1
|
Otzen DE, Peña-Díaz S, Widmann J, Daugberg AOH, Zhang Z, Jiang Y, Mittal C, Dueholm MKD, Louros N, Wang H, Javed I. Interactions between pathological and functional amyloid: A match made in Heaven or Hell? Mol Aspects Med 2025; 103:101351. [PMID: 40024004 DOI: 10.1016/j.mam.2025.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
The amyloid state of proteins occurs in many different contexts in Nature and in modern society, ranging from the pathological kind (neurodegenerative diseases and amyloidosis) via man-made forms (food processing and - to a much smaller extent - protein biologics) to functional versions (bacterial biofilm, peptide hormones and signal transmission). These classes all come together in the human body which endogenously produces amyloidogenic protein able to form pathological human amyloid (PaHA), hosts a microbiome which continuously makes functional bacterial amyloid (FuBA) and ingests food which can contain amyloid. This can have grave consequences, given that PaHA can spread throughout the body in a "hand-me-down" fashion from cell to cell through small amyloid fragments, which can kick-start growth of new amyloid wherever they encounter monomeric amyloid precursors. Amyloid proteins can also self- and cross-seed across dissimilar peptide sequences. While it is very unlikely that ingested amyloid plays a role in this crosstalk, FuBA-PaHA interactions are increasingly implicated in vivo amyloid propagation. We are now in a position to understand the structural and bioinformatic basis for this cross-talk, thanks to the very recently obtained atomic-level structures of the two major FuBAs CsgA (E. coli) and FapC (Pseudomonas). While there are many reports of homology-driven heterotypic interactions between different PaHA, the human proteome does not harbor significant homology to CsgA and FapC. Yet we and others have uncovered significant cross-stimulation (and in some cases inhibition) of FuBA and PaHA both in vitro and in vivo, which we here rationalize based on structure and sequence. These interactions have important consequences for the transmission and development of neurodegenerative diseases, not least because FuBA and PaHA can come into contact via the gut-brain interface, recurrent infections with microbes and potentially even through invasive biofilm in the brain. Whether FuBA and PaHA first interact in the gut or the brain, they can both stimulate and block each other's aggregation as well as trigger inflammatory responses. The microbiome may also affect amyloidogenesis in other ways, e.g. through their own chaperones which recognize and block growth of both PaHA and FuBA as we show both experimentally and computationally. Heterotypic interactions between and within PaHA and FuBA both in vitro and in vivo are a vital part of the amyloid phenomenon and constitute a vibrant and exciting frontier for future research.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Jeremias Widmann
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Anders Ogechi Hostrup Daugberg
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Zhefei Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yanting Jiang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Chandrika Mittal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Nikolaos Louros
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China; Jiangsu Fuyuda Food Products Co., Ltd, Qinyou Road 88, Gaoyou City, Jiangsu Province, 225600, China.
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
2
|
Jeang WJ, Wong BM, Zhao Y, Manan RS, Jiang AL, Bose S, Collins E, McMullen P, Rosenboom JG, Lathwal S, Langer R, Anderson DG. Antifouling Immunomodulatory Copolymer Architectures That Inhibit the Fibrosis of Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414743. [PMID: 39722171 DOI: 10.1002/adma.202414743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Immune reactions to medical implants often lead to encapsulation by fibrotic tissue and impaired device function. This process is thought to initiate by protein adsorption, which enables immune cells to attach and mount an inflammatory response. Previously, several antifibrotic materials have been either designed to reduce protein adsorption or discovered via high-throughput screens (HTS) to favorably regulate inflammation. The present work introduces antifouling immunomodulatory (AIM) copolymer coatings, which combine both strategies to effectively enhance implant protection. AIM copolymers synergistically integrate zwitterionic moieties to resist protein fouling, HTS-derived antifibrotics for immunomodulation, and silane monomers for grafting to diverse substrates including elastomers, ceramics, and metals. Interestingly, simply combining these monomers into conventional random or block copolymer architectures yielded no significant advantage over homopolymers. By contrast, an unusual polymer chain architecture - a zwitterionic block flanked by a mixed zwitterionic immunomodulatory segment - showed superior fibrosis resistance in both peritoneal and subcutaneous sites over one month in immunocompetent mice. This architecture also improved the performance of two different HTS-derived antifibrotic monomers, suggesting that tailoring AIM architectures may broadly complement immunomodulatory chemistries and provide a versatile approach to improving implant longevity.
Collapse
Affiliation(s)
- William J Jeang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
| | - Bryan M Wong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yichao Zhao
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexis L Jiang
- Department of Computer Science, Wellesley College, Wellesley, MA, 02481, USA
| | - Suman Bose
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Evan Collins
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Patrick McMullen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jan-Georg Rosenboom
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sushil Lathwal
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Kalitnik A, Szefczyk M, Wojciechowska AW, Wojciechowski JW, Gąsior-Głogowska M, Olesiak-Bańska J, Kotulska M. Cytotoxic Staphylococcus aureus PSMα3 inhibits the aggregation of human insulin in vitro. Phys Chem Chem Phys 2024; 26:15587-15599. [PMID: 38757742 DOI: 10.1039/d4cp00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-β fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Alicja W Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
4
|
Kalitnik A, Grelich-Mucha M, Olesiak-Bańska J. Chitosan oligosaccharides inhibit the fibrillation of insulin and disassemble its preformed fibrils. Int J Biol Macromol 2024; 254:127857. [PMID: 37924913 DOI: 10.1016/j.ijbiomac.2023.127857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
In the current study, we first established that chitosan oligosaccharides (COS) have significant anti-fibrillogenic and fibril-destabilising effects on bovine insulin in vitro that proportionally expand with concentration growth. The obtained data were supported by the Thioflavin T (ThT) assay, circular dichroism (CD), attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and atomic force microscopy (AFM). Interestingly, coincubation of insulin with COS in the ratio of 1 to 10 over 48 h at 37 °C leads to full prevention of insulin aggregation, and in the case of preformed fibrils, results in their destabilisation and disaggregation. Moreover, both a cationic polymer of allylamine (PAH) and a sulphated oligosaccharide (CROS) prepared from carrageenan had no inhibitory effect on insulin amyloid formation. Thus, we proposed that COS modulates insulin amyloid formation due to the presence of linear sugar units, the degree of polymerization, and the free amino group providing a positive charge. These findings highlight the potential implications of COS as a promising substance for the treatment of insulin-dependent diabetes mellitus and localised insulin-derived amyloidosis and, moreover, provide a new insight into the mechanism of the anti-diabetic and antitoxic properties of chitosan and chitosan-based agents.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Manuela Grelich-Mucha
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
5
|
He J, Renard E, Lord P, Cohen D, Gu B, Wang X, Yenduri G, Burgess DJ. Strategies for extended lifetime of implantable intraperitoneal insulin catheters. J Control Release 2021; 341:487-497. [PMID: 34856228 DOI: 10.1016/j.jconrel.2021.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
Implantable insulin infusion systems using the intra-peritoneal route have dramatically changed the management of diabetes paving the way toward the realization of the potential "holy grail" of a fully implantable artificial pancreas. However, the wear duration of delivery catheters is compromised by the foreign body-mediated immune response. Both occlusion material present at the distal catheter tip end and fibrotic encapsulation surrounding the catheters influence the controlled and precise delivery of insulin, which eventually leads to the need for surgical intervention. The novel part of the current work is the investigation of the roles of implant physical properties (catheter size and tip configuration), as well as local inflammation control (through utilization of an anti-inflammatory agent) on the host fibrotic response using a previously developed animal model. The cellular and molecular response, the medication delivery efficacy as well as the ability to flush the catheters were examined and further compared among the different mitigation strategies. Reduction in catheter size as well as tuning the tip configuration from a cone shape to a round shape showed delayed host recognition and delayed propagation of the fibrotic response. However, the round shaped tips had an increased occurrence of lumen occlusion as a result of flow change. It became apparent that changing the physical properties of the catheters was not a long-term solution to catheter obstructions caused by the foreign body reaction. In comparison, control of the local inflammatory response through the use of an anti-inflammatory agent demonstrated a promising strategy for maintenance of catheter functionality without any type of obstructions. These finding will have a large impact toward the development of long-term use catheters for continuous intraperitoneal insulin infusion.
Collapse
Affiliation(s)
- Jia He
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Road U3092, Storrs, CT 06269, USA
| | - Eric Renard
- Department of Endocrinology, Diabetes and Nutrition, Montpellier University Hospital, Lapeyronie Hospital, Avenue Doyen Giraud, Montpellier 34295, France; Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, 141 Rue de la Cardonille, Montpellier 34094, France
| | - Peter Lord
- PhysioLogic Devices, Inc, 2232 Old Stagecoach Trail, Alpine, CA 91901, USA
| | - Don Cohen
- PhysioLogic Devices, Inc, 2232 Old Stagecoach Trail, Alpine, CA 91901, USA
| | - Bing Gu
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Road U3092, Storrs, CT 06269, USA
| | - Xiaoyi Wang
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Road U3092, Storrs, CT 06269, USA
| | - Gowtham Yenduri
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Road U3092, Storrs, CT 06269, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Road U3092, Storrs, CT 06269, USA.
| |
Collapse
|
6
|
Jarosinski MA, Dhayalan B, Chen YS, Chatterjee D, Varas N, Weiss MA. Structural principles of insulin formulation and analog design: A century of innovation. Mol Metab 2021; 52:101325. [PMID: 34428558 PMCID: PMC8513154 DOI: 10.1016/j.molmet.2021.101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The discovery of insulin in 1921 and its near-immediate clinical use initiated a century of innovation. Advances extended across a broad front, from the stabilization of animal insulin formulations to the frontiers of synthetic peptide chemistry, and in turn, from the advent of recombinant DNA manufacturing to structure-based protein analog design. In each case, a creative interplay was observed between pharmaceutical applications and then-emerging principles of protein science; indeed, translational objectives contributed to a growing molecular understanding of protein structure, aggregation and misfolding. SCOPE OF REVIEW Pioneering crystallographic analyses-beginning with Hodgkin's solving of the 2-Zn insulin hexamer-elucidated general features of protein self-assembly, including zinc coordination and the allosteric transmission of conformational change. Crystallization of insulin was exploited both as a step in manufacturing and as a means of obtaining protracted action. Forty years ago, the confluence of recombinant human insulin with techniques for site-directed mutagenesis initiated the present era of insulin analogs. Variant or modified insulins were developed that exhibit improved prandial or basal pharmacokinetic (PK) properties. Encouraged by clinical trials demonstrating the long-term importance of glycemic control, regimens based on such analogs sought to resemble daily patterns of endogenous β-cell secretion more closely, ideally with reduced risk of hypoglycemia. MAJOR CONCLUSIONS Next-generation insulin analog design seeks to explore new frontiers, including glucose-responsive insulins, organ-selective analogs and biased agonists tailored to address yet-unmet clinical needs. In the coming decade, we envision ever more powerful scientific synergies at the interface of structural biology, molecular physiology and therapeutics.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA; Department of Chemistry, Indiana University, Bloomington, 47405, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|