1
|
Wang Z, Jiao Y, Diao W, Shi T, Geng Q, Wen C, Xu J, Deng T, Li X, Zhao L, Gu J, Deng T, Xiao C. Neutrophils: a Central Point of Interaction Between Immune Cells and Nonimmune Cells in Rheumatoid Arthritis. Clin Rev Allergy Immunol 2025; 68:34. [PMID: 40148714 DOI: 10.1007/s12016-025-09044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease involving activation of the immune system and the infiltration of immune cells. As the first immune cells to reach the site of inflammation, neutrophils perform their biological functions by releasing many active substances and forming neutrophil extracellular traps (NETs). The overactivated neutrophils in patients with RA not only directly damage tissues but also, more importantly, interact with various other immune cells and broadly activate innate and adaptive immunity, leading to irreversible joint damage. However, owing to the pivotal role and complex influence of neutrophils in maintaining homoeostasis, the treatment of RA by targeting neutrophils is very difficult. Therefore, a comprehensive understanding of the interaction pathways between neutrophils and various other immune cells is crucial for the development of neutrophils as a new therapeutic target for RA. In this study, the important role of neutrophils in the pathogenesis of RA through their crosstalk with various other immune cells and nonimmune cells is highlighted. The potential of epigenetic modification of neutrophils for exploring the pathogenesis of RA and developing therapeutic approaches is also discussed. In addition, several models for studying cell‒cell interactions are summarized to support further studies of neutrophils in the context of RA.
Collapse
Affiliation(s)
- Zhaoran Wang
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yi Jiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenya Diao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tong Shi
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chaoying Wen
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Tiantian Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoya Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100193, China
| | - Lu Zhao
- China-Japan Friendship Clinical Medical College, Capital Medical University, Beijing, 100029, China
| | - Jienan Gu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China.
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
2
|
Li Y, Chen W, Koo S, Liu H, Saiding Q, Xie A, Kong N, Cao Y, Abdi R, Serhan CN, Tao W. Innate immunity-modulating nanobiomaterials for controlling inflammation resolution. MATTER 2024; 7:3811-3844. [PMID: 40123651 PMCID: PMC11925551 DOI: 10.1016/j.matt.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The acute inflammatory response is an inherent protective mechanism, its unsuccessful resolution can contribute to disease pathogenesis and potentially lead to death. Innate immune cells are the first line of host defenders and play a substantial role in inflammation initiation, amplification, resolution, or subsequent disease progression. As the resolution of inflammation is an active and highly regulated process, modulating innate immune cells, including neutrophils, monocytes and macrophages, and endothelial cells, and their interactions offer opportunities to control excessive inflammation. Nanobiomaterials have shown superior therapeutic potential in inflammation-related diseases by manipulating inflammatory responses because nanobiomaterials can target and interact with innate immune cells. Versatile nanobiomaterials can be designed for targeted modulation of specific innate immune responses. Nanopro-resolving medicines have been prepared both with pro-resolving lipid mediators and peptides each demonstrated to active resolution of inflammation in animal disease models. Here, we review innovative nanobiomaterials for modulating innate immunity and alleviating inflammation. We summarise the strategies converging the design of nanobiomaterials and the nano-bio interaction in modulating innate immune profiles and propelling the advancement of nanobiomaterials for inflammatory disease treatments. We also propose the future perspectives and translational challenges of nanobiomaterials that need to be overcome in this swiftly rising field.
Collapse
Affiliation(s)
- Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally: Yongjiang Li, Wei Chen
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally: Yongjiang Li, Wei Chen
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Haijun Liu
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Liu H, Liu Y, Tian Z, Li J, Li M, Zhao Z. Coordinating Macrophage Targeting and Antioxidation by Injectable Nanocomposite Hydrogel for Enhanced Rheumatoid Arthritis Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37656-37668. [PMID: 38987704 DOI: 10.1021/acsami.4c06840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Rheumatoid arthritis (RA), an immune-mediated inflammatory disease, is characterized by a large number of infiltrated immune cells and abnormally elevated reactive oxygen species (ROS) in the joint. Various proinflammatory factors secreted by macrophages and the elevated ROS by inflammatory cells are deeply intertwined and together contribute to joint damage. Targeted and sustained anti-inflammation and antioxidation strategies are needed for RA treatment. To alleviate the oxidative stress and target the source of inflammatory cytokines, we developed a thermosensitive injectable hydrogel, Dex-DSLip/Cro@Gel, to coordinate the targeted anti-inflammatory and antioxidation effects. Within the injectable gel, dexamethasone (Dex)-loaded liposomes (Dex-DSLip), modified with dextran sulfate (DS), target macrophages via interaction with scavenger receptor A (SR-A). Simultaneously, crocin I (Cro) is loaded in the gel with a high loading capacity. The porous structure of Dex-DSLip/Cro@Gel successfully prolongs the retention time of both drugs and sustains the release of Dex and Cro. After intra-articular injection of Dex-DSLip/Cro@Gel in RA rats, the expression of inflammatory factors in the ankle joints was significantly reduced. Joint erythema and bone erosion were markedly alleviated. Through the synergistic effects of Dex and Cro, Dex-DSLip/Cro@Gel demonstrates targeted anti-inflammatory and antioxidation effects as well as mitigated bone erosion and long-term therapeutic effects for RA. This thermosensitive injectable nanocomposite hydrogel synergizes anti-inflammatory and antioxidation effects and targets the microenvironment in the joint, offering a new approach for RA treatment.
Collapse
Affiliation(s)
- Houqin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yingke Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhipeng Tian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
4
|
Deng Y, Zheng H, Li B, Huang F, Qiu Y, Yang Y, Sheng W, Peng C, Tian X, Wang W, Yu H. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J Control Release 2024; 371:498-515. [PMID: 38849090 DOI: 10.1016/j.jconrel.2024.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.
Collapse
Affiliation(s)
- Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
5
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
6
|
Wu X, Guo H, Gao H, Li Y, Hu X, Kowalke MA, Li YX, Wei Y, Zhao J, Auger J, Binstadt BA, Pang HB. Peptide targeting improves the delivery and therapeutic index of glucocorticoids to treat rheumatoid arthritis. J Control Release 2024; 368:329-343. [PMID: 38431094 PMCID: PMC11001515 DOI: 10.1016/j.jconrel.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by excessive inflammation in the joints. Glucocorticoid drugs are used clinically to manage RA symptoms, while their dosage and duration need to be tightly controlled due to severe adverse effects. Using dexamethasone (DEX) as a model drug, we explored here whether peptide-guided delivery could increase the safety and therapeutic index of glucocorticoids for RA treatment. Using multiple murine RA models such as collagen-induced arthritis (CIA), we found that CRV, a macrophage-targeting peptide, can selectively home to the inflammatory synovium of RA joints upon intravenous injection. The expression of the CRV receptor, retinoid X receptor beta (RXRB), was also elevated in the inflammatory synovium, likely being the basis of CRV targeting. CRV-conjugated DEX increased the accumulation of DEX in the inflamed synovium but not in healthy organs of CIA mice. Therefore, CRV-DEX demonstrated a stronger efficacy to suppress synovial inflammation and alleviate cartilage/bone destruction. Meanwhile, CRV conjugation reduced immune-related adverse effects of DEX even after a long-term use. Last, we found that RXRB expression was significantly elevated in human patient samples, demonstrating the potential of clinical translation. Taken together, we provide a novel, peptide-targeted strategy to improve the therapeutic efficacy and safety of glucocorticoids for RA treatment.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hong Guo
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hui Gao
- Department of Rheumatology and Immunology, Peking University International Hospital, Beijing, China
| | - Yiqin Li
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiangxiang Hu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell A Kowalke
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yue-Xuan Li
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yushuang Wei
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jiaqi Zhao
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer Auger
- Center for Immunology and Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Bryce A Binstadt
- Center for Immunology and Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Hong-Bo Pang
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
He Y, Cen Y, Tian M. Immunomodulatory hydrogels for skin wound healing: cellular targets and design strategy. J Mater Chem B 2024; 12:2435-2458. [PMID: 38284157 DOI: 10.1039/d3tb02626d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Skin wounds significantly impact the global health care system and represent a significant burden on the economy and society due to their complicated dynamic healing processes, wherein a series of immune events are required to coordinate normal and sequential healing phases, involving multiple immunoregulatory cells such as neutrophils, macrophages, keratinocytes, and fibroblasts, since dysfunction of these cells may impede skin wound healing presenting persisting inflammation, impaired vascularization, and excessive collagen deposition. Therefore, cellular target-based immunomodulation is promising to promote wound healing as cells are the smallest unit of life in immune response. Recently, immunomodulatory hydrogels have become an attractive avenue to promote skin wound healing. However, a detailed and comprehensive review of cellular targets and related hydrogel design strategies remains lacking. In this review, the roles of the main immunoregulatory cells participating in skin wound healing are first discussed, and then we highlight the cellular targets and state-of-the-art design strategies for immunomodulatory hydrogels based on immunoregulatory cells that cover defect, infected, diabetic, burn and tumor wounds and related scar healing. Finally, we discuss the barriers that need to be addressed and future prospects to boost the development and prosperity of immunomodulatory hydrogels.
Collapse
Affiliation(s)
- Yinhai He
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Shen Q, Du Y. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis. Int J Pharm 2023; 635:122698. [PMID: 36754181 DOI: 10.1016/j.ijpharm.2023.122698] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Rheumatoid arthritis (RA), a chronic autoimmune disease, is characterized by articular pain and swelling, synovial hyperplasia, and cartilage and bone destruction. Conventional treatment strategies for RA involve the use of anti-rheumatic drugs, which warrant high-dose, frequent, and long-term administration, resulting in serious adverse effects and poor patient compliance. To overcome these problems and improve clinical efficacy, drug delivery systems (DDS) have been designed for RA treatment. These systems have shown success in animal models of RA. In this review, representative DDS that target RA through passive or active effects on inflammatory cells are discussed and highlighted using examples. In particular, DDS allowing controlled and targeted drug release based on a variety of stimuli, intra-articular DDS, and transdermal DDS for RA treatment are described. Thus, this review provides an improved understanding of these DDS and paves the way for the development of novel DDS for efficient RA treatment.
Collapse
Affiliation(s)
- Qiying Shen
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou 311121, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China.
| |
Collapse
|
9
|
Sinomenine ameliorates adjuvant-induced arthritis by inhibiting the autophagy/NETosis/inflammation axis. Sci Rep 2023; 13:3933. [PMID: 36894604 PMCID: PMC9998614 DOI: 10.1038/s41598-023-30922-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Studies have found that neutrophil extracellular traps (NETs) which are the specific dying form of neutrophil upon activation have fundamental role in the rheumatoid arthritis onset and progression. The purpose of this study was to explore the therapeutic effect of Sinomenine on adjuvant-induced arthritis in mice, and the neutrophil activities regulated by Sinomenine. The rheumatoid arthritis model was established by local injection of adjuvant and the Sinomenine treatment was administered orally for 30 days, during which, arthritic scores were evaluated and the joint diameter was measured to determine disease progression. The joint tissues and serum were acquired for further tests after sacrifice. Cytometric beads assay was performed to measure the concentration of cytokines. For paraffin-embedded ankle tissues, hematoxylin and erosin staining and Safranin O-fast staining were adopted to monitor the tissue changes of joint. In order to analyze the inflammation, NETs and autophagy of neutrophils in vivo, immunohistochemistry assays were applied to detect the protein expression levels in the local joints. To describe the effect brought by Sinomenine on inflammation, autophagy and NETs in vitro, the western blotting and the immunofluorescence assays were performed. The joint symptoms of the adjuvant induced arthritis were alleviated by the Sinomenine treatment significantly in terms of the ankle diameter and scores. The improvement of local histopathology changes and decrease of inflammatory cytokines in the serum also confirmed the efficacy. The expression levels of interleukin-6, P65 and p-P65 in the ankle areas of mice were remarkably reduced by Sinomenine. Compared with the model group, the decreased expression levels of lymphocyte antigen 6 complex and myeloperoxidase in the Sinomenine treating group showed the inhibitory effect of Sinomenine on the neutrophil migration. The expression of protein arginine deiminase type 4 (PAD4), ctrullinated histone H3 (CitH3) and microtubule-associated protein 1 light chain 3B (LC3B) had the similar tendency. Upon activation of lipopolysaccharide (LPS) in vitro, Sinomenine suppressed the phosphorylation of P65, extracellular signal-regulated kinase (ERK) and P38 of neutrophil. Meanwhile, Sinomenine inhibited NETs formation induced by phorbol 12-myristate 13-acetate (PMA), which were demonstrated by the decreased expression of neutrophil elastase (NE), PAD4 and CitH3. Sinomenine also inhibited PMA-induced autophagy in vitro based on the changes of Beclin-1 and LC3B. Sinomenine has good efficacy in treating adjuvant induced arthritis via regulating neutrophil activities. Apart from inhibiting activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, the mechanism includes suppression of NETs formation via autophagy inhibition.
Collapse
|
10
|
Wang Q, Duan Y, Jing H, Wu Z, Tian Y, Gong K, Guo Q, Zhang J, Sun Y, Li Z, Duan Y. Inhibition of atherosclerosis progression by modular micelles. J Control Release 2023; 354:294-304. [PMID: 36638843 DOI: 10.1016/j.jconrel.2023.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is a chronic disease initiated by lipid-mediated vascular inflammation. From the perspective of conventional treatment, it is difficult to achieve good therapeutic effects via regulation of a single lipid or anti-inflammatory effects. Herein, we designed an amphiphilic low molecular weight heparin-unsaturated fatty acid conjugate (LMWH-uFA) that acted as both an antiatherosclerotic agent and a nanocarrier with self-delivery properties. Structurally, LMWH-uFA self-assembled to form micelles with LMWH as the shell and uFA as the core, without any additives, which guaranteed their biosafety. Functionally, the hydrophilic segment, LMWH, prevented monocyte adhesion to inhibit early vascular inflammation, and the hydrophobic segment, uFA, could participate in the regulation of blood lipids. The anti-inflammatory drug rapamycin (RAP) was encapsulated in the micellar core, which improved its water solubility, and cooperated with LMWH to achieve targeted blockade of the vascular inflammation cascade at P-selectin. The three treatment modules, LMWH, uFA and RAP, were integrated into one system for different therapeutic targets in anticipation of better efficacy. In an atherosclerosis mouse model, RAP-loaded NPs significantly reduced the plaque area and showed satisfactory curative effects, which were related to the targeting of lipid regulation and inflammation. Thus, these modular micellar nanoparticles offer a promising approach for the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yi Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongshu Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ke Gong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Jiali Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhaojun Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai General Hospital Jiading Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200032, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
11
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
12
|
Programmed prodrug breaking the feedback regulation of P-selectin in plaque inflammation for atherosclerotic therapy. Biomaterials 2022; 288:121705. [PMID: 36002347 DOI: 10.1016/j.biomaterials.2022.121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
Inflammation is the main driver of the aggravation of arteriosclerosis, and the complex inflammatory response in plaque is usually the result of the interaction of various cells and cytokines. Therefore, it is difficult to comprehensively regulate the inflammatory process of arteriosclerosis by intervening a single target, resulting in the poor effect of existing treatment method. Based on our clinical findings that P-selectin stably and highly expressed in patients' plaque endothelial cells, the programmed prodrug, low molecular weight heparin-indomethacin nanoparticles (LI NPs), were established as anti-inflammatory agent to multiphase inhibit arteriosclerosis by cascade interference of P-selectin. Structurally, LI NPs was obtained by simple esterification of low molecular weight heparin and indomethacin without any additives, guaranteeing the biocompatibility and applicability of LI NPs. Functionally, LI NPs could interfere with P-selectin in the inflammatory process, such as inhibiting macrophage adhesion, reducing the secretion of inflammatory factors, and inducing macrophage apoptosis. In the arteriosclerosis mice model, LI NPs significantly reduced the plaque area and showed satisfactory curative effect, which is related to the intervention of the multiphase inflammation between endothelial cells and macrophages. In conclusion, the programmed prodrug LI NPs offered a promising approach for the clinical therapy of arteriosclerosis.
Collapse
|
13
|
Ma L, Zheng X, Lin R, Sun AR, Song J, Ye Z, Liang D, Zhang M, Tian J, Zhou X, Cui L, Liu Y, Liu Y. Knee Osteoarthritis Therapy: Recent Advances in Intra-Articular Drug Delivery Systems. Drug Des Devel Ther 2022; 16:1311-1347. [PMID: 35547865 PMCID: PMC9081192 DOI: 10.2147/dddt.s357386] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
Drug delivery for osteoarthritis (OA) treatment is a continuous challenge because of their poor bioavailability and rapid clearance in joints. Intra-articular (IA) drug delivery is a common strategy and its therapeutic effects depend mainly on the efficacy of the drug-delivery system used for OA therapy. Different types of IA drug-delivery systems, such as microspheres, nanoparticles, and hydrogels, have been rapidly developed over the past decade to improve their therapeutic effects. With the continuous advancement in OA mechanism research, new drugs targeting specific cell/signaling pathways in OA are rapidly evolving and effective drug delivery is critical for treating OA. In this review, recent advances in various IA drug-delivery systems for OA treatment, OA targeted strategies, and related signaling pathways in OA treatment are summarized and analyzed based on current publications.
Collapse
Affiliation(s)
- Luoyang Ma
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xiaoyan Zheng
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
| | - Rui Lin
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen City, Guangdong Province, 518055, People’s Republic of China
| | - Jintong Song
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Zhiqiang Ye
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Dahong Liang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Min Zhang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Jia Tian
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xin Zhou
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Liao Cui
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yuyu Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yanzhi Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen city, Guangdong Province, 518118, People’s Republic of China
- Correspondence: Yanzhi Liu; Yuyu Liu, Tel +86-759-2388405; +86-759-2388588, Email ;
| |
Collapse
|
14
|
Tang L, He S, Yin Y, Li J, Xiao Q, Wang R, Gao L, Wang W. Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. NANOSCALE 2022; 14:1621-1645. [PMID: 35079756 DOI: 10.1039/d1nr07725b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neutrophils, the most abundant leukocytes in humans, play a crucial role in acute inflammation during infection and tumorigenesis. Neutrophils are the major types of cells recruited to the inflammation sites induced by pathogens, exhibiting great homing ability towards inflammatory disorders and tumor sites. Therefore, a neutrophil-based drug delivery system (NDDS) has become a promising platform for anti-cancer and anti-inflammatory treatment. Recent decades have witnessed the huge progress of applying nanomaterials in drug delivery. Nanomaterials are regarded as innovative components to enrich the field of neutrophil-based therapies due to their unique physiochemical characteristics. In this review, the latest advancement of combining diverse nanomaterials with an NDDS for cancer and inflammatory disease treatment will be summarized. It is discussed how nanomaterials empower the therapeutic area of an NDDS and how an NDDS circumvents the limitations of nanomaterials. Moreover, based on the finding that neutrophils are closely involved in the progression of cancer and inflammatory diseases, emerging therapeutic strategies that target neutrophils will be outlined. Finally, as neutrophils were demonstrated to play a central role in the immunopathology of COVID-19, which causes necroinflammation that is responsible for the cytokine storm and sepsis during coronavirus infections, novel therapeutic approaches that anchor neutrophils against the pathological consequences related to COVID-19 will be highlighted as well.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Lijun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
15
|
Wang H, Zang J, Zhao Z, Zhang Q, Chen S. The Advances of Neutrophil-Derived Effective Drug Delivery Systems: A Key Review of Managing Tumors and Inflammation. Int J Nanomedicine 2021; 16:7663-7681. [PMID: 34815670 PMCID: PMC8605828 DOI: 10.2147/ijn.s328705] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
The chimeric trait of recruitment by inflammatory signals endows neutrophils with the functionality of migrating to inflamed tissues, which can be utilized to tailor novel drug delivery systems. In this review, we introduce a mechanism of neutrophil-derived drug delivery systems recruited into inflamed sites and provide insight into tumors and inflammation therapy. In particular, the advantages of neutrophils—their endogenous-derived neutrophil membrane, exosomes as drug carriers for augmented targeting, prolonged circulation, and improved biostability—were concluded. Subsequently, the latest application in the treatment of tumors and inflammation was elaborated upon, followed by a discussion of the future prospects to neutrophil-derived delivery systems. This promising system will provide new therapeutic avenues for the treatment of inflammation and tumors.
Collapse
Affiliation(s)
- Huaiji Wang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jie Zang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zihan Zhao
- Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qin Zhang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shunjie Chen
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|