1
|
Chitnis K, Narala N, Vemula SK, Narala S, Munnangi S, Repka MA. Formulation, Development, and Characterization of AMB-Based Subcutaneous Implants using PCL and PLGA via Hot-Melt Extrusion. AAPS PharmSciTech 2024; 26:16. [PMID: 39690379 DOI: 10.1208/s12249-024-03004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
The hot-melt extrusion process is currently considered a prominent manufacturing technique in the pharmaceutical industry. The present study is intended to develop amlodipine besylate (AMB)-loaded subcutaneous implants to reduce the frequency of administration, thus improving patient compliance during hypertension management. AMB subcutaneous implants were prepared using continuous hot-melt extrusion technology using poly(caprolactone) and poly(lactic-co-glycolic acid) with dimensions of 3.70 cm (length) by 2.00 mm (diameter). The implants were characterized for thermal characteristics, drug-excipient incompatibilities, surface morphology, fracturability, in vitro drug release, and stability studies. Differential scanning calorimetry study confirmed the drug's crystalline state within the fabricated implants, while textural analysis demonstrated good fracturability in the lead formulation. Scanning electron microscopy revealed the smooth surface morphology of the lead subcutaneous implant. The lead formulation showed an extended drug release profile over 30 days (~ 2.25 mg per day) and followed zero-order release kinetics (R2 value to 0.9999) with a mean dissolution time of 14.96 days. The lead formulation remained stable for 30 days at accelerated stability conditions of 40°C and 75% relative humidity. In conclusion, developing hot-melt extruded implants could be an alternative to the conventional amlodipine besylate (AMB) formulation.
Collapse
Affiliation(s)
- Kshitij Chitnis
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sivaram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
2
|
Bedulho das Lages Y, Milanino N, Verin J, Willart JF, Danede F, Vincent C, Bawuah P, Zeitler JA, Siepmann F, Siepmann J. EVA implants for controlled drug delivery to the inner ear. Int J Pharm X 2024; 8:100271. [PMID: 39252691 PMCID: PMC11381462 DOI: 10.1016/j.ijpx.2024.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
This study evaluated the potential of poly(ethylene vinyl acetate) (EVA) copolymers as matrix formers in miniaturised implants, allowing to achieve controlled drug delivery into the inner ear. Due to the blood-cochlea barrier, it is impossible to reliably deliver a drug to this tiny and highly sensitive organ in clinical practice. To overcome this bottleneck, different EVA implants were prepared by hot melt extrusion, altering the vinyl acetate content and implant diameter. Dexamethasone was incorporated as a drug with anti-inflammatory and anti-fibrotic activity. Its release was measured into artificial perilymph, and the systems were thoroughly characterised before and after exposure to the medium by optical and scanning electron microscopy, SEM-EDX analysis, DSC, X-ray powder diffraction, X-ray microtomography and texture analysis. Notably, the resulting drug release rates were much higher than from silicone-based implants of similar size. Furthermore, varying the vinyl acetate content allowed for adjusting the desired release patterns effectively: With decreasing vinyl acetate content, the crystallinity of the copolymer increased, and the release rate decreased. Interestingly, the drug was homogeneously distributed as tiny crystals throughout the polymeric matrices. Upon contact with aqueous fluids, water penetrates the implants and dissolves the drug, which subsequently diffuses out of the device. Importantly, no noteworthy system swelling or shrinking was observed for up to 10 months upon exposure to the release medium, irrespective of the EVA grade. Also, the mechanical properties of the implants can be expected to allow for administration into the inner ear of a patient, being neither too flexible nor too rigid.
Collapse
Affiliation(s)
| | - N Milanino
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J F Willart
- Univ. Lille, UMR CNRS 8207, UMET, F-59000 Lille, France
| | - F Danede
- Univ. Lille, UMR CNRS 8207, UMET, F-59000 Lille, France
| | - C Vincent
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - P Bawuah
- Univ. Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge CB3 0AS, UK
| | - J A Zeitler
- Univ. Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge CB3 0AS, UK
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| |
Collapse
|
3
|
Badruddoza AZM, Moseson DE, Lee HG, Esteghamatian A, Thipsay P. Role of rheology in formulation and process design of hot melt extruded amorphous solid dispersions. Int J Pharm 2024; 664:124651. [PMID: 39218326 DOI: 10.1016/j.ijpharm.2024.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Dana E Moseson
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Hong-Guann Lee
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Amir Esteghamatian
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Priyanka Thipsay
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| |
Collapse
|
4
|
Macasoi C, Meltzer V, Stanculescu I, Romanitan C, Pincu E. Binary Mixtures of Meloxicam and L-Tartaric Acid for Oral Bioavailability Modulation of Pharmaceutical Dosage Forms. J Funct Biomater 2024; 15:104. [PMID: 38667561 PMCID: PMC11050778 DOI: 10.3390/jfb15040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Binary mixtures of active pharmaceutical ingredients (API) are researched to improve the oral bioavailability of pharmaceutical dosage forms. The purpose of this study was to obtain mixtures of meloxicam and L-tartaric acid because tartaric acid improves intestinal absorption and meloxicam is more soluble in a weakly basic environment. The mixtures in the 0-1 molar fraction range, obtained from solvent-assisted mechanosynthesis, were investigated by differential scanning calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, Fourier Transform Raman spectroscopy (FT-Raman), X-ray powder diffraction (XRD) and solubility tests. The physicochemical characteristics of the compounds obtained from DSC data reveal, for the first time, the formation of a co-crystal at meloxicam molar fraction of 0.5. FTIR spectroscopy data show the existence of hydrogen bonds between the co-crystal components meloxicam and L-tartaric acid. FT-Raman spectroscopy was used complementary with FT-IR spectroscopy to analyze the pure APIs and their mixtures, to emphasize the appearance/disappearance and the shifts of the position/intensity of vibrational bands, following the formation of hydrogen-bonded structures or van der Waals interactions, and to especially monitor the crystal lattice vibrations below 400 cm-1. The experimental results obtained by X-ray powder diffraction confirmed the formation of the co-crystal by the loss and, respectively, the apparition of peaks from the single components in the co-crystal diffractogram. The solubility tests showed that the co-crystal product has a lower aqueous solubility due to the acidic character of the other component, tartaric acid. However, when the solubility tests were performed in buffer solution of pH 7.4, the solubility of meloxicam from the co-crystal mixture was increased by 57% compared to that of pure meloxicam. In conclusion, the studied API mixtures may be considered potential biomaterials for improved drug release molecular solids.
Collapse
Affiliation(s)
- Cristina Macasoi
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania; (C.M.); (V.M.); (I.S.)
| | - Viorica Meltzer
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania; (C.M.); (V.M.); (I.S.)
| | - Ioana Stanculescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania; (C.M.); (V.M.); (I.S.)
- Horia Hulubei National Institute for Physics and Nuclear Engineering, IRASM Department, 30 Reactorului Str., 077125 Magurele, Romania
| | - Cosmin Romanitan
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 72996 Bucharest, Romania;
| | - Elena Pincu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania; (C.M.); (V.M.); (I.S.)
| |
Collapse
|
5
|
Annaji M, Mita N, Heard J, Kang X, Poudel I, Boddu SHS, Tiwari AK, Babu RJ. Long-Acting Drug Delivery Technologies for Meloxicam as a Pain Medicine. Crit Rev Ther Drug Carrier Syst 2024; 41:111-150. [PMID: 38608134 DOI: 10.1615/critrevtherdrugcarriersyst.2024048988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Meloxicam, a selective COX-2 inhibitor, has demonstrated clinical effectiveness in managing inflammation and acute pain. Although available in oral and parenteral formulations such as capsule, tablet, suspension, and solution, frequent administration is necessary to maintain therapeutic efficacy, which can increase adverse effects and patient non-compliance. To address these issues, several sustained drug delivery strategies such as oral, transdermal, transmucosal, injectable, and implantable drug delivery systems have been developed for meloxicam. These sustained drug delivery strategies have the potential to improve the therapeutic efficacy and safety profile of meloxicam, thereby reducing the frequency of dosing and associated gastrointestinal side effects. The choice of drug delivery system will depend on the desired release profile, the target site of inflammation, and the mode of administration. Overall, meloxicam sustained delivery systems offer better patient compliance, and reduce the side effects, thereby improving the clinical applications of this drug. Herein, we discuss in detail different strategies for sustained delivery of meloxicam.
Collapse
Affiliation(s)
- Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | - Jessica Heard
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
6
|
Mansuroglu Y, Dressman J. Factors That Influence Sustained Release from Hot-Melt Extrudates. Pharmaceutics 2023; 15:1996. [PMID: 37514182 PMCID: PMC10386192 DOI: 10.3390/pharmaceutics15071996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hot-melt extrusion is a well-established tool in the pharmaceutical industry, mostly implemented to increase the solubility of poorly soluble drugs. A less frequent application of this technique is to obtain formulations with extended release. This study investigated the influence of polymer choice, drug loading, milling and hydrodynamics on the release of a model drug, flurbiprofen, from sustained-release hot-melt extrudates with Eudragit polymers. The choice of polymer and degree of particle size reduction of the extrudate by milling were the two key influences on the release profile: the percentage release after 12 h varied from 6% (2 mm threads) to 84% (particle size <125 µm) for Eudragit RL extrudates vs. 4.5 to 62% for the corresponding Eudragit RS extrudates. By contrast, the release profile was largely independent of drug loading and robust to hydrodynamics in the dissolution vessel. Thus, hot-melt extrusion offers the ability to tailor the release of the API to the therapeutic indication through a combination of particle size and polymer choice while providing robustness over a wide range of hydrodynamic conditions.
Collapse
Affiliation(s)
- Yaser Mansuroglu
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai.7, 60596 Frankfurt am Main, Germany
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai.7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Nagy E, Kopniczky J, Smausz T, Náfrádi M, Alapi T, Bohus J, Pajer V, Szabó-Révész P, Ambrus R, Hopp B. A comparative study of femtosecond pulsed laser ablation of meloxicam in distilled water and in air. Sci Rep 2023; 13:10242. [PMID: 37353524 DOI: 10.1038/s41598-023-36922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
The increasing prevalence of water insoluble or poorly soluble drugs calls for the development of new formulation methods. Common approaches include the reduction of particle size and degree of crystallinity. Pulsed laser ablation is a clean technique for producing sub-micrometre sized drug particles and has the potential to induce amorphization. We studied the effect of femtosecond pulsed laser ablation (ELI ALPS THz pump laser system: λc = 781 nm, τ = 135 fs) on meloxicam in distilled water and in air. The ablated particles were characterized chemically, morphologically and in terms of crystallinity. We demonstrated that femtosecond laser ablation can induce partial amorphization of the particles in addition to a reduction in particle size. In the case of femtosecond pulsed laser ablation in air, the formation of pure meloxicam spheres showed that this technique can produce amorphous meloxicam without the use of excipients, which is a unique result. We also aimed to describe the ablation processes in both investigated media.
Collapse
Affiliation(s)
- Eszter Nagy
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Tamás Smausz
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720, Hungary
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720, Hungary
| | - János Bohus
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged, 6728, Hungary
| | - Viktor Pajer
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged, 6728, Hungary
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, Szeged, 6720, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, Szeged, 6720, Hungary
| | - Béla Hopp
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
8
|
Costello MA, Liu J, Chen B, Wang Y, Qin B, Xu X, Li Q, Lynd NA, Zhang F. Drug release mechanisms of high-drug-load, melt-extruded dexamethasone intravitreal implants. Eur J Pharm Biopharm 2023; 187:46-56. [PMID: 37037387 DOI: 10.1016/j.ejpb.2023.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Ozurdex is an FDA-approved sustained-release, biodegradable implant formulated to deliver the corticosteroid dexamethasone to the posterior segment of the eye for up to 6 months. Hot-melt extrusion is used to prepare the 0.46 mm × 6 mm, rod-shaped implant by embedding the drug in a matrix of poly(lactic-co-glycolic acid) (PLGA) in a 60:40 drug:polymer ratio by weight. In our previous work, the Ozurdex implant was carefully studied and reverse engineered to produce a compositionally and structurally equivalent implant for further analysis. In this work, the reverse-engineered implant is thoroughly characterized throughout the in vitro dissolution process to elucidate the mechanisms of controlled drug release. The implant exhibits a triphasic release profile in 37 °C normal saline with a small burst release (1-2 %), a one-week lag phase with limited release (less than10 %), and a final phase where the remainder of the dose is released over 3-4 weeks. The limited intermolecular interaction between dexamethasone and PLGA renders the breakdown of the polymer the dominating mechanism of controlled release. A close relationship between drug release and total implant mass loss was observed. Unique chemical and structural differences were seen between the core of the implant and the implant surface driven by diffusional limitations, autocatalytic hydrolysis, and osmotic effects.
Collapse
Affiliation(s)
- Mark A Costello
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Joseph Liu
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Beibei Chen
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Yan Wang
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Bin Qin
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Xiaoming Xu
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Silver Spring, MD, USA
| | - Qi Li
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Nathaniel A Lynd
- University of Texas at Austin, McKetta Department of Chemical Engineering and Texas Materials Institute, Austin, TX, USA
| | - Feng Zhang
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|
9
|
Pei Y, Wang J, Khaliq NU, Meng F, Oucherif KA, Xue J, Horava SD, Cox AL, Richard CA, Swinney MR, Park K, Yeo Y. Development of poly(lactide-co-glycolide) microparticles for sustained delivery of meloxicam. J Control Release 2023; 353:823-831. [PMID: 36521690 DOI: 10.1016/j.jconrel.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) polymers have been widely used for drug delivery due to their biodegradability and biocompatibility. One of the objectives of encapsulating a drug in PLGA microparticles (MPs) is to achieve an extended supply of the drug through sustained release, which can range from weeks to months. Focusing on the applications needing a relatively short-term delivery, we investigated formulation strategies to achieve a drug release from PLGA MPs for two weeks, using meloxicam as a model compound. PLGA MPs produced by the traditional oil/water (O/W) single emulsion method showed only an initial burst release with minimal increase in later-phase drug release. Alternatively, encapsulating meloxicam as solid helped reduce the initial burst release. The inclusion of magnesium hydroxide [Mg(OH)2] enhanced later-phase drug release by neutralizing the developing acidity that limited the drug dissolution. The variation of solid meloxicam and Mg(OH)2 quantities allowed for flexible control of meloxicam release, yielding MPs with distinct in vitro release kinetics. When subcutaneously injected into rats, the MPs with relatively slow in vitro drug release kinetics showed in vivo drug absorption profiles consistent with in vitro trend. However, the MPs that rapidly released meloxicam showed an attenuated in vivo absorption, suggesting premature precipitation of fast-released meloxicam. In summary, this study demonstrated the feasibility of controlling drug release from the PLGA MPs over weeks based on the physical state of the encapsulated drug and the inclusion of Mg(OH)2 to neutralize the microenvironmental pH of the MPs.
Collapse
Affiliation(s)
- Yihua Pei
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nisar Ul Khaliq
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | | | - Jie Xue
- Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN 46225, USA
| | - Sarena D Horava
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA 02142, USA
| | - Amy L Cox
- Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN 46225, USA
| | - Coralie A Richard
- Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN 46225, USA
| | - Monica R Swinney
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA 02142, USA
| | - Kinam Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
10
|
Lu A, Zhang J, Jiang J, Zhang Y, Giri BR, Kulkarni VR, Aghda NH, Wang J, Maniruzzaman M. Novel 3D Printed Modular Tablets Containing Multiple Anti-Viral Drugs: a Case of High Precision Drop-on-Demand Drug Deposition. Pharm Res 2022; 39:2905-2918. [PMID: 36109460 PMCID: PMC9483370 DOI: 10.1007/s11095-022-03378-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
3D printed drug delivery systems have gained tremendous attention in pharmaceutical research due to their inherent benefits over conventional systems, such as provisions for customized design and personalized dosing. The present study demonstrates a novel approach of drop-on-demand (DoD) droplet deposition to dispense drug solutions precisely on binder jetting-based 3D printed multi-compartment tablets containing 3 model anti-viral drugs (hydroxychloroquine sulfate - HCS, ritonavir and favipiravir). The printing pressure affected the printing quality whereas the printing speed and infill density significantly impacted the volume dispersed on the tablets. Additionally, the DoD parameters such as nozzle valve open time and cycle time affected both dispersing volume and the uniformity of the tablets. The solid-state characterization, including DSC, XRD, and PLM, revealed that all drugs remained in their crystalline forms. Advanced surface analysis conducted by microCT imaging as well as Artificial Intelligence (AI)/Deep Learning (DL) model validation showed a homogenous drug distribution in the printed tablets even at ultra-low doses. For a four-hour in vitro drug release study, the drug loaded in the outer layer was released over 90%, and the drug incorporated in the middle layer was released over 70%. In contrast, drug encapsulated in the core was only released about 40%, indicating that outer and middle layers were suitable for immediate release while the core could be applied for delayed release. Overall, this study demonstrates a great potential for tailoring drug release rates from a customized modular dosage form and developing personalized drug delivery systems coupling different 3D printing techniques.
Collapse
Affiliation(s)
- Anqi Lu
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jiaxiang Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Junhuang Jiang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bhupendra R Giri
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Vineet R Kulkarni
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Niloofar Heshmati Aghda
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Pothupitiya JU, Zheng C, Saltzman WM. Synthetic biodegradable polyesters for implantable controlled-release devices. Expert Opin Drug Deliv 2022; 19:1351-1364. [PMID: 36197839 DOI: 10.1080/17425247.2022.2131768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Implantable devices can be designed to release drugs to localized regions of tissue at sustained and reliable rates. Advances in polymer engineering have led to the design and development of drug-loaded implants with predictable, desirable release profiles. Biodegradable polyesters exhibit chemical, physical, and biological properties suitable for developing implants for pain management, cancer therapy, contraception, antiviral therapy, and other applications. AREAS COVERED : This article reviews the use of biodegradable polyesters for drug-loaded implants by discussing the properties of commonly used polymers, techniques for implant formulation and manufacturing, mechanisms of drug release, and clinical applications of implants as drug delivery devices. EXPERT OPINION : Drug delivery implants are unique systems for safe and sustained drug release, providing high bioavailability and low toxicity. Depending on the implant design and tissue site of deployment, implants can offer either localized or systemic drug release. Due to the long history of use of degradable polyesters in medical devices, polyester-based implants represent an important class of controlled release technologies. Further, polyester-based implants are the largest category of drug delivery implants to reach the point of testing in humans or approval for human use.
Collapse
Affiliation(s)
- Jinal U Pothupitiya
- Department of Biomedical Engineering, Yale University; New Haven, CT 06511, USA
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University; New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University; New Haven, CT 06511, USA
| |
Collapse
|
12
|
Ma L, He Y, Bai L, Li M, Sui X, Liu B, Tian B, Liu Y, Fu Q. Preclinical studies of a high drug-loaded meloxicam nanocrystals injection for analgesia. Colloids Surf B Biointerfaces 2022; 218:112777. [PMID: 36007315 DOI: 10.1016/j.colsurfb.2022.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
Abstract
Meloxicam (MLX) is considered to have significant analgesic properties. However, the analgesic effects of MLX are compromised by its poor water solubility and thus the low drug loading. The purpose of this study was to develop a high drug-loaded MLX injection by formulating it into nanocrystals (NCs) for the treatment of analgesia. The developed MLXNCs exhibited satisfactory particle sizes and remarkably in vitro dissolution behaviors. In addition, the plasma concentrations of MLXNCs were comparable with the MLX solution (formulated with 1.0% polyoxyethylene castor oil 35) in rats. The acetic acid-induced writhing tests, hot plate tests and hind paw incision experiments demonstrated that the MLXNCs had significant analgesic effects. The findings provide insights into the developed high drug-loaded MLXNCs and provide new therapeutic options for acute and chronic pain management.
Collapse
Affiliation(s)
- Lixue Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yan He
- Department of Anesthesiology, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing 100089, China
| | - Lijun Bai
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- Department of Pharmaceutics, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|