1
|
Buyukgolcigezli I, Tenekeci AK, Sahin IH. Opportunities and Challenges in Antibody-Drug Conjugates for Cancer Therapy: A New Era for Cancer Treatment. Cancers (Basel) 2025; 17:958. [PMID: 40149295 PMCID: PMC11939980 DOI: 10.3390/cancers17060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The antibody, linker, and payload moieties all play a significant role in giving the ADC its unique therapeutic potential. The antibody subclass employed in ADCs is determined based on relative individual receptor affinities and pharmacokinetics. Meanwhile, the linker used in an ADC can either be cleavable or non-cleavable. ADC therapy comprises antibody-dependent mechanisms in addition to the direct cytotoxic effects of the payload. These include antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, as well as the "bystander effect", which refers to the diffusion of a portion of the cytotoxic molecules out of the target cell, exerting its cytotoxic effect on the adjacent cells. Target antigens of ADCs are expected to be expressed on the membranes of the cancer cells facing the external matrix, although new approaches utilize antigens regarding tumor-associated cells, the tumor microenvironment, or the tumor vasculature. These target antigens of ADCs not only determine the efficacy of these agents but also impact the off-targets and related adverse effects. The majority of ADC-related toxicities are associated with off-targets. The proposed mechanisms of ADC resistance include disrupted intracellular drug trafficking, dysfunctional lysosomal processing, and the efflux of the cytotoxic molecule via ATP-binding cassette (ABC) transporters. The latter mechanism is especially prominent for multi-drug-resistant tumors. An important limitation of ADCs is the penetration of the conjugate into the tumor microenvironment and their delivery to target cancer cells. Cancerous tissues' vascular profile and the steric "binding site barrier" formed around the peripheral vessels of tumors stand as potential challenges of ADC therapy for solid tumors. As research efforts focus on reducing toxicities, overcoming resistance, and improving pharmacokinetics, ADC options for cancer therapy are expected to continue to diversify, including standalone approaches and combination therapies.
Collapse
Affiliation(s)
| | - Ates Kutay Tenekeci
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey;
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ibrahim Halil Sahin
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Panahizadeh R, Panahi P, Asghariazar V, Makaremi S, Noorkhajavi G, Safarzadeh E. A literature review of recent advances in gastric cancer treatment: exploring the cross-talk between targeted therapies. Cancer Cell Int 2025; 25:23. [PMID: 39856676 PMCID: PMC11762578 DOI: 10.1186/s12935-025-03655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks fourth in global mortality rates and fifth in prevalence, making it one of the most common cancers worldwide. Recent clinical studies have highlighted the potential of immunotherapies as a promising approach to treating GC. This study aims to shed light on the most impactful therapeutic strategies in the context of GC immunotherapy, highlighting both established and emerging approaches. MAIN BODY This review examines over 160 clinical studies conducted globally, focusing on the effectiveness of various immunotherapy modalities, including cancer vaccines, adoptive cell therapy, immune checkpoint inhibitors (ICIs), and monoclonal antibodies (mAbs). A comprehensive search of peer-reviewed literature was performed using databases such as Web of Science, PubMed, and Scopus. The selection criteria included peer-reviewed articles published primarily within the last 10 years, with a focus on studies that provided insights into targeted therapies and their mechanisms of action, clinical efficacy, and safety profiles. The findings indicate that these immunotherapy strategies can enhance treatment outcomes for GC, aligning with current treatment guidelines. ICIs like pembrolizumab and nivolumab have shown significant survival benefits in specific GC subgroups. Cancer vaccines and CAR-T cell therapies demonstrate potential, while mAbs targeting HER2 and VEGFR pathways enhance outcomes in combination regimens. We discuss the latest advancements and challenges in targeted therapy and immunotherapy for GC. Given the evolving nature of this field, this research emphasizes significant evidence-based therapies and those currently under evaluation rather than providing an exhaustive overview. Challenges include resistance mechanisms, immunosuppressive tumor environments, and inconsistent results from combination therapies. Biomarker-driven approaches and further research into emerging modalities like CAR-T cells and cancer vaccines are critical for optimizing treatments. CONCLUSIONS Immunotherapy is reshaping GC management by improving survival and quality of life. Ongoing research and clinical evaluations are crucial for refining personalized and effective therapies.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Padideh Panahi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shima Makaremi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghasem Noorkhajavi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 85991-56189, Iran.
| |
Collapse
|
3
|
Zhang Y, Wang L, Cao X, Song R, Yin S, Cheng Z, Li W, Shen K, Zhao T, Xu J, Liu S, Xie Q, Wu Y, Gao B, Guo Q, Wu J, Qiu X, Wang B, Zhang W, Yang T, Lu W, Zhu S. Evaluation of Double Self-Immolative Linker-Based Antibody-Drug Conjugate FDA022-BB05 with Enhanced Therapeutic Potential. J Med Chem 2024; 67:19852-19873. [PMID: 39444220 DOI: 10.1021/acs.jmedchem.4c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Typical antibody-drug conjugates (ADCs) with valine-alanine linkage, often conjugated with the amino group in payloads, face challenges when interacting with hydroxyl group-containing payloads. Herein, we introduced a transformative Val-Ala-based double self-immolative linker-payload platform, reshaping ADCs by optimizing hydroxyl group-containing payload integration. Utilizing this platform, FDA022-BB05 was successfully conjugated with the hydroxyl group-containing payload DXd using trastuzumab (FDA022) as the monoclonal antibody (mAb). FDA022-BB05 demonstrated enhanced stability, effective cathepsin B sensitivity, reduced cell proliferation, increased bystander killing, and targeted delivery. Notably, acute toxicity evaluations in diverse preclinical models indicated favorable safety profiles and tolerability, with a broad therapeutic index in HER2-positive and -negative xenografts. Overall, these compelling findings support the promising therapeutic potential of FDA022-BB05, emphasizing the significance of diverse linker-payload platform strategies. This ADC is a valuable addition to targeted cancer therapy development, currently advancing through phase I clinical trials.
Collapse
Affiliation(s)
- Yifan Zhang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Lei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuemei Cao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Ruiwen Song
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Sicheng Yin
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Zhiyang Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Weinan Li
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Keyu Shen
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Teng Zhao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Jun Xu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Shuangxi Liu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Qian Xie
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Yinghan Wu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Bei Gao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Qingsong Guo
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Jingsong Wu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Xuefei Qiu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Baoxia Wang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Wenbo Zhang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Tong Yang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Shulei Zhu
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
4
|
Udofa E, Sankholkar D, Mitragotri S, Zhao Z. Antibody drug conjugates in the clinic. Bioeng Transl Med 2024; 9:e10677. [PMID: 39545074 PMCID: PMC11558205 DOI: 10.1002/btm2.10677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 11/17/2024] Open
Abstract
Antibody-drug conjugates (ADCs), chemotherapeutic agents conjugated to an antibody to enhance their targeted delivery to tumors, represent a significant advancement in cancer therapy. ADCs combine the precise targeting capabilities of antibodies and the potent cell-killing effects of chemotherapy, allowing for enhanced cytotoxicity to tumors while minimizing damage to healthy tissues. Here, we provide an overview of the current clinical landscape of ADCs, highlighting 11 U.S. Food and Drug Administration (FDA)-approved products and discussing over 500 active clinical trials investigating newer ADCs. We also discuss some key challenges associated with the clinical translation of ADCs and highlight emerging strategies to overcome these hurdles. Our discussions will provide useful guidelines for the future development of safer and more effective ADCs for a broader range of indications.
Collapse
Affiliation(s)
- Edidiong Udofa
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
| | | | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| |
Collapse
|
5
|
Chis AA, Dobrea CM, Arseniu AM, Frum A, Rus LL, Cormos G, Georgescu C, Morgovan C, Butuca A, Gligor FG, Vonica-Tincu AL. Antibody-Drug Conjugates-Evolution and Perspectives. Int J Mol Sci 2024; 25:6969. [PMID: 39000079 PMCID: PMC11241239 DOI: 10.3390/ijms25136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Antineoplastic therapy is one of the main research themes of this century. Modern approaches have been implemented to target and heighten the effect of cytostatic drugs on tumors and diminish their general/unspecific toxicity. In this context, antibody-drug conjugates (ADCs) represent a promising and successful strategy. The aim of this review was to assess different aspects regarding ADCs. They were presented from a chemical and a pharmacological perspective and aspects like structure, conjugation and development particularities alongside effects, clinical trials, safety issues and perspectives and challenges for future use of these drugs were discussed. Representative examples include but are not limited to the following main structural components of ADCs: monoclonal antibodies (trastuzumab, brentuximab), linkers (pH-sensitive, reduction-sensitive, peptide-based, phosphate-based, and others), and payloads (doxorubicin, emtansine, ravtansine, calicheamicin). Regarding pharmacotherapy success, the high effectiveness expectation associated with ADC treatment is supported by the large number of ongoing clinical trials. Major aspects such as development strategies are first discussed, advantages and disadvantages, safety and efficacy, offering a retrospective insight on the subject. The second part of the review is prospective, focusing on various plans to overcome the previously identified difficulties.
Collapse
Affiliation(s)
| | | | - Anca Maria Arseniu
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Adina Frum
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Luca-Liviu Rus
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Gabriela Cormos
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Cecilia Georgescu
- Faculty of Agriculture Science, Food Industry and Environmental Protection, "Lucian Blaga" University of Sibiu, 550012 Sibiu, Romania
| | - Claudiu Morgovan
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Anca Butuca
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | | | | |
Collapse
|
6
|
Morgovan C, Dobrea CM, Butuca A, Arseniu AM, Frum A, Rus LL, Chis AA, Juncan AM, Gligor FG, Georgescu C, Ghibu S, Vonica-Tincu AL. Safety Profile of the Trastuzumab-Based ADCs: Analysis of Real-World Data Registered in EudraVigilance. Biomedicines 2024; 12:953. [PMID: 38790915 PMCID: PMC11117560 DOI: 10.3390/biomedicines12050953] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Trastuzumab (T) and tyrosine kinase inhibitors (TKIs) are among the first-line treatments recommended for HER2-positive breast cancer. More recently, antibody-drug conjugates (ADCs) such as trastuzumab deruxtecan (T-DXd) and trastuzumab emtansine (T-DM1) have been authorized, and they represent the second-line therapy in this type of cancer. The present study aimed to evaluate adverse drug reactions (ADRs) associated with T-based ADCs that were spontaneously reported in EudraVigilance-the European pharmacovigilance database. Out of 42,272 ADRs reported for currently approved ADCs on the market, 24% of ADRs were related to T-DM1, while 12% of ADRs were related to T-DXd. T-DM1 had a higher probability of reporting eye, ear and labyrinth, and cardiac and hepatobiliary ADRs, while T-DXd had a higher probability of reporting respiratory, thoracic and mediastinal, blood and lymphatic system, metabolism and nutrition, and gastrointestinal ADRs. The present research found that in terms of hematological disorders, T-DM1 and T-DXd had a higher probability of reporting ADRs than TKIs. Moreover, the data showed that T-DM1 seemed to have a higher risk of cardiotoxicity than T-DXd, while T-DXd had a higher probability of reporting metabolism and nutrition disorders than T-DM1.
Collapse
Affiliation(s)
- Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Luca Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Adriana Aurelia Chis
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Anca Maria Juncan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Cecilia Georgescu
- Faculty of Agriculture Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania;
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| |
Collapse
|
7
|
Zheng Y, Xu R, Cheng H, Tai W. Mono-amino acid linkers enable highly potent small molecule-drug conjugates by conditional release. Mol Ther 2024; 32:1048-1060. [PMID: 38369752 PMCID: PMC11163218 DOI: 10.1016/j.ymthe.2024.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
The endosome cleavable linkers have been widely employed by antibody-drug conjugates and small molecule-drug conjugates (SMDCs) to control the accurate release of payloads. An effective linker should provide stability in systemic circulation but efficient payload release at its targeted tumor sites. This conflicting requirement always leads to linker design with increasing structural complexity. Balance of the effectiveness and structural complexity presents a linker design challenge. Here, we explored the possibility of mono-amino acid as so far the simplest cleavable linker (X-linker) for SMDC-based auristatin delivery. Within a diverse set of X-linkers, the SMDCs differed widely in bioactivity, with one (Asn-linker) having significantly improved potency (IC50 = 0.1 nM) and fast response to endosomal cathepsin B cleavage. Notably, this SMDC, once grafted with effector protein fragment crystallizable (Fc), demonstrated a profound in vivo therapeutic effect in aspects of targetability, circulation half-life (t1/2 = 73 h), stability, and anti-tumor efficacy. On the basis of these results, we believe that this mono-amino acid linker, together with the new SMDC-Fc scaffold, has significant potential in targeted delivery application.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Ruolin Xu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
8
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
9
|
Jarak I, Isabel Santos A, Helena Pinto A, Domingues C, Silva I, Melo R, Veiga F, Figueiras A. Colorectal cancer cell exosome and cytoplasmic membrane for homotypic delivery of therapeutic molecules. Int J Pharm 2023; 646:123456. [PMID: 37778515 DOI: 10.1016/j.ijpharm.2023.123456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of death in the world. The multi-drug resistance, especially in metastatic colorectal cancer, drives the development of new strategies that secure a positive outcome and reduce undesirable side effects. Nanotechnology has made an impact in addressing some pharmacokinetic and safety issues related to administration of free therapeutic agents. However, demands of managing complex biointerfacing require equally complex methods for introducing stimuli-responsive or targeting elements. In order to procure a more efficient solution to the overcoming of biological barriers, the physiological functions of cancer cell plasma and exosomal membranes provided the source of highly functionalized coatings. Biomimetic nanovehicles based on colorectal cancer (CRC) membranes imparted enhanced biological compatibility, immune escape and protection to diverse classes of therapeutic molecules. When loaded with therapeutic load or used as a coating for other therapeutic nanovehicles, they provide highly efficient and selective cell targeting and uptake. This review presents a detailed overview of the recent application of homotypic biomimetic nanovehicles in the management of CRC. We also address some of the current possibilities and challenges associated with the CRC membrane biomimetics.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Porto, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ana Isabel Santos
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Ana Helena Pinto
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Inês Silva
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Raquel Melo
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal.
| |
Collapse
|
10
|
Zafar S, Armaghan M, Khan K, Hassan N, Sharifi-Rad J, Habtemariam S, Kieliszek M, Butnariu M, Bagiu IC, Bagiu RV, Cho WC. New insights into the anticancer therapeutic potential of maytansine and its derivatives. Biomed Pharmacother 2023; 165:115039. [PMID: 37364476 DOI: 10.1016/j.biopha.2023.115039] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.
Collapse
Affiliation(s)
- Sameen Zafar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan.
| | - Nazia Hassan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania.
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Preventive Medicine Study Center, Timisoara, Romania
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
11
|
Djermane R, Nieto C, Vega MA, Del Valle EMM. Antibody-Loaded Nanoplatforms for Colorectal Cancer Diagnosis and Treatment: An Update. Pharmaceutics 2023; 15:pharmaceutics15051514. [PMID: 37242756 DOI: 10.3390/pharmaceutics15051514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
At present, colorectal cancer (CRC) is the second deadliest type of cancer, partly because a high percentage of cases are diagnosed at advanced stages when tumors have already metastasized. Thus, there is an urgent need to develop novel diagnostic systems that allow early detection as well as new therapeutic systems that are more specific than those currently available. In this context, nanotechnology plays a very important role in the development of targeted platforms. In recent decades, many types of nanomaterials with advantageous properties have been used for nano-oncology applications and have been loaded with different types of targeted agents, capable of recognizing tumor cells or biomarkers. Indeed, among the different types of targeted agents, the most widely used are monoclonal antibodies, as the administration of many of them is already approved by the main drug regulatory agencies for the treatment of several types of cancer, including CRC. In this way, this review comprehensively discusses the main drawbacks of the conventional screening technologies and treatment for CRC, and it presents recent advances in the application of antibody-loaded nanoplatforms for CRC detection, therapy or theranostics applications.
Collapse
Affiliation(s)
- Rania Djermane
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
| | - Celia Nieto
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| | - Milena A Vega
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| | - Eva M Martín Del Valle
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Sun W, Li Y, Sui D, Qi Z, Zhao X, Zhou W, Hu H, Liu X, Song Y, Deng Y. A potential platform of combining sialic acid derivative-modified paclitaxel cationic liposomes with antibody-drug conjugates inspires robust tumor-specific immunological memory in solid tumors. Biomater Sci 2023; 11:2787-2808. [PMID: 36825722 DOI: 10.1039/d2bm01769e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The recent approvals for antibody-drug conjugates (ADCs) in multiple malignancies in the past few years have fueled the ongoing development of this class of drug. However, the limitation of ADCs is selectivity toward cancer cells especially overexpressing the antigen of interest. To broaden the anti-cancer spectrum of ADCs, combinatorial strategies of ADCs with chemotherapy have become a central focus of the current preclinical and clinical research. Here, we used the microtubule stabilizer paclitaxel and enfortumab vedotin-ejfv (EV), an ADC carrying the microtubule inhibitor payload monomethyl auristatin E (MMAE), for co-administration under the consideration of their mechanism of action associated with microtubules. We designed a sialic acid-cholesterol (SA-CH) conjugate-modified cationic liposome platform loaded with PTX (PTX-SAL) for efficiently targeting tumor-associated immune cells. Compared with monotherapy, PTX-SAL-mediated combination therapy with ADCs significantly inhibited S180 tumor growth in mice, with complete tumor regression occurring. The formation of a durable tumor-specific immunological memory response in mice that experienced complete tumor regression was assessed by secondary tumor cell rechallenge, and the production of memory T cells in the spleen was detected as related to the increased CD4+T memory cells and the enhanced serum IFN-γ. All our preliminary results throw light on the tremendous application potential for the application of this combination therapy regimen capable of mounting a durable immune response and stimulating a robust T cell-mediated tumor-specific immunological memory.
Collapse
Affiliation(s)
- Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Zhaowei Qi
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Xinran Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Huiguo Hu
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
13
|
Singh D, Qasam I, Paudwal G, Kotwal P, Behera C, Kumar A, Gupta AP, Nandi U, Yadav G, Gupta PN, Shankar R. Redox-Responsive Hyaluronic Acid-Tacrolimus Conjugate: Synthesis, Characterization, and In Vitro Immunosuppressive Activity. ACS APPLIED BIO MATERIALS 2023; 6:733-744. [PMID: 36646666 DOI: 10.1021/acsabm.2c00946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A redox-responsive macromolecular prodrug of tacrolimus, HA-ss-Tac, was constructed by conjugation of tacrolimus (TAC, FK506) through its succinate ester to cystamine-modified hyaluronic acid (HA-Cys), and its physicochemical properties and immunosuppressive activity were studied. The synthesized HA-ss-TAC was determined to contain 8% of chemically loaded TAC with significantly enhanced water solubility. The release study showed a sustained release of drug through slow degradation of linker-drug bonds. In vitro inhibition of proliferation of T- and B-lymphocytes was almost comparable to that of TAC, implying that the biologically active compound could be released from the conjugate. The polymeric prodrug lacks obvious cytotoxicity on Raw 264.7 macrophages and significantly suppressed the production of inflammatory cytokines IL-2 and IL-1β by LPS-activated cells. Additionally, the cellular uptake study of the FITC-labeled conjugate confirmed the HA receptor-mediated internalization of the conjugate into targeted cells, thus avoiding systemic side effects. Taken together, the HA-ss-TAC prodrug could be an optimal prodrug for intravenous administration based on this preliminary data and can be expected to have improved therapeutic efficacy.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Irfan Qasam
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Gourav Paudwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Pankul Kotwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Chittaranjan Behera
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
| | - Amit Kumar
- Quality Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
| | - Ajai P Gupta
- Quality Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Govind Yadav
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
14
|
Qi X, Li Y, Liu W, Wang Y, Chen Z, Lin L. Research Trend of Publications Concerning Antibody-Drug Conjugate in Solid Cancer: A Bibliometric Study. Front Pharmacol 2022; 13:921385. [PMID: 35795565 PMCID: PMC9252465 DOI: 10.3389/fphar.2022.921385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Antibody-drug conjugate (ADC) is a promising therapy for solid cancer that has raised global concern. Although several papers have reviewed the current state of ADCs in different solid cancers, a quantitative analysis of the publications in this field is scarce. Methods: Publications related to ADC in the field of solid cancer were obtained from the Web of Science Core Collection. Data analyses were performed with VOSviewer 1.6.9, HistCite 2.1, CiteSpace V and R package Bibliometrix. Results: A total of 3,482 records were obtained in the holistic field and 1,197 in the clinical field. Steady growth in the number of publications was observed. The United States was the leading contributor in this field. Krop IE was the most influential author. The most productive institution was Genentech Inc., while Mem Sloan Kettering Canc Ctr was the most cited one. The most impactful journal was the Journal of Clinical Oncology. A total of 37 burst references and five burst references were identified between 2017–2022 in the holistic and clinical fields, respectively. Keywords analysis indicated that ADCs research mainly involved breast cancer, triple-negative breast cancer, ovarian cancer, small cell lung cancer, prostate cancer, gastric cancer, and urothelial carcinoma. ADC agents including trastuzumab emtansine, trastuzumab deruxtecan, sacituzumab govitecan, enfortumab vedotin, and rovalpituzumab tesirine were highly studied. Targets including HER2, trophoblast cell-surface antigen, mesothelin, delta-like ligand 3, and nectin-4 were the major concerns. Conclusion: This study analyzed publications concerning ADCs in the field of solid cancer with bibliometric analysis. Further clinical trials of ADCs and designs of the next generation of ADCs are the current focuses of the field. Acquired resistance of ADCs and biomarkers for ADC therapy efficacy monitoring are future concerns.
Collapse
Affiliation(s)
- Xiangjun Qi
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Wang
- School of Chinese Classics Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuangzhong Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lizhu Lin,
| |
Collapse
|
15
|
The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci Rep 2022; 12:3234. [PMID: 35217717 PMCID: PMC8881467 DOI: 10.1038/s41598-022-07281-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.
Collapse
|
16
|
Yun BD, Choi YJ, Son SW, Cipolla GA, Berti FCB, Malheiros D, Oh TJ, Kuh HJ, Choi SY, Park JK. Oncogenic Role of Exosomal Circular and Long Noncoding RNAs in Gastrointestinal Cancers. Int J Mol Sci 2022; 23:ijms23020930. [PMID: 35055115 PMCID: PMC8781283 DOI: 10.3390/ijms23020930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are differentially expressed in gastrointestinal cancers. These noncoding RNAs (ncRNAs) regulate a variety of cellular activities by physically interacting with microRNAs and proteins and altering their activity. It has also been suggested that exosomes encapsulate circRNAs and lncRNAs in cancer cells. Exosomes are then discharged into the extracellular environment, where they are taken up by other cells. As a result, exosomal ncRNA cargo is critical for cell-cell communication within the cancer microenvironment. Exosomal ncRNAs can regulate a range of events, such as angiogenesis, metastasis, immune evasion, drug resistance, and epithelial-to-mesenchymal transition. To set the groundwork for developing novel therapeutic strategies against gastrointestinal malignancies, a thorough understanding of circRNAs and lncRNAs is required. In this review, we discuss the function and intrinsic features of oncogenic circRNAs and lncRNAs that are enriched within exosomes.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Ye Ji Choi
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Gabriel Adelman Cipolla
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
- Genome-Based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Jong Kook Park
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|