and 1 (%w/v) hydroxypropyl methylcellulose. The optimize formulation viscosity 25 °C = 504 ± 49cP, viscosity 35 °C = 11247 ± 214cP, pH = 6.80 ± 0.01, gelation temprature = 35 ± 0.2 °C, and gelation time= 34 ± 0.2 s was obtained. In the in vitro release studies, 68% of lornoxicam was released with a burst effect in the first three hours; then, the release continued for eight hours with controlled release. Release kinetics of the formulations were modeled mathematically, and it was found to be compatible with the Korsemeyer-Peppas and Weibull models. In cell culture studies, cell viability at 100 µg/mL was 83% and 96% for NL6 and NL6-CD, respectively. In Draize's in vivo test, no negative conditions occurred in rats. CONCLUSIONS Therefore, the NL6-CD formulation has the potential to be a favorable option for treating ocular inflammation.
Collapse
Affiliation(s)
- Heybet Kerem Polat
- Republic of Turkey Ministry of Health, Turkish Medicines and Medical Devices Agency, Ankara
| | - Sedat Ünal
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Erciyes University, Kayseri, Türkiye
| | - Eren Aytekin
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Türkiye
| | - Nasıf Fatih Karakuyu
- Faculty of Pharmacy, Department Of Pharmacology, Suleyman Demirel University, Isparta, Türkiye
| | - Esra Pezik
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Muhammet Kerim Haydar
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Nihat Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Technology 60100, Gaziosmanpasa University, Tokat, Türkiye
| | - Osman Doğan
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Türkiye
| | - Behzad Mokhtare
- Faculty of Veterinary Medicine, Department Of Pathology, Dicle University, Diyarbakır, Türkiye
| |
Collapse
|
9
|
Wu KY, Ashkar S, Jain S, Marchand M, Tran SD. Breaking Barriers in Eye Treatment: Polymeric Nano-Based Drug-Delivery System for Anterior Segment Diseases and Glaucoma. Polymers (Basel) 2023; 15:polym15061373. [PMID: 36987154 PMCID: PMC10054733 DOI: 10.3390/polym15061373] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The eye has anatomical structures that function as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of medications administered topically. The development of polymeric nano-based drug-delivery systems (DDS) could be the solution to these challenges: it can pass through ocular barriers, offering higher bioavailability of administered drugs to targeted tissues that are otherwise inaccessible; it can stay in ocular tissues for longer periods of time, requiring fewer drug administrations; and it can be made up of polymers that are biodegradable and nano-sized, minimizing the undesirable effects of the administered molecules. Therefore, therapeutic innovations in polymeric nano-based DDS have been widely explored for ophthalmic drug-delivery applications. In this review, we will give a comprehensive overview of polymeric nano-based drug-delivery systems (DDS) used in the treatment of ocular diseases. We will then examine the current therapeutic challenges of various ocular diseases and analyze how different types of biopolymers can potentially enhance our therapeutic options. A literature review of the preclinical and clinical studies published between 2017 and 2022 was conducted. Thanks to the advances in polymer science, the ocular DDS has rapidly evolved, showing great promise to help clinicians better manage patients.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Said Ashkar
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shrieda Jain
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
10
|
Ahmed S, Amin MM, Sayed S. Ocular Drug Delivery: a Comprehensive Review. AAPS PharmSciTech 2023; 24:66. [PMID: 36788150 DOI: 10.1208/s12249-023-02516-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| |
Collapse
|
11
|
Polat HK, Kurt N, Aytekin E, Akdağ Çaylı Y, Bozdağ Pehlivan S, Çalış S. Design of Besifloxacin HCl-Loaded Nanostructured Lipid Carriers: In Vitro and Ex Vivo Evaluation. J Ocul Pharmacol Ther 2022; 38:412-423. [PMID: 35675672 DOI: 10.1089/jop.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: In the treatment of severe cases of bacterial keratitis, conventional eye drops containing antibiotics should be applied daily and very frequently. The aim of this study is to develop low-dose high-effect formulations with the prepared nanostructured lipid carrier (NLC) formulations to reduce antibiotic resistance and increase patient compliance. Methods: NLC formulations were loaded with besifloxacin HCl (BHL) and the besifloxacin HCl: sulfobutyl ether beta-cyclodextrin (SBE-CD) complex. Positive charge was gained with chitosan, and corneal permeation and resolubility were increased with SBE-CD. In vitro characterization studies, permeability studies, and cytotoxicity and ex vivo transport studies were carried out. Results: In this study, it was found that SBE-CD increased BHL's solubility by 8-fold based on phase solubility studies. The optimized NLCs were small in size (13.63-16.09 nm) with a low polydispersity index (0.107-0.181) and adequate BHL drug loading efficiency. In vitro release studies showed that formulations were released approximately for 8 h and at levels over the minimum inhibitory concentration of Pseudomonas aeruginosa and Staphylococcus aureus. NLC formulations had a better corneal permeation rate than the marketed product during 6 h of ex vivo studies. Conclusions: According to in vitro and ex vivo data, it was determined that the most favorable NLC formulation was the formulation containing BHL/SBE-CD that was covered with chitosan. It has the highest drug loading capacity and one of the highest ex vivo corneal passage levels, along with desired drug release. The formulation containing BHL/SBE-CD and chitosan can be a potential alternative for the treatment of bacterial keratitis.
Collapse
Affiliation(s)
- Heybet Kerem Polat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Nihat Kurt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Eren Aytekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Yagmur Akdağ Çaylı
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
12
|
Tang Z, Fan X, Chen Y, Gu P. Ocular Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2003699. [PMID: 35150092 PMCID: PMC9130902 DOI: 10.1002/advs.202003699] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2021] [Indexed: 05/07/2023]
Abstract
Intrinsic shortcomings associated with conventional therapeutic strategies often compromise treatment efficacy in clinical ophthalmology, prompting the rapid development of versatile alternatives for satisfactory diagnostics and therapeutics. Given advances in material science, nanochemistry, and nanobiotechnology, a broad spectrum of functional nanosystems has been explored to satisfy the extensive requirements of ophthalmologic applications. In the present review, the recent progress in nanosystems, both conventional and emerging nanomaterials in ophthalmology from state-of-the-art studies, are comprehensively examined and the role of their fundamental physicochemical properties in bioavailability, tissue penetration, biodistribution, and elimination after interacting with the ophthalmologic microenvironment emphasized. Furthermore, along with the development of surface engineering of nanomaterials, emerging theranostic methodologies are promoted as potential alternatives for multipurpose ocular applications, such as emerging biomimetic ophthalmology (e.g., smart electrochemical eye), thus provoking a holistic review of "ocular nanomedicine." By affording insight into challenges encountered by ocular nanomedicine and further highlighting the direction of future studies, this review provides an incentive for enriching ocular nanomedicine-based fundamental research and future clinical translation.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Ping Gu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| |
Collapse
|
13
|
Li Y, Foo LL, Wong CW, Li J, Hoang QV, Schmetterer L, Ting DSW, Ang M. Pathologic myopia: advances in imaging and the potential role of artificial intelligence. Br J Ophthalmol 2022; 107:600-606. [PMID: 35288438 DOI: 10.1136/bjophthalmol-2021-320926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
Pathologic myopia is a severe form of myopia that can lead to permanent visual impairment. The recent global increase in the prevalence of myopia has been projected to lead to a higher incidence of pathologic myopia in the future. Thus, imaging myopic eyes to detect early pathological changes, or predict myopia progression to allow for early intervention, has become a key priority. Recent advances in optical coherence tomography (OCT) have contributed to the new grading system for myopic maculopathy and myopic traction maculopathy, which may improve phenotyping and thus, clinical management. Widefield fundus and OCT imaging has improved the detection of posterior staphyloma. Non-invasive OCT angiography has enabled depth-resolved imaging for myopic choroidal neovascularisation. Artificial intelligence (AI) has shown great performance in detecting pathologic myopia and the identification of myopia-associated complications. These advances in imaging with adjunctive AI analysis may lead to improvements in monitoring disease progression or guiding treatments. In this review, we provide an update on the classification of pathologic myopia, how imaging has improved clinical evaluation and management of myopia-associated complications, and the recent development of AI algorithms to aid the detection and classification of pathologic myopia.
Collapse
Affiliation(s)
- Yong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| | - Li-Lian Foo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| | - Chee Wai Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| | - Jonathan Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Quan V Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Ophthalmology, Columbia University, New York City, New York, USA
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore.,School of Chemical and Biological Engineering, Nanyang Technological University, Singapore.,Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Daniel S W Ting
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore .,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| |
Collapse
|
14
|
Cakir-Aktas C, Erdener SE, Teke B, Bozdag Pehlivan S, Zeybek ND, Taskiran-Sag A, Kaya Z, Dalkara T, Mut M. Confocal reflectance microscopy for metal and lipid nanoparticle visualization in the brain. Nanomedicine (Lond) 2022; 17:447-460. [PMID: 35142565 DOI: 10.2217/nnm-2021-0350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: A requirement for nanoparticle (NP) research is visualization of particles within cells and tissues. Limitations of electron microscopy and low yields of NP fluorescent tagging warrant the identification of alternative imaging techniques. Method: Confocal reflectance microscopy (CRM) in combination with fluorescence imaging was assessed for visualizing rhodamine B-conjugated silver and fluorescein isothiocyanate-conjugated lipid core-stearylamine NP uptake in vitro and in vivo. Results: CRM successfully identified cellular uptake and blood-brain barrier penetration of NPs owing to their distinguishing refractive indices. NP-dependent reflectance signals in vitro were dose and incubation time dependent. Finally, CRM facilitated the distinction between nonspecific fluorescence signals and NPs. Conclusion: These findings demonstrate the value of CRM for NP visualization in tissues, which can be performed with a standard confocal microscope.
Collapse
Affiliation(s)
- Canan Cakir-Aktas
- Hacettepe University, Institute of Neurological Sciences & Psychiatry, Ankara, 06230, Turkey
| | - Sefik Evren Erdener
- Hacettepe University, Institute of Neurological Sciences & Psychiatry, Ankara, 06230, Turkey
| | - Büşra Teke
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, Ankara, 06230, Turkey
| | - Sibel Bozdag Pehlivan
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, Ankara, 06230, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology & Embryology, Hacettepe University, Faculty of Medicine, Ankara, 06230, Turkey
| | - Aslihan Taskiran-Sag
- Hacettepe University, Institute of Neurological Sciences & Psychiatry, Ankara, 06230, Turkey
| | - Zeynep Kaya
- Hacettepe University, Institute of Neurological Sciences & Psychiatry, Ankara, 06230, Turkey
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences & Psychiatry, Ankara, 06230, Turkey
| | - Melike Mut
- Hacettepe University, Institute of Neurological Sciences & Psychiatry, Ankara, 06230, Turkey.,Department of Neurosurgery, Hacettepe University, Faculty of Medicine, Ankara, 06230, Turkey
| |
Collapse
|
15
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
16
|
Aytekin E, Pehlivan SB. Corneal cross-linking approaches on keratoconus treatment. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Atalay E, Özalp O, Yıldırım N. Advances in the diagnosis and treatment of keratoconus. Ther Adv Ophthalmol 2021; 13:25158414211012796. [PMID: 34263132 PMCID: PMC8246497 DOI: 10.1177/25158414211012796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/07/2021] [Indexed: 01/31/2023] Open
Abstract
Keratoconus had traditionally been considered a rare disease at a time when the imaging technology was inept in detecting subtle manifestations, resulting in more severe disease at presentation. The increased demand for refractive surgery in recent years also made it essential to more effectively detect keratoconus before attempting any ablative procedure. Consequently, the armamentarium of tools that can be used to diagnose and treat keratoconus has significantly expanded. The advances in imaging technology have allowed clinicians and researchers alike to visualize the cornea layer by layer looking for any early changes that might be indicative of keratoconus. In addition to the conventional geometrical evaluation, efforts are also underway to enable spatially resolved corneal biomechanical evaluation. Artificial intelligence has been exploited in a multitude of ways to enhance diagnostic efficiency and to guide treatment. As for treatment, corneal cross-linking treatment remains the mainstay preventive approach, yet the current main focus of research is on increasing oxygen availability and developing new strategies to improve riboflavin permeability during the procedure. Some new combined protocols are being proposed to simultaneously halt keratoconus progression and correct refractive error. Bowman layer transplantation and additive keratoplasty are newly emerging alternatives to conventional keratoplasty techniques that are used in keratoconus surgery. Advances in tissue engineering and regenerative therapy might bring new perspectives for treatment at the cellular level and hence obviate the need for invasive surgeries. In this review, we describe the advances in the diagnosis and treatment of keratoconus primarily focusing on newly emerging approaches and strategies.
Collapse
Affiliation(s)
- Eray Atalay
- Department of Ophthalmology, Medical School, Eskişehir Osmangazi University, Meşelik Kampüsü, Odunpazarı, Eskişehir 26040, Turkey
| | - Onur Özalp
- Department of Ophthalmology, Medical School, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Nilgün Yıldırım
- Department of Ophthalmology, Medical School, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
18
|
Du Z, Cao G, Li K, Zhang R, Li X. Nanocomposites for the delivery of bioactive molecules in tissue repair: vital structural features, application mechanisms, updated progress and future perspectives. J Mater Chem B 2020; 8:10271-10289. [PMID: 33084730 DOI: 10.1039/d0tb01670e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, nanocomposites have attracted great attention in tissue repair as carriers for bioactive molecule delivery due to their biochemical and nanostructural similarity to that of physiological tissues, and controlled delivery of bioactive molecules. In this review, we aim to comprehensively clarify how the applications of nanocomposites for bioactive molecule delivery in tissue repair are achieved by focusing on the following aspects: (1) vital structural features (size, shape, pore, etc.) of nanocomposites that have crucial effects on the biological properties and function of bioactive molecule-delivery systems, (2) delivery performance of bioactive molecules possessing high entrapment efficiency of bioactive molecules and good controlled- and sustained-release of bioactive molecules, (3) application mechanisms of nanocomposites to deliver and release bioactive molecules in tissue repair, (4) updated research progress of nanocomposites for bioactive molecule delivery in hard and soft tissue repair, and (5) future perspectives in the development of bioactive molecule-delivery systems based on nanocomposites.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ruihong Zhang
- Department of Research and Teaching, the Fourth Central Hospital of Baoding City, Baoding 072350, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|